
ARTICLE OPEN

Preventing inpatient falls with injuries using integrative
machine learning prediction: a cohort study
Lin Wang1, Zhong Xue1, Chika F. Ezeana2, Mamta Puppala2, Shenyi Chen2, Rebecca L. Danforth1, Xiaohui Yu2, Tiancheng He 2,
Mark L. Vassallo3* and Stephen T. C. Wong 1,2*

Patient falls during hospitalization can lead to severe injuries and remain one of the most vexing patient-safety problems facing
hospitals. They lead to increased medical care costs, lengthened hospital stays, more litigation, and even death. Existing methods
and technology to address this problem mostly focus on stratifying inpatients at risk, without predicting fall severity or injuries.
Here, a retrospective cohort study was designed and performed to predict the severity of inpatient falls, based on a machine
learning classifier integrating multi-view ensemble learning and model-based missing data imputation method. As input, over two
thousand inpatient fall patients’ demographic characteristics, diagnoses, procedural data, and bone density measurements were
retrieved from the HMH clinical data warehouse from two separate time periods. The predictive classifier developed based on
multi-view ensemble learning with missing values (MELMV) outperformed other three baseline models; achieved a cross-validated
AUC of 0.713 (95% CI, 0.701–0.725), an AUC of 0.808 (95% CI, 0.740–0.876) on the separate testing set. Our studies show the efficacy
of integrative machine-learning based classifier model in dealing with multi-source patient data, which in this case delivers robust
predictive performance on the severity of patient falls. The severe fall index provided by the MELMV classifier is calculated to
identify inpatients who are at risk of having severe injuries if they fall, thus triggering additional steps of intervention to prevent a
harmful fall, beyond the standard-of-care procedure for all high-risk fall patients.
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INTRODUCTION
A fall is defined as “an untoward event which results in the patient
coming to rest unintentionally on the ground or other lower
surface”.1 Predicting falls, especially the potential severity of a fall,
is quite tough because, based on Morse’s classification, there are
several types of falls, including accidental, anticipated physiolo-
gical, and unanticipated physiological falls.2 Some classifications
have further created behavioral (intentional) and assisted fall types
in addition to these classes.3 Patient falls during hospitalization are
serious and costly. Given the already compromised state of
individuals who are in hospital settings, falls often lead to other
complications, such as fractures, lacerations, and/or significant
internal bleeding. In the United States alone, thousands of
patients fall in hospitals every year, with about 30–50% resulting
in injury.4–6 Often, patients injured from falls require additional
treatment and extended hospital stays. Accidental patient falls
complicate an estimated 2% of hospital stays, and the rates of falls
range from 3.3 to 11.5 falls per 1000 patient days. In a study
performed at three midwestern hospitals, fall injuries added
6.3 days to hospital stays. On average, the cost implication for a
fall with injury is around $14,000.7–9 Between 2009 and 2015, The
Joint Commission’s Sentinel Event database compiled a total of
465 severe falls occurring in hospitals. 63% of these severe falls
resulted in death, while the remaining patients sustained serious
injuries.10

While patient falls can be related to the type of care setting,
age, mental status, illness, medication, and others, hospitals strive
to prevent and keep fall incidents to the barest minimum. To
prevent patient falls, screening tools are implemented. Fall risk
assessments are performed at the patient bedside to identify who

is at the highest risk upon hospitalization, and standardized
practices are adopted, especially for patients with high fall risk.
This type of assessment employs specific screening instruments,
with the most prevalent being the Morse Fall Scale, St. Thomas
Risk Assessment Tool in Falling elderly inpatients (STRATIFY),
Resident Assessment Instrument (RAI), Fall Risk Assessment Tool,
Hendrich Fall Risk Model, High Risk for Falls Assessment Form,
Royal Melbourne Hospital Risk Assessment, and Hester Davis scale
for fall risk assessment.11–16 These tools are used to identify
patients who are likely to fall based on their intrinsic or medical
characteristics, e.g., psychological status, mobility dysfunction, fall
history, elimination frequency/dependence, acute/chronic ill-
nesses, medications taken, and sensory deficits. These instruments
are commonly utilized by nurses upon patient admission and are
periodically updated, e.g., per shift, daily, or weekly, depending on
the acuity level of the patient.
Although a variety of adequate screening tools are available,

further research is needed in several areas. For example, most
existing tools are not designed to predict whether a fall would be
severe and thus are of little help in their application for preventing
severe injuries and other consequences. Predicting the severity of
patient falls in at risk patients offers the opportunity to identify
medical and physiological factors that can help healthcare
practitioners to offer more tailored interventions.
The objective of this study is to develop a general predictive

model for severity of falls among patient populations, using an
advanced machine learning method multi-view ensemble leaning
to efficiently exploit the multidimensional patient data.17,18 Our
goal is to provide an automatic severity index to predict if a fall
will be severe in patients with an appreciable fall risk so that
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appropriate interventions and more attention can be provided to
these patients and prevent such accidents from happening.

RESULTS
Study design
There were 1837 fall incidents occurring among 1692 patients in
the training set, of which 297 cases (16.2%) were severe fall
incidents. Testing was performed on data from the period of May
2016 to December 2016, including 306 fall incidents (275
patients), of which 33 cases (11%) were severe fall incidents. For
each fall case, we collected data including patient demographics
like age, race, sex, disease diagnosis, bone density measures if
available, and procedural data if available. There are 3170 distinct
ICD codes in 723 disease category recorded in the training set, and
1891 distinct ICD codes in 442 disease categories in the testing
set. About 5% of patients had forearm type bone density
measures (92 cases) and 7.5% of patients had dual femur type

bone density measures (137 cases). About 30.4% (559 cases) of fall
incidents had a procedure performed within 10 days before the
patient fell, with 202 distinct procedure codes recorded. In the
testing set 31.7% (97 cases) had procedures with 39 distinct
procedure codes recorded. A summary of the training set and
testing set is provided in Table 1.
The best result was obtained by using the following features: all

the logistic regression classifiers from each view of data except
procedural data, SVR classifiers from both forearm and dual femur
bone density measures, and missing flags for procedural and both
bone density measurements. The excluded features are SVM
classifiers from demographics, disease, and procedural data, and
logistic regression classifier from procedural data. Using this group
of features, our model achieved an AUC of 0.713 (95% CI,
0.701–0.725) by bootstrapping the ten repeats of 10-fold cross-
validation on the training set.
The comparison of the performance with all the baseline

models on the training and testing set is shown in Table 2. The

Table 1. Characteristics and variables of the 1837 training data and 306 testing data.

Characteristics Training set (n= 1837) Testing set (n= 306)

No. Unique Patients 1692 275

Age, Mean (SD) 63.0 (15.7) 64.6 (15.8)

Sex, No. (%)

Female 942 (51.3) 148 (48.4)

Male 895 (48.7) 158 (51.6)

Race, No. (%)

Asian 32 (1.7) 7 (2.3)

Black 432 (23.5) 73 (23.9)

Caucasian 1120 (61.0) 213 (69.6)

Hispanic 30 (1.6) 0 (0)

Indian, American 5 (0.3) 4 (1.3)

Other or unknown 218 (11.9) 9 (2.9)

Bone density

Type: Dual Femur, No. (%) 137 (7.5) 27 (8.8)

Bone Mass Density, mean (SD), g/cm2 0.538 (0.183) 0.926 (0.199)

Bone Density T-Score, mean (SD) −1.154 (1.312) −1.011 (1.438)

Type: forearm, No. (%) 92 (5.0) 7 (2.3)

Bone Mass Density, mean (SD), g/cm2 0.526 (0.252) 0.745 (0.221)

Bone Density T-Score, mean (SD) −1.540 (1.768) −1.629 (1.428)

Disease

ICD-9, Distinct No. 3170 1891

Disease category, Distinct No. 723 442

Procedural

No. (%) 559 (30.4) 97 (31.7)

CPT code, Distinct No. 202 39

Severe falls, No. (%) 297 (16.2) 33 (10.8)

Table 2. Model performance comparison with different imputation methods for missing data.

Modeling approach Training set AUC (95% CI) Testing set AUC (95% CI)

MELMV Model with Model-based Imputation 0.713 (0.701–0.725) 0.808 (0.740–0.876)

Random forest with Model-based Imputation 0.679 (0.664–0.695) 0.753 (0.665–0.841)

Model of ensemble of all classifiers 0.628 (0.616–0.640) 0.706 (0.622–0.790)

Single Logistic Regression Model with multivariable imputation 0.668 (0.653–0.682) 0.728 (0.726–0.730)

Single Support Vector Machine Model with multivariable imputation 0.618 (0.607–0.628) 0.596 (0.592–0.600)

Model of ensemble single view of LG and SVM 0.619 (0.605–0.634) 0.645 (0.643–0.648)
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AUC values of MELMV, LG, SVM, and random forest from the ten
repeat of 10-fold cross-validation are 0.713, 0.668, 0.618, and
0.679, respectively. SVM’s AUC value is significantly worse on
testing subsets than that of the other three models but it performs
best on the training subsets, indicating that SVM more easily
overfits data than the others. On the testing set, the MELMV model
reached the best prediction performance with AUC 0.808 (95% CI,
0.740–0.876) with DeLong test, with a sensitivity of 80% specified,
specificity is 67% (95% CI, 51–82%) (Fig. 1). The LG and SVM
models reached 0.728 and 0.596 on the testing set. The random
forest model reached an AUC of 0.753. This shows that our model-
based imputation method has better contribution to model
performance, and that our ensemble method performance is
better than a baseline model like random forest. The MELMV
model demonstrates more robust and better predictive power
than both LG and SVM models.
As our goal is predicting the severity of falls, our predictive

model could be used on patients who have been identified as
high-risk for falls. To test the performance on the group of high-
risk fall patients, we used our prediction model only on the high-
risk fall patients in the testing data. The high-risk patients were
identified by their Hester Davis scores, those whose scores are
higher than 10 are considered patients of moderate to high risk of
fall. The AUC on the high-risk patients is 0.86 (95% CI,
0.731–0.989), which is 0.05 higher than the result on all the cases
in testing set (Fig. 2). Additionally, although the Hester Davis score
is not designed for predicting the severity of a fall, we want to
verify if it also can predict severity of a fall beyond its designed
goal. The right of Fig. 2 is the ROC curve of using the Hester Davis
score as the classifier to predict the severity of a fall. We can see
that the Hester Davis score has almost no predictive capability to
determine the severity of a patient fall or fall resulting in a patient
injury, even though it has been approved and commercialized as a
method of assessment of patient fall risk. Therefore, it can be
concluded that predicting risk of a fall and predicting the severity
of a fall are two different issues. Our MELMV model used in
addition to fall assessment tools like Hester Davis can reliably
predict high-risk and high-severity patients, who should have the
highest priority for fall prevention.

The predictive performance of each view of data
For individual predictors in each data view, the ROC curve on the
testing data is plotted in Supplementary Fig. 1. The AUCs
demonstrated that diagnosis/disease type is the most important
factor associated with the severity of patient falls. Other factors
(demographics, bone density, and procedure) are also predictive.
No single predictor could satisfactorily predict fall severity alone,
using advanced ensemble learning will ensure that the final model
has better performance than any single view model can obtain.
Studying the data in further detail, statistical tests indicated

some differences between minor and severe injury levels with
respect to certain variables. Advancing age predisposes patients
to increased fall severity or injuries, as severe falls were more
frequent in the elderly patient population. Bone density measure-
ments indicate a trend, though not statistically significant
(Supplementary Table 1). The race/ethnic group factor was noted
to play a significant role in severe outcomes of falls (Supplemen-
tary Table 2). Additionally, in Table 3 we list the disease areas for
which injury scores are significantly higher than the population
mean, statistical power ≥80%, p-value < 0.05. Among the diseases
with the highest injury score was occlusion and stenosis of
precerebral arteries, which is not unexpected given the well-
known consequences and effects of reduced cerebral perfusion to
a patient’s level of consciousness.

DISCUSSION
We developed and validated an advanced machine learning
model based on multi-view ensemble classifier, which can be used
to predict severe outcome or injury in all types of falls. The model
employs multiple views of patient data encoding complementary
information and integrates the predictive power of individual
views together to achieve a robust predictive performance or
score. To cater for pragmatic clinical usage, the MELMV model can
perform well even in the presence of a rather significant amount
of missing data values using model-based imputation. The multi-
view learning process of MELMV limits the effect of missing data
and will not affect whole samples, unlike other variable imputing
methods. Hence, the MELMV model is more robust and general-
izable than conventional single view learning models with variable
imputing methods. In addition, the MELMV classifier model is
easier to extend to include new views of data, as we just need to
train sub-classifiers of the model on the new data instead of
retraining the entire model from scratch. In summary, the new
multi-view ensemble learning with missing data model is robust,
generalizable, and extendable, as demonstrated in the compar-
ison with other popular machine learning or statistical methods.
In addition, the MELMV classifier could be used immediately

upon admission with as little information as age, sex, race, and
diagnosis. The derivable advantage of severe fall prevention is
dependent on how early the assessment is made, this is important
in cases such as behavioral falls where patients intentionally fall. In
practice, the MELMV tool could be employed in the clinical setting
to predict severity after a fall assessment has been made using
one of the aforementioned fall risk assessment tools such as
Hester Davis, STRATIFY, etc. This extra layer of alert for the
healthcare provider will allow for cost-effective implementation of
more efficient and timely fall prevention strategies. The MELMV
model is implemented in a web application, Severity Of Patient
Falls Risk Assessment (SOFRA) to incorporate the severity risk
score into the clinical workflow via the electronic medical record
(EMR) to alert care providers (Supplementary Fig. 2). For the
patients who have high risk for severe fall, we would like to
advocate the intervention strategies should be strictly followed.
They should be placed under very keenly focused, possibly round
the clock, observation and monitoring including having more
nursing resources dedicated to them.

ROC for MELMV Model
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Fig. 1 The performance of the multi-view ensemble learning with
missing data classifier (MELMV) on the testing set. Model
performance was evaluated by the receiver operating characteristic
curve on a prospective testing set. The 95% CIs of specificity were
also showed at shaded band. ROC: receiver operating characteristic
curve; AUC: area under the receiver operating characteristic curve;
sn: sensitivity; sp: specificity; MELMV: multi-view ensemble learning
with missing value classifier.
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There have been a few studies that attempted to use fall risk
assessment tools for fall severity and injury prediction. Nilsson
et al.19 made use of the fall risk assessment derived from the
Downton Fall Risk Index (DFRI) to predict fall related injuries, fall
related head injuries and hip fractures, and all-cause mortality in a
large cohort of older patients. The research is a factor analysis that
showed the DFRI score has significant relation to some kinds of
injuries in the cohort of older patients, but there is no model
performed to predict the severity of various kinds of injuries from
falls in a broad spectrum of patients. Shinichi Toyabe20 also
attempted to develop a risk assessment tool to predict severe
injuries from falls using a combination of STRATIFY and Fracture
Risk Assessment Tool (FRAXTM) scores. A model was developed
that interprets a STRATIFY score of more than two and a FRAX
score of more than ten as predictive for severe injury after falls.
However, the severe injuries considered were only limited to bone
fractures and intracranial hemorrhages as these, according to the
authors, account for most severe injuries following falls.
Despite its advantages over existing tools and methods, the

MELMV classifier method would need certain improvements. First,
this study was conducted within Houston Methodist Hospital, the
flagship hospital of Houston Methodist at Texas Medical Center.
Our model needs validation of its generalizability across multiple
hospitals. Our ongoing study includes conducting a validation of
MELMV model cross the 8-hospital system of Houston Methodist.
Second, the MELMV tool will be applied to predict high risk of fall
injuries for the fall patients who have been identified by a
commercial fall assessment tool. Third, for new patients with
limited medical records, including first time admissions or
transfers from other hospitals, especially in their first few hours
of admission or transfer, little information is available to feed the
model to predict the severity of falls. Nevertheless, as time
progresses, the assessment of fall severity would be updated as
more information, such as procedures and bone density scan
results, becomes available.
In summary, we reported a powerful and generalized model

using an integrative machine learning technique to predict the
severity of all kinds of injuries of inpatient falls, and trained and
validated the model in a cohort of over two thousand fall patients.
Such a valuable tool fills the gap of one of the most vexing
patient-safety problems facing hospitals today and will help to
focus care givers on prescribing and implementing additional

prevention or intervention strategies for those patients at high risk
for injuries from severe falls, beyond standard-of-care intervention
measures for all high risk fall patients.

METHODS
Data source
There are approximately 600 inpatient fall incidents annually recorded in
the Houston Methodist Hospital (HMH), the main campus of the 8-hospital
system of Houston Methodist. For each recorded fall incident, the level of
harm was documented using the Agency for Healthcare Research and
Quality (AHRQ) Common Format Harm Score v.1.1 referenced in Patient
Safety Network (PSN) with numbers from 1 to 9, Supplementary Table 3
describes the AHRQ harm score.21 Falls recorded with a harm level of 6 and
above on this scale indicate significant harm and are therefore classified as
severe falls. Using the Patient Safety Net (PSN) and Safety Intelligence
system of HMH, we extracted reported inpatient fall events for the period
of January 2011 to August 2015. The testing set was extracted from the
period of May 2016 to December 2016. We then mapped those patients to
our enterprise-wide clinical data warehouse, METEOR (Methodist Environ-
ment for Translational Enhancement and Outcomes Research), which
integrates existing business data warehouse and patient records across the
eight hospitals of the HMH system.22 The METEOR framework consists of
two components: the enterprise clinical data warehouse (EDW) and a
software intelligence and analytics (SIA) layer for enabling a wide range of
clinical decision support systems to support clinical research and outcome
studies. Using the METEOR clinical data warehouse, we retrospectively
analyzed the fall patients’ medical records.
We collected the fall patients’ demographics data, which include sex,

age, and race; all the admission diagnoses and chief complaints
(International Classification of Diseases, Ninth Revision [ICD-9] code); all
the procedural data within ten days of the falling date (CPT codes); and
bone density measurements reported within one year. Any bone density
measurement more than one year prior to the incident is not accurate
enough to reflect the real bone density at the time of the fall. Bone density
is extracted from the DEXA report (region, scan type, bone mass density,
and T-score) using natural language processing (NLP).23 We preprocessed
the diagnosis codes by keeping only codes that indicate injury or illness of
higher hierarchy and ignoring those codes of lower hierarchy. Among
falling patients, 8% had more than one fall incident. We treated each of
these fall cases independently, without considering patient identity, as a
patient’s data could vary at different fall dates.
This study was approved as a quality improvement investigation by the

hospital administration and the Informatics oversight committee of the
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Fig. 2 The comparison of the performance of the multi-view ensemble learning with missing data classifier (MELMV) and Hester Davis
score on the high risk fall patients in the testing data. a Performance of the MELMV model evaluated by the receiver operating characteristic
curve on the testing set with high risk of fall based on the Hester Davis score. b Performance of the Hester Davis score as severity fall classifier
evaluated by the receiver operating characteristic curve on the testing set. ROC: receiver operating characteristic curve; AUC: area under the
receiver operating characteristic curve; sn: sensitivity; sp: specificity; MELMV: multi-view ensemble learning with missing value classifier.
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Houston Methodist system. This study has been reviewed by the
Institutional Review Board (IRB) of Houston Methodist Hospital.

Model development
Multi-view ensemble learning is a machine learning method that deploys
multiple distinct feature sets to train multiple learning algorithms in order
to obtain better predictive performance than any of the constituent
learning algorithms alone. Multi-view ensemble learning has the potential
to address high dimensional data. Research shows that multi-view
ensemble learning improves the accuracy and generalization performance
of the learning model. It has been used in learning areas, such as clustering,
classification, and dimensionality reduction, etc.24 The method has also
been applied successfully in a number of real world applications, including
healthcare.25–28 Multi-view ensemble learning exploits each ‘view’ of the
data, which comes from different resources and encodes different but
complementary information for the whole ‘image’, learns each view of the
data set with its own learning process, and finally constructs an ensemble
of all the learning outputs from each view to obtain a single output as the
final classification result with better predictive performance.
There are four views in our data set: patient demographics, disease

diagnosis, bone density measures, and procedural data. They are distinct
feature sets coming from different resources, reflecting different aspects of
the patients’ information. Each view of the data in the training set was
processed using two different base inducers, namely, a linear prediction
model (logistic regression) and a nonlinear one (support vector machine),
to compensate for each other. Both outputs are values between 0 and 1,
indicating the predictive probability of a severe fall (Supplementary Fig. 3).
To handle the cases with missing data in some sets, we use a model-

based machine learning method to impute the missing data.29 In general,
the classifier is trained on available data of each view, and the ROC curve is
calculated on the same data available. A threshold is used as an output for
missing data, and a missing flag is created to indicate whether the output
is a real predictive output from a real data sample or a threshold for
missing data. The threshold is determined by the best cutoff on the ROC
curve on available data, which maximizes the sum of the sensitivity and
specificity. In this way, all the classifiers from different views of data sets
have complete outputs for all samples, without being affected by distinct
missing data conditions in each view (Supplementary Fig. 4).
In the ensemble step, we use the ensemble selection method to

combine the component classifiers.30 That is, instead of using all of the
component classifiers to construct an ensemble, a subset of classifiers will
be selected to include in the ensemble to avoid overfitting, reduce

redundancy of classifiers, and obtain the best performance of the final
classifier. We also generalize the ensemble selection method in two ways.
First, the missing flags are taken into account in the ensemble
construction, not just the set of classifiers, as the missing flags contain
the information of missing data, real output or not, which should be
considered. The classifiers and missing flags together are considered as
‘features’ in the final model. Second, we use the wrapper feature selection
method instead of heuristics to choose the optimal subset of classifiers and
flags using logistic regression model.31 The best subset of features is
selected to be included in the final ensemble model based on each
subset’s predictive performance. The single output of the final model is a
value between 0 and 1, indicating the predictive probability of a severe fall
(severity index). More details of the structure of the multi-view ensemble
model and the training of each individual view of data can be found in
Supplementary Figs. 3 and 4.

Model validation
The best subset of component classifiers and missing flags was settled
using ten repeats of 10-fold cross-validation, and then the final model was
fitted using the training set and tested in the separate testing set. To test
the performance of the multi-view ensemble classifier model, we
compared the model to single view logistic regression model and support
vector machine (SVM) model. The single view model is meant to
concatenate all views of the data as a single feature vector and then
build a single model on all the features. The features in the model were
optimized using ten repeats of 10-fold cross-validation. Multivariable
Imputation method was used to deal with missing data in the training set
before the two models were trained.32 Each run of cross-validation was
trained with different imputing data to offset the effect of the randomness
of the imputing data, and the final performance is estimated on the
average performance of 10-fold cross-validation.
We evaluated whether the proposed ensemble method is better than

prevalent machine learning methods for this application. With the same
classifiers and missing flags as features, we trained a random forest model
as the final model. Variables were selected in the random forest using 10
repeats of 10-fold cross-validation. We also compared with two simple
ensemble models: ensemble of all the classifiers and missing flags, and the
ensemble of single-view logical regression (LG) and SVM.
The area under the receiver operating characteristic curve (AUC) was

calculated to measure the performance of the models. First, the average of
AUC of the cross-validation repetitions on the training set was computed
to estimate the overall performance of the MELMV model, LG, SVM,

Table 3. List of disease areas of the training dataset whose injury scores are significantly higher than the population mean, with statistical power
≥80%, p-value < 0.05.

P-value Ave injury scores No of cases Disease area

0.01 5.30 10 Occlusion and Stenosis of multiple and bilateral precerebral

0.02 5.29 7 Rhinovirus Infection in conditions classified elsewhere

0.02 5.17 18 Venous (Peripheral) insufficiency, unspecified

0.00 5.02 46 Mixed acid-base balance disorder

0.01 4.91 33 Other diuretics causing adverse effects in therapeutic use

0.03 4.90 31 Hepatorenal Syndrome

0.04 4.89 35 Acute and chronic respiratory failure

0.04 4.88 24 Temporary tracheostomy

0.04 4.85 27 Kidney replaced by transplant

0.03 4.83 35 Hypovolemia

0.02 4.80 35 Cachexia

0.00 4.80 65 Cardiac pacemaker in situ

0.04 4.78 49 Encounter for palliative care

0.03 4.71 58 Closed (Endoscopic) biopsy of bronchus

0.03 4.70 54 Body mass index less than 19, adult

0.04 4.68 50 Occlusion and stenosis of carotid artery without mention of cerebral infarction

0.03 4.66 99 Other ascites

0.02 4.62 111 Other fluid overload

0.03 4.59 138 Long-Term (current) use of steroids
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random forest and the other two ensemble models. Then, the performance
of the models was evaluated on the testing set. We also tested our model
on part of the testing set with high fall risk based on the Hester Davis scale
deployed at Houston Methodist to assess whether the MELMV model
offers more precise information than a commercial fall risk tool.
Analyses were performed using Python (Python Software Foundation)

and R version 3.4.3 (R Foundation for Statistical Computing). The MySQL
package in Python was used to automatically retrieve the training and
testing data, and the liquidSVM33 and speedglm34 packages in R were used
for generating the support vector machine (SVM) and logistic regression
models. The ‘MICE’ package35 in R was used to impute the missing values
both in the training data and testing data. pROC36 package in R was used
for generating AUCs of the prediction results from the model. Reporting
complies with The Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) Statement.

Statistical analysis
Model performance was evaluated based on the 95% CIs of AUC. The 95%
CIs of the models on the training set was computed by Bootstrapping the
10 repeats of 10-fold cross-validation. In all, 95% CIs of the LG, SVM, and
their ensemble model on the testing set was computed by bootstrapping
100 repeats on the testing set with different imputing data, DeLong test
was used to compute the 95% CI of our model, random forest, and model
of the ensemble of all features on the testing set.37 Model performance is
statistically significantly better than another if its 95% CI exceeds the mean
AUC of the other model.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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