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Since their identification as a unique cell population, innate lymphoid cells (ILCs) have

revolutionized our understanding of immune responses, leaving their impact on multiple

inflammatory and fibrotic pathologies without doubt. Thus, a tightly controlled regulation

of local ILC numbers and their activity is of crucial importance. Even though this has been

extensively studied in murine ILCs in the last few years, our knowledge of human ILCs

is still lagging behind. Our review article will therefore summarize recent insights into the

function of human ILCs and will particularly focus on their regulation under inflammatory

conditions. The quality and intensity of ILC involvement into local immune responses at

mucosal sites of the human body can potentially be modulated via three different axes:

(1) activation of tissue-resident mature ILCs, (2) plasticity and local transdifferentiation

of specific ILC subsets, and (3) tissue migration and accumulation of peripheral ILCs.

Despite a still ongoing scientific effort in this field, already existing data on the fate

of human ILCs under different pathologic conditions clearly indicate that all three of

these mechanisms are of relevance for the clinical course of chronic inflammatory

and autoimmune diseases and might likewise provide new target structures for future

therapeutic strategies.

Keywords: innate lymphoid cells, mucosal inflammation, human immune system, cytokine, ILC plasticity, tissue

migration

INTRODUCTION

Having been overlooked for ages, helper innate lymphoid cells (ILCs) have been increasingly
recognized as key immunological players since their discovery as a distinct cell population in 2010
(1–3). Since then, as a result of an immense amount of scientific effort, a prominent role has been
assigned to ILCs as initiators and amplifiers of protective but also detrimental immune responses
in various tissues, making them interesting potential therapeutic targets (4, 5).

Phenotypically, ILCs are classified as lymphoid cells that lack the expression of lineage markers
defining any known lymphoid or myeloid cell population (6). Functionally, ILCs share core effector
features with T cells, even though they are characterized by a lack of rearranged antigen-specific
receptor expression. This enables full activation of ILCs independent from the antigen-presentation
and -recognition machinery and thereby the induction of rapid immune responses (7). After their
stepwise development from a common lymphoid progenitor cell [reviewed elsewhere (8–10)],
mature ILCs can be categorized into three main subgroups by analogy to T cells, based on their
dependency on transcription factors and the secretion of effector cytokines: type-1, type-2, and
type-3 ILCs (ILC1s, ILC2s, and ILC3s, respectively) (11). ILC1s can be further subdivided into
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cytotoxic NK cells and helper ILC1s (12). Whereas, classic
NK cells are well-known to mediate a potent cytolytic effector
function and have been extensively studied and reviewed already
(13, 14), this review will focus on helper ILCs in particular. While
helper ILC1s critically depend on the transcription factor T-bet
and are able to amplify immune responses against intracellular
pathogens via an extensive release of IFN-γ and TNF-α (15,
16), ILC2 function is regulated by GATA-3 and RORα as key
transcription factors, and the effector cytokines IL-5, IL-13,
IL-9, and IL-4 relevantly impact the resolution of helminth
infections (6, 17, 18). Finally, analogous to type-17 T helper
(Th17) cells, RORγt represents the master transcription factor
of ILC3s, including lymphoid tissue inducer (LTi) cells as well
as non-LTi ILC3 subsets. While LTi cells play a particular role
in lymphoid organogenesis, ILC3s in general are characterized
by the secretion of IL-17A, IL-22, and GM-CSF and are thereby
involved in the immunological control of extracellular microbes
(19–21). In addition to these three classical subgroups, in analogy
to regulatory T cells (Tregs), regulatory ILCs (ILCregs) were
recently identified in the intestine that suppressed ILC1s and
ILC3s in an IL-10-dependent manner, while TGF-β served as
autocrine growth factor (22).

Helper ILCs are primarily located in close proximity to
mucosal barriers, like the pulmonary (23) and intestinal
epithelium (19), which are highly prone to environmentally
driven tissue damage and pathogen entry. There, ILCs are
involved in the first line of immune response via the instant
release of extraordinary amounts of effector cytokines that
orchestrate further immune reactions (24, 25). However, tight
control of local ILC numbers and their activation status is crucial
to guarantee barrier integrity and tissue homeostasis without the
induction of overwhelming and chronic immune responses.

Based on their overall low frequency and redundant functions
with T helper (Th) cells as well as the finding that ILC
deficiencies appeared to be asymptomatic in humans with
competent adaptive immune cells, ILCs were suggested to be
expandable under natural conditions. This assumption, however,
was only based on a small cohort living under modern hygiene
and medical standards (26) and does not seem to hold true under
pathological conditions. In severe liver fibrosis, for example, local
ILC2 frequencies were exclusively increased while the proportion
of Th2 cells was unaltered (27), indicating a particular role
for ILCs during fibrotic tissue remodeling. In line with this, a
cell-specific regulation and thus activation profile of ILCs and
Th cells has been described. ILC2s, for instance, rely on DR3
and IL-9R signaling for activity and survival, which was not
the case in Th cells (28, 29). On a functional level, it was
particularly the CD3− lamina propria mononuclear cell (LPMC)
fraction that showed significantly increased IL-22 production
in inflammatory bowel disease (IBD) patients compared to
controls but not Th cells (30), assigning ILCs a distinct and
important effector role in disease. Moreover, the rapid availability
of effector cytokines and the finding that ILC2s are more
potent in the production of IL-5 and IL-13 than are CD4+

T cells in blood and sputum of patients suffering from severe
asthma (31) distinguishes ILCs from Th cells, making them a
functionally unique cell population. Importantly, ILC activity has

been shown to be crucial for efficient T cell responses under
various conditions (32–34), demonstrating their far-reaching
influence on efficient immunity.

And while ILCs have been shown to be involved in many
different immunological phenomena, including host protection,
wound healing, anti-tumor immune responses, autoimmunity,
graft-vs.-host reaction, chronic inflammation, and fibrosis in
numerous murine studies (35–41), the transfer of these findings
into the human system and a related functional characterization
of ILCs in the context of human disease still remains incomplete.
Even though murine and human ILCs share basic characteristics,
human ILCs have been shown to markedly differ in several
key aspects from their murine counterparts (8, 42, 43), making
translational research on human ILCs inevitable. The first
important hints of the existence of species-specific ILC biology
arose from studies that described variances in the ILC surface
marker profile between mice and men. Regarding ILC1s, a
distinct subset restricted to an intraepithelial localization and
producing IFN-γ in response to IL-12 and IL-15 was described
that differs in its αE integrin andNKp44 expression betweenmice
and humans (44, 45). Similarly, two distinct functional subtypes
of ILC2s, namely inflammatory and natural ILC2s, could be
identified in both species but differed in their surface maker
profiles. While, in mice, these subtypes were distinguished by
ST2 and KLRG1 expression (46), functionally similar subtypes
in humans were rather discriminated by their c-Kit expression
(47). In the group of ILC3s, two subtypes secreting mainly IL-
22 or IL-17 have been described in varying proportions and
with altered marker expression in the two species (45, 48).
These phenotypical and numerical differences strongly imply
that the localization and activation of murine and human ILCs
might also be partly regulated by separatemolecularmechanisms.
And indeed, on a functional level, there is an ongoing and
controversial discussion as to whether ILCs of the two species
follow the same mechanistic concept of tissue distribution
and maturation in adulthood. While parabiosis experiments in
mice strongly suggested that ILCs have a tissue-resident, long-
lived nature and mostly excluded their recirculation and organ
redistribution upon acute inflammation (49, 50), a very recent
study postulated a concept of circulating uni- and pluripotent
human ILC precursors that are able to migrate into tissue and
undergo final differentiation in response to local environmental
signals (51). This permanent presence of ILC precursors in
the peripheral blood together with the idea of tissue ILC
differentiation (51) is in accordance with the well-described
phenomenon of a significant organ accumulation of defined ILC
subsets in the context of inflammatory tissue injury. Indeed,
patients suffering from IBD show distinct numerical alterations
in the ILC composition in the intestinal mucosa that depend
on disease duration (15, 52, 53). Moreover, atopic dermatitis,
hepatic fibrosis, and chronic rhinosinusitis are associated with
an accumulation of ILC2s in skin, liver, and sinonasal tissue,
respectively (23, 27, 54). This association strengthens the clinical
urgency of directly analyzing human ILCs, especially since most
murine studies are biased by the use of specific-pathogen-free
or immunodeficient mice without a functional adaptive immune
system that do not sufficiently represent the human situation and
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FIGURE 1 | Mechanisms regulating local ILC activity. To adapt ILC functions at mucosal barriers to the respective environmental need, local ILC numbers and their

activity can be regulated by soluble mediators or direct cell-cell interactions (green background). To date, cytokines and lipid mediators represent the most commonly

described soluble regulators of human ILCs and can be released, for instance, by stress-sensing epithelial cells or other immune cells like mast cells. Furthermore,

neurotransmitters and neuropeptides have also been suggested to directly interact with ILCs. In addition, cell-cell contact-dependent regulation of ILCs is based on

their interaction with endothelial, stromal, and other immune cells. Upon sensing these signals, ILC activity (orange background) and their local number (yellow

background) can be controlled. Tissue ILC counts can be modulated directly by cell death and proliferation or the differentiation of local ILC precursors into mature

cells. Moreover, ILCs are plastic cells, enabling the transdifferentiation of one subset into another. Altered local ILC numbers can additionally result from the migration

of ILCs either within an organ or from/to a distal site. Representatively, regulators modulating ILC activities on various levels are shown. In vivo, multiple mechanisms

controlling local ILC activity are likely to act synergistically, enabling the activation or suppression of ILC activities in a highly controlled fashion. However, dysbalanced

and overwhelming ILC responses are often unable to successfully fight pathogens or can even trigger inflammatory diseases.

might therefore not allow results to be directly translated into the
human system (6).

The following review article will therefore summarize recent
insights into the function of human helper ILCs and will
focus on their regulation at mucosal sites under inflammatory
conditions in particular. The quality and intensity of ILC-
driven local immune responses at mucosal tissues can be
modulated via the activation status as well as a numerical
regulation of local ILCs (Figure 1). This potentially involves

three different axes: (1) activation or inhibition of tissue-resident
ILCs, (2) numerical regulation of mature local ILCs via cell
death, proliferation, or differentiation from local precursors or
other ILC subsets, and (3) tissue-specific migration and regional
accumulation of peripheral ILCs (12, 15, 35, 51, 55). Despite
ongoing scientific efforts in this field, already existing data on
the fate of human ILCs under various pathological conditions
clearly indicate that all three mechanisms relevantly impact
the clinical course of chronic inflammatory and autoimmune
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diseases and might therefore provide new target structures for
future therapeutic strategies.

REGULATION OF HUMAN ILCs

Helper ILCs as Guardians at Mucosal
Barriers
Forming large surfaces with the body’s outer environment,
mucosal tissues, including the respiratory, gastrointestinal (GI),
and urogenital tract, have to guarantee stable protection against
invading pathogens and various harmful substances. Therefore,
the maintenance of epithelial integrity as a physical barrier
and the capacity to initiate immediate but controlled mucosal
immune responses are essential. Based on their instant, antigen-
independent ability to secrete effector cytokines, ILCs represent
ideal guardians in mucosal tissues. In line with this, ILCs have
been shown to preferentially accumulate in organs with mucosal
barriers in close proximity to the epithelium (56, 57).

From the esophagus to the colon, all helper ILC subsets
have been described in the human GI tract, with the highest
frequencies of total helper ILCs residing in the intestine (58).
While ILC1s appeared to be enriched in the human gingivae
(59) and esophagus (58), NKp44/NCR+ ILC3s represent the
most abundant subtype in the gut (53, 55, 58), suggesting
an important function for ILC3s in intestinal homeostasis. In
contrast, only low frequencies of ILC2s have been detected in
both the upper and lower GI tract (53, 55, 58, 60). Under
chronic inflammatory conditions, the local ILC composition
is drastically altered in inflamed areas (53), as shown by the
distribution of intestinal ILCs in IBD patients (15, 30, 52, 53).
Indeed, altered numbers of colonic NKp44+ ILC3s have been
described already in early in IBD (15), and IL-22 production
by ileal ILCs was shown to be increased in patients with mild
or moderate CD (30). In accordance with the common concept
that the immunopathogenesis of CD and UC is dominated by
type-1 and type-2 immunity, respectively (61), CD patients were
also characterized by increased ILC1 frequencies (15, 53) as
well as IL-17-secreting ILCs (52), whereas UC patients displayed
increased proportions of ILC2s during the course of disease
(53). Interestingly, ILCregs were described in the murine and
human gut as well, likely serving as a control mechanism to
suppress exaggerated immune responses (22). Overall, these
disease-dependent alterations of ILC frequencies in the human
intestine suggest defined functions of ILC subgroups under
specific inflammatory conditions and at different anatomical
sites, implicating a milieu-dependent fine-tuning of each subset.

In the respiratory tract, research has focused on the ILC2
subset in particular, given the pivotal role of type-2 mediated
immunity in allergic airway diseases (62). Nevertheless, all three
helper ILC subsets have been described in lung tissue, with
ILC2s and ILC3s being most abundant (55, 60, 63). During
adulthood, several disorders associated with acute and chronic
inflammation of the lung are characterized by altered ILC
frequencies. For instance, asthmatic patients showed increased
ILC2 frequencies and effector cytokines in peripheral blood,
sputum, and bronchoalveolar lavage (BAL), which turned out

to correlate with the severity of clinical symptoms (31, 64–68).
Next to this allergic context, lung inflammation resulting from
infection with Mycobacterium tuberculosis was characterized by
reduced blood pools of albeit activated ILC1s, ILC2s, and ILC3s
and a corresponding accumulation of these cells in the infected
lung tissue (69). The observations that ILC2s were enriched in the
BAL of patients with idiopathic pulmonary fibrosis (37) and that
the destructed lung tissue of patients with chronic obstructive
pulmonary disease (COPD) showed elevated local ILC1 and
NKp44− ILC3 frequencies at the expense of ILC2s (55) point
to a potential reciprocal interference between pulmonary ILCs
and fibrotic tissue remodeling. Furthermore, ILC2s are present
in nasal tissue, where they also showed increased proportions
upon upper airway inflammation, such as for example, in
patients suffering from allergic rhinitis (70, 71) and chronic
rhinosinusitis with nasal polyps (55, 60, 72). Contrarily, nasal
polyps in the context of cystic fibrosis were dominated by
enhanced percentages of NKp44− ILC3s (72). These findings
indicate that various helper ILC subsets play a key role in
inherited as well as allergen-, bacterial-, and environmental-
driven inflammatory lung disorders. Nevertheless, inconsistent
study designs and patient and control cohorts, as well as
variable marker combinations defining ILC subsets, led to partly
controversial results (64, 70, 71) and impede larger meta-
analyses. Based on the current pandemic situation induced by
the new coronavirus, SARS-CoV-2, the question of an ILC
involvement in the resulting lung disease, COVID-19, is being
raised. Indeed, there are good grounds for speculating about a
relevant disease-modulating capacity ofmucosal ILCs in this viral
infection: ILCs are present in the lung tissue even under steady-
state conditions (55, 60, 63) and are located in direct proximity
to the respiratory epithelium (57) and thus to ACE2-expressing
pneumocytes, which have been described as the predominant
entry and replication site of SARS-CoV-2 (73). Accordingly,
diffuse alveolar damage, as detected histologically in lung biopsies
of COVID-19 patients (74), represents a well-described trigger
of local ILC activation, classically resulting in the initiation
and regulation of far-reaching immune responses (75). Besides
epithelial cell-derived alarmins, the activation status of ILCs
could also be influenced by immune cell-secreted cytokines
upregulated in the course of severe COVID-19 (76, 77), such as
IL-6 (stimulatory effect on human ILC3s) or IL-10 (inhibitory
effect on ILC2s) (see also Table 1). Thus, on a functional level,
a relevant contribution of activated pulmonary ILCs to the anti-
viral immune response and to the consolidation of epithelial
damage can be expected and might mainly be relayed via an
excessive release of ILC-derived cytokines. And indeed, altered
NK cell frequencies in COVID-19 patients (109) have been
the first proof that infection with SARS-CoV-2 does modulate
the ILC compartment. Especially in severe COVID-19 cases,
NK cell percentages turned out to be downregulated in line
with the overall observed lymphocytopenia (109, 110). However,
upon recovery, restoration of NK cell frequencies has been
described (109, 110), implicating a relevant function for NK
cells in the resolution of this viral infection. In general, NK
cells, together with helper ILC1s, are considered to be important
effector cells, fighting various viral diseases and representing an
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TABLE 1 | Local regulators of ILC activity.

ILC

subgroup

Regulator Class Regulation ILC origin Pathophysiological

context

References

ILC1 IL-12 Cytokine + Tonsils, peripheral blood Immunity to mycobacteria,

CD

(15, 44, 55, 78)

ILC1 IL-15 Cytokine + Tonsils CD (44)

ILC1 IL-18 Cytokine + Intestine Commensal and pathogenic

gut microbiota

(79)

ILC1 IL-1β Cytokine + Intestine Commensal and pathogenic

gut microbiota

(79)

ILC1 TGF-β Cytokine – Peripheral blood IBD (80)

ILC2 IL-33 Cytokine + Peripheral blood; nasal

polyps, fetal gut, tonsils

IBD, asthma (18, 55, 60, 68, 81)

ILC2 IL-25 Cytokine + Peripheral blood; nasal

polyps, fetal gut, tonsils

IBD, asthma (18, 60, 68, 81)

ILC2 TSLP Cytokine + Peripheral blood; nasal

polyps, fetal gut, tonsils

Chronic rhinosinusitis with

nasal polyps, IBD, asthma

(18, 55, 60, 81)

ILC2 IL-1α/β Cytokine + Peripheral blood, tonsils IBD, COPD (55, 60, 82)

ILC2 IL-18 Cytokine + Peripheral blood Inflammatory cutaneous

diseases

(12)

ILC2 TL1A Cytokine + Peripheral blood Helminth infection, type-2

lung inflammation

(28)

ILC2 IL-4 Cytokine + Peripheral blood Chronic rhinosinusitis with

nasal polyps

(55)

ILC2 IL-10 Cytokine – Peripheral blood, nasal

polyps

Grass polen immunotherapy (80, 83)

ILC2 TGF-β Cytokine – Peripheral blood, nasal

polyps

Grass polen immunotherapy (83)

ILC2 IFN-α Cytokine – Peripheral blood Suppression of airway

inflammation

(84)

ILC2 IFN-β Cytokine – Cord blood Asthma (85)

ILC2 CCL1 Cytokine + Peripheral blood Anti-helminth and - parasitic

immunity

(86)

ILC2 PGD2 Lipid mediator + Skin, peripheral blood Allergy (87, 88)

ILC2 LTE4 Lipid mediator + Peripheral blood Atopic dermatitis (89)

ILC2 PGI2 Lipid mediator – Peripheral blood Allergen-induced lung

inflammation

(90)

ILC2 PGE2 Lipid mediator – Peripheral blood, tonsils Allergic lung inflammation (91)

ILC2 Lipoxin A4 Lipid mediator – Peripheral blood Asthma (88)

ILC2 Retinoic acid Vitamin + Peripheral blood Allergic inflammation (92)

ILC2 1,25D Vitamin – Peripheral blood Allergic inflammation (92)

ILC2 ICAM-1–LFA-1 ILC2–immune

cell

interaction

+ Peripheral blood IL-33-induced lung

inflammation

(93)

ILC2 GITR–GITR-L ILC2—

immune cell

interaction

+ Peripheral blood Allergic lung inflammation (94)

ILC2 RANK-RANK-L ILC2–immune

cell

interaction

+ Peripheral blood, nasal

polyps

Chronic rhinosinusitis with

nasal polyps

(95)

ILC2 ICOS–ICOS-L ILC2 –ILC2 + Peripheral blood IL-33-induced airway

hyperreactivity

(96)

ILC2 ICOS–ICOS-L ILC2 –iTreg – Peripheral blood Resolution of airway

inflammation

(97)

ILC2 MHCII–TCR ILC2–Th cell + Peripheral blood Helminth infection (34)

ILC2 NKp30—B7-H3 ILC2–

keratinocytes

+ Peripheral blood Atopic dermatitis (98)

(Continued)
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TABLE 1 | Continued

ILC

subgroup

Regulator Class Regulation ILC origin Pathophysiological

context

References

ILC2 KLRG1–E

cadherin

ILC2–

endothelial

cell

– Skin Atopic dermatitis (54)

ILC2 PD-1 Checkpoint

inhibitor

– Peripheral blood Helminth infection (99)

ILC3 IL-23 Cytokine + Intestine IBD (30, 52)

ILC3 IL-1β Cytokine + Intestine IBD (30)

ILC3 IL-18 Cytokine + Tonsils Maintenance of tissue

integrity

(100)

ILC3 IL-15 Cytokine + Tonsils Maintenance of tissue

integrity

(100)

ILC3 IL-6 Cytokine + Colon IBD (101)

ILC3 TL1A Cytokine + Intestine, tonsils,

hematopoietic stem

cell-derived

IBD (30, 102)

ILC3 IFN-α Cytokine – Tonsils N/A (100)

ILC3 IFN-γ Cytokine – Tonsils N/A (100)

ILC3 TLR2 ligand Bacterial

metabolite

+ Tonsils N/A (103)

ILC3 AHR receptor Bacterial

metabolite

+ Tonsils, intestine C. rodentium infection (104, 105)

ILC3 Bacillus anthracis

toxin

Bacterial

metabolite

– Tonsils Anthrax (106)

ILC3 Acetylcholin Neurotransmitter + Peripheral blood Resolution of E. coli

infection

(107)

ILC3 1,25D Vitamin +/– Tonsils, intestine IBD (108)

CD, Crohn’s disease; IBD, Inflammatory bowel disease; COPD, Chronic obstructive pulmonary disease.

early source of IFN-γ and TNF-α (111, 112), with the latter
being highly upregulated in the plasma of COVID-19 patients
(113). Moreover, data acquired in the murine system indicated
that pulmonary ILC2s promoted IgM production in B cells
and thus supported early humoral immunity directed against
respiratory antigens (114). As a morphological indicator of an
ongoing consolidation of epithelial injury, lung tissue of COVID-
19 patients could be characterized by an accumulation of fibrin
in the alveolar wall and airspaces (74). Of note, pulmonary
ILC2s and the ILC2-released cytokine IL-13 have been described
as potent mediators of collagen deposition, at least in murine
models of lung fibrosis (37). In addition, based on analyses in a
mouse model of influenza virus infection, ILC2-derived AREG
was postulated to protect and restore the airway epithelium upon
viral damage (115). Besides the potential involvement of ILCs in
the anti-viral immune response directed against SARS-CoV-2, it
should also be taken into account that, at least compared to other
immune cell fractions, murine ILCs, and especially ST2-negative
ILC2s derived from the small intestine, appeared to show a
relatively high expression of the SARS-CoV-2 entry receptor
ACE2 at the RNA level (116). It will thus be interesting to clarify
in future studies whether ILCs might represent a cellular target
for SARS-CoV-2 infection and potentially even virus replication.
Since an enormous amount of scientific effort is being exerted
worldwide to further decipher the pathology of COVID-19, we

can expect to achieve improved and more concrete insights into
the functional role and potential therapeutic targeting of local
ILC pools during the clinical manifestation and/or exacerbation
of this threatening and fast-spreading disease very soon.

Although ILCs have been extensively studied in the lung
and gut over the last decade, little is known about their role
at the mucosal surface of the urogenital tract. So far, helper
ILCs have been analyzed in the uterus and decidua only during
pregnancy, and here they were suggested to be important
effectors initiating tissue remodeling during implantation (48).
In particular, ILC3s and ILC1s were described to be involved
in the maintenance of early pregnancy (117, 118). Increased
frequencies of ILC3s and ILC2s, however, were associated with
overwhelming inflammation in preterm labor (119). In order to
further validate the functional relevance of ILCs in this context,
it will be of crucial importance to gain more detailed insights
into the potential underlying ILC-driven effector mechanisms
and molecular mediators.

Collectively, extensive work on the role of helper ILCs at
mucosal barrier sites in humans has revealed clear associations
of defined ILC subsets with various inflammatory and fibrotic
diseases. However, some important questions remain not fully
answered: are altered ILC frequencies are a cause or consequence
of the associated tissue pathology and which molecular
mechanisms underlie their numerical and functional regulation?
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Local Modulators of ILC Activity
Local Regulation of Human Helper ILC1s
On the one hand, helper ILC1s have been suggested to be
important effector cells that fight intracellular pathogens
and bacteria in order to maintain tissue homeostasis. On
the other hand, altered ILC1 frequencies in CD (15, 53)
and COPD patients (55) indicate the involvement of this
ILC subtype in chronic inflammation. Careful regulation
of ILC1 activity is thus strictly required to allow the
secretion of protective effector cytokines but, at the
same time, prevent sustained and overwhelming immune
activation resulting in pathologic tissue remodeling and
chronic injury.

Cytokines represent one of the main regulatory stimuli of
innate immune responses (120). In the case of human ILC1s,
the pro-inflammatory cytokine IL-12, which has already been
well-known for its ability to promote type-1 immune responses
(121), turned out to be also of immense importance for the
activation of ILC1s and subsequent IFN-γ release (15, 78) as
shown in primary human ILC1s purified from tonsils and
peripheral blood (15, 78). In accordance with this, ILC1s
expressed higher mRNA levels of the IL-12 receptor subunit
B2 (IL12-RB2) than ILC2s and ILC3s (15, 55). Especially in
combination with IL-2 and/or IL-18, IL-12 was identified as a
potent inducer of IFN-γ production in in vitro cultured human
ILC1s (15, 55). This IL-12 responsiveness was also true for
the unique subset of intraepithelial human NKp44+CD103+

ILC1s, which have been suggested to mirror key cytotoxic
features of tissue-resident CD8+ memory (Trm) cells (44, 122).
While IL-18 failed to synergize with IL-12 in the induction of
NKp44+CD103+ ILC1-derived IFN-γ production, IL-15 alone
and in combination with IL-12 served as an effective stimulus
(44). As the main cellular source of IL-12, antigen-presenting
cells (APCs) release high amounts of this type-1 cytokine after
exposure to bacteria (123). This is of particular relevance in
the context of IBD, where intestinal barrier defects lead to
increased mucosal infiltration of luminal bacteria (124). In
response to the enhanced release of IL-12p70, IL-18, and IL-
1β by local myeloid dendritic cells (DCs), intestinal ILC1s are
able to secrete increased levels of the pro-inflammatory cytokines
IFN-γ and TNF-α and thus relevantly support the mucosal
immune response against bacterial intruders. This was true for
gram-negative commensals and pathogens, e.g., Acinetobacter
junii and Salmonella typhimurium, as shown in in vitro co-
cultures of human ILC1s and lamina propria mononuclear
cells (LPMCs) (79). Without proper regulation of this response,
chronic inflammation can be established. In CD patients, for
example, LPMCs showed hyperresponsiveness toward bacterial
components, resulting in enhanced IL-12 levels (125, 126),
which was associated with increased accumulation of IFN-γ-
expressing ILC1s in the inflamed mucosa (15, 53). Besides
monocytes and DCs, co-culture experiments demonstrated that
epithelial cells were also able to translate luminal danger
signals, such as TLR2, into a stimulatory trigger for human
intraepithelial NKp44+CD103+ ILC1s to produce IFN-γ. Thus,
efficient pathogen-mediated activation of intraepithelial ILC1s
might even occur in the absence of epithelial barrier destruction

(44). To control this, TGF-βwas identified as a negative regulator
of ILC1-mediated IFN-γ, but not TNF-α secretion (80), a
mechanism dysregulated in IBD patients (127).

In addition to the here-described stimuli (summarized in
Table 1), human blood or tissue ILC1s have been shown to
express further surface receptors, such as IL-4R, IL-9R, and ICOS
(55), that potentially transmit regulatory signals. This, however,
still has to be validated functionally for human ILC1s, and further
research will thus be necessary to fully decipher the mechanisms
regulating ILC1 activity in humans.

Local Regulation of Human Helper ILC2s
ILC2s and their role in physiological and pathological processes
have been extensively studied (128–131). Based on analyses in the
murine system, local ILC2s represent an unusually long-lived cell
type (132), which therefore requires tightly controlled effector
functions. A complex network regulating the activity of tissue-
resident ILC2s has been identified (summarized in Table 1). This
includes solublemediators, such as cytokines and lipidmediators,
as well as direct cell-cell interactions.

Soluble modulators of human ILC2s
Among numerous cytokines, the alarmins IL-25, IL-33, and
thymic stromal lymphopoietin (TLSP) constitute the central
activation unit of ILC2s (18, 55, 60, 68, 81). It is noteworthy that
cytokine-mediated ILC2 activation was accompanied by elevated
receptor expression of ST2, IL17BR, and TSLPR on the cell
surface, enabling alarmins to further potentiate their stimulatory
effects (81). Successful in vitro stimulation of human ILC2s was
reflected in characteristic morphological alterations, an activated
phenotype (68), and increased survival and proliferation of
stimulated ILC2s (81). Probably most relevant, stimulated
ILC2s showed enhanced effector functions in the form of the
secretion of large amounts of type-2 effector cytokines, including,
primarily, IL-13 and IL-5, but also IL-4 and GM-CSF (18, 55, 60,
68, 81). Inmultiple in vitro stimulation experiments with primary
human ILC2s and stable ILC2 cell lines, combinations of multiple
cytokines turned out to induce ILC2 activation most potently.
Interestingly, TSLP alone or in combination with IL-25 and
IL-33 harbored the highest pro-survival capacity (81), whereas
IL-33 appeared to be an important co-factor for the induction
of ILC2 proliferation in different cytokine combinations (81).
Regarding the effector functions, several studies reported that IL-
25, IL-33, and TSLP alone had no or only suboptimal effects on
the secretion of selected effector cytokines (18, 60, 82, 92) but
displayed synergistic effects with IL-2 (18, 81) or in combination
with each other (54, 68, 81). IL-2 is well-known for its pro-
survival effects on lymphoid cells; however, it represents a
sufficient ILC2 stimulus only in the presence of synergistic co-
factors (18, 55, 68, 81, 82). Several studies indicated that the
combined effects of IL-25, IL-33, TSLP, and IL-2 represented the
most potent stimuli for ILC2 activation (18, 60, 68, 81) and might
also resemble the in vivo situation very closely. In line with the
role of ILC2s as early mediators of mucosal defense, epithelial
cells responding to stress signals represent very prominent local
sources of the alarmins IL-25, IL-33, and TSLP (133). For
example, in patients suffering from chronic rhinosinusitis, nasal
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polyp epithelial cells expressed TSLP, which directly activated
local ILC2s (18). Besides the epithelium, relevant expression
of alarmins could also be detected in endothelial cells, Th2
cells, mast cells, fibroblasts, and macrophages (134–139). So far,
most human studies have been conducted with peripheral blood
ILC2s. However, tissue-resident ILC2s derived from nasal polyps
(18), fetal gut (60), and tonsils (82) showed a similar activation
behavior. Further evidence comes from murine experiments
showing the ability of IL-33 and IL-25 to boost ILC2 responses
in vivo (131).

While most of the common ILC2 activators, like IL-33, IL-
25, and TSLP, belong to the group of epithelial-derived alarmins
and are released upon various stress conditions, IL-1β represents
an inflammasome-dependent pro-inflammatory cytokine well-
known to trigger fever and the mobilization of neutrophils (140,
141). Although an ILC-activating effect of IL-1β has first been
described for the ILC3 compartment (142), marked expression
of the IL-1β receptor and respective IL-1β responsiveness were
also observed in human ILC2s (55, 60). At least in experiments
performed ex vivo, IL-1β and IL-1α together with IL-2 served
as potent stimuli for human blood ILC2 proliferation and the
production of IL-5 and IL-13 (55, 81, 82). In addition, IL-
1β was shown to increase the expression of ST2L, IL-17RB,
and, to a lesser extent, TSLPR on human ILC2s (82), which
was suggested to be a priming signal enhancing the effect of
epithelial cell-derived alarmins and explaining their additive
effect (82). However, as further discussed later in this article
(see paragraph on ILC Plasticity and Tissue Differentiation),
other studies indicated that IL-1β might support ILC2-to-ILC1
plasticity (82). Within tissues, activated IL-1β is mainly released
by macrophages, DCs, and neutrophils, classically after exposure
to Toll-like receptor ligands or DAMP (141), and increased levels
of this cytokine could be observed in the lungs of COPD patients,
in the inflamed intestinal mucosa of IBD patients and in lesions
of autoimmune and inflammatory skin diseases (143–145).

In vitro stimulation with the pro-inflammatory cytokine IL-
18 could additionally induce cytokine secretion in human blood
ILC2s via the IL-18R (146). Interestingly, in mice, a skin ILC2
subset was identified to preferentially respond to IL-18. These
data clearly pointed to the existence of tissue-specific ILC
subsets with unique receptor profiles and thus distinct abilities
to respond to environmental stimuli (147). In line with this, IL-
18 is thought to be involved in various inflammatory cutaneous
diseases, including atopic dermatitis (148), suggesting a potential
role for active ILC2s in these diseases as well.

The TNF superfamily member TL1A has been suggested as
another potent activator of human ILC2s that express high levels
of its receptor DR3 (death receptor 3; TNFRSF25) (28). Primarily
secreted by alarmed epithelial, endothelial, and myeloid cells,
TL1A induced effector cytokine secretion by human ILC2s and
acted additively to IL-25 or IL-33 in vitro. Murine in vivo
experiments further revealed the functional importance of this
TL1A-driven ILC2 activation in regulating helminth infections
and driving type-2 lung inflammation (28).

In combination with external stimulation, IL-4 (55) and IL-
9 (29, 149) have been suggested to further boost proliferation
and cytokine secretion of activated ILC2s in an autocrine fashion.

In the case of IL-4, this autocrine loop could be functionally
proven in ex vivo stimulated human blood ILC2s (55). Regarding
IL-9, the direct functional proof is still restricted to murine
data showing the importance of IL-9-driven ILC2 stimulation
for the maintenance of lung homeostasis (29, 150) as well as
for the resolution of arthritis (149). In accordance with the
latter, association data from patients with rheumatoid arthritis
showed an inverse correlation between blood ILC2 counts and
disease activity (149). Moreover, the chemokine CCL1 could
recently be identified as another autocrine activator of ILC2
function in mice and men, mediating its effects via CCR8
signaling (86).

In order to dampen overwhelming ILC2 activity, negative
regulators are inevitable to guarantee controlled immune
responses. However, our understanding of those immunological
mechanisms limiting ILC2-mediated pro-inflammatory effects
still remains imprecise, particularly in the human system. Most
extensively studied so far, the anti-inflammatory cytokine IL-
10 was identified to also suppress the type-2 immune response
induced by ex vivo stimulated ILC2s (80, 83). IL-10 is secreted
by various immune cell types (e.g., macrophages, myeloid DCs,
and specific Th cell subsets) (151) and can also be produced
by all ILC subsets (80), suggesting mutual control. The potent
induction of IL-10 was also described as an important effector
mechanism underlying the immunomodulatory properties of
IL-27 (152). However, murine studies revealed an additional
direct inhibitory effect of IL-27 on ILC2s (50, 131), although
the translation of these findings into the human system is
still lacking. As another potentially regulatory cytokine, the
suppressive function of TGF-β on the cytokine secretion of
human ILC2s has been discussed, though controversially (80,
83), with the implication that its described inhibitory effects
on ILC2s are dependent on experimental conditions, such
as cytokine concentrations and stimulation protocols. Despite
IL-10, IL-27 and potentially also TGF-β, type-I interferons
and IFN-γ were able to efficiently regulate ILC2 activity
in the murine ILC2s in vitro and in vivo (50, 84, 85,
131, 153). Although the translation of these data into the
human system still remains incomplete, the impact of the
type-I interferons IFN-α and IFN-β on the activation of
regulatory pathways and the downregulation of type-2 cytokine
production could successfully be confirmed for human ILC2s,
respectively (84, 85).

Next to the active contribution of cytokines, lipid mediators
represent another group of immuno-modulatory substances that
regulate ILC2 activity, including the arachidonic acid metabolites
prostaglandins, leukotriens, and lipoxins.

Most prominently, prostaglandin D2 (PGD2) has been shown
to activate ILC2s via its G protein-coupled receptor CRTH2
(87, 88), which represents a classical marker for identifying
human ILC2s (60). Large amounts of PGD2 are typically released
from IgE cross-linked mast cells during an allergic reaction,
resulting in the secretion of pro-inflammatory cytokines by
ILC2s as well as the induction of IL-33R expression, further
boosting the inflammatory response (87). A more recent study
even described an auto- or paracrine stimulatory effect of ILC2-
derived PGD2 (154). Given the increased pulmonary PGD2 levels
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observed in asthmatic and chronic rhinitis patients (155, 156),
this might further explain the active contribution of ILC2s in
allergic diseases.

In contrast to the activating properties of PGD2, PGI2
was assumed to restrict ILC2 effector functions. This was
based on the in vitro finding that the PGI2 analog cicaprost
reduced IL-2- and IL-33-induced type-2 cytokine production in
human blood ILCs. The in vivo relevance of this finding was
demonstrated in mice with allergen-induced lung inflammation,
which displayed reduced pulmonary ILC2 counts after cicaprost
treatment and a dependency on PGI2 receptor signaling (90).
However, further proof is necessary to validate these initial
findings. Furthermore, another study indicated an inhibitory
effect of PGE2 on human blood and tonsilar ILC2s mediated via
the E-type prostanoid receptors (EP) 2 and EP4. In the presence
of PGE2, alarmin-induced secretion of IL-5 and IL-13, expression
of GATA3 and CD25, and ILC2 proliferation turned out to
be significantly decreased. EP2 and EP4 receptors might thus
represent promising target structures for a potential therapeutic
modulation of the overwhelmingly activated ILC2 axis in allergic
diseases (91).

Following the detection of functional cysteinyl leukotriene
receptor 1 (CysLTR1) expression on human blood ILC2s, the
receptor ligands LTC4, LTD4, and LTE4 have been identified as
additional activators of human ILC2s. In particular, LTE4 was
described as a potent stimulator of ILC2 viability and effector
cytokine secretion, with IgE cross-linked mast cells being one of
its main producers in vivo. Regarding the complex multifactorial
situation of tissue inflammation, the alarmins IL-25, IL-33,
and TLSP and also PGD2 were found to amplify the LTE4-
induced effector-cytokine secretion. The CysLTR1 antagonist
montelukast, which is clinically approved, for instance, for
asthma therapy, was able to inhibit this LTE4-induced ILC2
activation (89). Interestingly, PGD2 and the cysteinyl leukotriens
LTC4, LTD4, and LTE4 not only activate ILC2s but also harbor
chemotactic potential, driving the accumulation and thereby the
numerical regulation of local ILC2s (for more details see the
chapter Tissue-Specific Migration of ILCs During Adulthood)
(87, 89).

Another class of lipid mediators, the lipoxins, are known for
their pro-resolving function (157). In line with this, lipoxin A4
has been described to suppress cytokine-induced IL-13 release
from human blood ILC2s via the ALX/FPR2 receptor (88).

In addition, the active metabolites of vitamin A and D were
found to significantly influence the effector cytokine secretion of
human blood ILC2s.While the vitaminAmetabolite retinoic acid
enhanced the secretion of IL-5 and IL-13 by activated ILC2s as
well as the expression of α4β7, the vitamin D metabolite 1,25D
exhibited suppressive functions (92).

In the last decade, intense research on human ILC2s
has discovered a broad regulatory network mainly consisting
of cytokines and lipid mediators controlling human ILC2
activity. If dysregulated, reduced or overwhelming ILC2
responses might lead to parasitic infections and chronic
inflammation, respectively (129, 158). Serving as central
activators or suppressors of ILC2 responses, the identified
soluble mediators and their respective receptors might be of

high therapeutic relevance in ILC2-driven diseases. Hence, the
identification of further mechanisms regulating ILC2 activity
in humans is of great clinical value. Results from murine
studies suggest additional classes of potent ILC2 mediators,
including hormones and neuropeptides, as well as exogenous
agents, like bacterial products, that might serve as potential
therapeutic targets. Dihydrotestosterone, a metabolite of the sex
hormone testosterone, for instance, was suggested to restrict
ILC2 differentiation via androgen receptor signaling, resulting
in reduced lung ILC2 numbers in male compared to female
mice, both in steady-state and upon allergen-induced lung
inflammation (159, 160). This might potentially explain the
increased prevalence of asthma in adult women compared tomen
(160). Moreover, with the identification of the inhibitory impact
of β2-adrenergic receptor signaling on murine ILC2 proliferation
and activity (161), a new interesting field of ILC2-neuronal cross-
talk has been opened up. This was further expanded by the
description of the neuropeptides neuromedin U and calcitonin
gene-related peptide (CGRP) as efficient positive and negative
regulators ofmurine ILC2s, respectively (162–165). Furthermore,
exogenous mediators, including, for example, bacterial products
upon infection (153), have been suggested to alter murine
ILC2 activity. To serve as potential therapeutic targets, however,
translation of these results into the human system and deeper
research on the behavior of human ILC2s is mandatory.

Collectively, a plethora of soluble ILC2 regulators have
already been identified. Their importance for ILC2 activation or
inhibition, however, might vary depending on the tissue-specific
phenotype and function of ILC2s (146, 147). A more detailed
analysis of organ-specific ILC2 regulation will therefore help to
evaluate the potential of ILC2 regulators as therapeutics targets
in future.

ILC2-cell interactions
Whereas numerous soluble mediators have been identified
that modulate the activity of human ILC2s, they can also be
regulated by direct cell-cell interactions with other immune cells,
endothelial cells, and stromal cells, in total providing a tight
control network (Figure 1).

Originally known to mediate firm contact between circulating
immune cells and the vascular endothelium and thereby
initiating the homing process of lymphocytes into tissues,
intercellular adhesion molecules, like ICAM-1 (intercellular
adhesion molecule 1) and its integrin ligand LFA-1 (leukocyte
function-associated molecule-1), can also provide stimulatory
signals between immune cells. Interestingly, human blood ILC2s
turned out to express both ICAM-1 and LFA-1, suggesting a
potential interaction of ILC2s with each other. And indeed,
ICAM-1–LFA-1-mediated contact of human ILC2s efficiently
induced IL-5 and IL-13 secretion in vitro, which could be
significantly diminished in the presence of ICAM-1 or LFA-
1 blocking antibodies (93). Upon stimulation by IL-33, which
is rapidly released by epithelial cells sensing stress signals in
vivo (166), ICAM-1 expression was upregulated in human
ILC2s (93), indicating the importance of this interaction for
mounting efficient ILC2 responses. Using a mouse model of IL-
33-induced lung inflammation, the pathophysiological in vivo
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relevance of this interaction could be strengthened: blocking
the CD11a subunit of the ligand LFA-1 resulted in decreased
signs of lung inflammation in immunodeficient Rag1−/−

mice (93). Experiments with murine ILC2s further elucidated
GATA3 and subsequent ERK signaling as a central downstream
mechanism of ICAM-1–LFA-1-mediated ILC2 activation (93).
ICAM-1-expressing endothelial cells represent further potential
interaction partners of LFA-1+ ILC2s, and data from the murine
system suggested that the LFA-1 subunit β2 drove the migration
of blood ILC2s into the inflamed lung tissue (167). Having shown
that human ILC2s express functional LFA-1 (93), this might also
be relevant in the human ILC2 lung homing process.

Furthermore, co-stimulatory signals have been described to
markedly contribute to ILC2 activation, including molecules of
the TNF receptor as well as the B7-CD28 superfamilies. For
the TNF receptor superfamily member GITR (glucocorticoid-
induced TNFR-related protein) and its ligand GITR-L, for
instance, a substantial role in ILC2 activation has been indicated
(94). Whereas, GITR-L is primarily expressed by APCs and
endothelial cells (168), murine and human ILC2s expressed
functional GITR that, upon binding to GITR-L or respective
agonists, induced ILC2 proliferation as well as upregulation
of effector cytokine transcripts (94). Based on murine data,
the stimulatory effect of GITR engagement was based on
its synergistic effect with IL-33 on the induction of IL-9
expression, which, in turn, upregulated IL-5 and IL-13 in an
autocrine, STAT5-dependent fashion (94). In line with this, the
interaction of GITR and its ligand appeared to be important
for the pulmonary development of allergic inflammation (94).
Moreover, human blood and nasal polyp ILC2s were found to
express RANK (receptor activator of nuclear factor κ B), another
member of the TNF receptor superfamily, which was suggested
to be of biological importance in chronic rhinosinusitis patients
with nasal polyps. In this context, the ligand RANK-L was mainly
expressed by CD45+ immune cells, including Th2 cells, and
its levels were significantly increased in nasal polyps. Successful
RANK–RANK-L engagement stimulated human ILC2s to secrete
enhanced IL-5 and IL-13 levels via NFκB signaling and acted
in synergy with TSLP (95). Given the stimulatory effects of
TNF receptor superfamily members expressed by ILC2s on the
induction of type-2 airway inflammation, they might present
promising new therapeutic targets in the future. The B7-
CD28 superfamily member ICOS and its ligand ICOS-L, which
have been described extensively as co-stimulatory molecules
in the antigen-specific interaction between Th cells and APCs
(169, 170), have also been described as potent auto-stimulatory
triggers for the antigen-independent activation of ILC2s. Both
functional ICOS and ICOS-L are expressed by human blood
ILC2s, where their cell contact-dependent interaction induced a
significantly increased production of IL-5 and IL-13 by in vitro
stimulated ILC2s. In line with this, experimental in vitro and
in vivo blockade of ICOS signaling markedly inhibited the pro-
inflammatory properties of human ILC2s, resulting in reduced
airway inflammation in a humanized mouse model of IL-
33-induced airway hyperreactivity (96). Accordingly, increased
numbers of ICOS+ ILC2s were detected in the BAL of patients
with idiopathic pulmonary fibrosis compared to control subjects

(37), further indicating a relevant function of ICOS signaling
in ILC2s in the diseased lung. Surprisingly, another study
demonstrated that the inhibitory effect of induced Tregs on
human ILC2 activity could be blocked efficiently by ICOS-
L neutralizing antibodies in vitro and in vivo. The authors
thus postulated a direct interaction between ICOS-L+ ILC2s
and ICOS+ induced Tregs that efficiently suppressed ILC2
effector functions and might therefore act as crucial mediators
for the resolution of lung inflammation (97). Taken together,
ICOS-L signaling might have contrary roles in human ILC2s
depending on the ICOS-expressing interaction partner, which
might potentially compete for contact with ICOS-L+ ILC2s.
(171). Moreover, data from murine experiments suggest that
ICOS-L-expressing DCs might serve as an additional interaction
partner for ICOS+ ILC2s and thus support allergic lung
inflammation (172).

Besides their essential molecular involvement in the process
of antigen presentation by professional APCs, MHCII molecules
have also been shown to be expressed by non-classical APCs,
including human ILC2s (173). Oliphant and colleagues detected
the expression of both the MHCII molecule HLA-DR and the
co-stimulatory CD28 ligands CD80 and CD86 on the surface
of human blood ILC2s, allowing the efficient processing and
presentation of antigens to Th cells in vitro (34). The functional
relevance of this observation was further analyzed in the
murine system, showing a reciprocal, MHCII- and CD80/CD86-
dependent crosstalk between antigen-presenting ILC2s and Th
cells in the presence of the cognate antigen that was important
for the successful expulsion of Nippostrongulus brasiliensis
infections. This interaction not only led to the activation of
antigen-specific T cells but also triggered ILC2 expansion and
IL-13 production via T cell-derived IL-2. ILC2 stimulation was
therefore suggested to be initiated by the epithelial cell-derived
alarmins IL-25 and IL-33 but to be maintained by IL-2 secreted
by T cells upon MHCII–TCR interaction with ILC2s (34).

Originally, the natural cytotoxicity receptor NKp30 was
identified as an activating receptor on NK cells mediating the
elimination of tumor and virus-infected cells (174). However,
it was also found to be highly expressed on blood and
ex vivo cultured human ILC2s. Upon interaction with the
plate- or membrane-bound NKp30 ligand B7-H6, NKp30+

ILC2s were stimulated to secrete increasing amounts of IL-13,
while the mRNA expression of important activating receptors,
including ST2, CRTH2, and IL-17RB, was downregulated. This
was suggested to serve as a negative feedback mechanism
regulating the activation status of pro-inflammatory ILC2s.
Besides tumor cells, B7-H6 could also be detected on the basal
epidermis of healthy individuals and even in the suprabasal
epidermis layers of atopic dermatitis patients, implying a role
of NKp30–B7-H6 signaling in the activation of human skin
ILC2s during chronic inflammation (98). B7-H6 expression
was additionally found in some tumor samples as well as
adjacent normal lung tissue (175), suggesting a potential
role in the activation of pulmonary ILC2s, as well. Whether
the NKp30-mediated ILC2 stimulation can also be induced
by other NKp30 ligands like BAT3 or BAG6 still needs to
be clarified.
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While a variety of cell-cell contact-dependent ILC2 activators
have been identified, there is considerably less understanding of
interactions limiting ILC2-mediated inflammation.

Being known as a cell adhesion molecule that provides
intercellular junctions between epithelial cells and thereby
guarantees a stable barrier as the first line of physical immune
defense, E cadherin (epithelial cadherin) can also interact
with KLRG1 (killer cell lectin-like receptor G1)-expressing
immune cells (176, 177). Interestingly, upregulation of KLRG1
surface expression was observed in human skin ILC2s under
inflammatory in vitro and in vivo conditions. On a functional
level, binding of KLRG1 to its ligand E cadherin resulted
in significantly decreased proliferation and effector cytokine
expression of human ILC2s in vitro (54). In the pathological
context of atopic dermatitis and asthma, this suppressive
mechanism was suggested to be impaired based on reduced local
expression of E cadherin in both diseases (54, 178), which finally
results in ILC2-driven chronic inflammation. Due to the rather
broad expression profile of the adhesion protein E cadherin
in different epithelial organs (179–181), the suggested KLRG1-
dependent mechanismsmight represent an important activation-
induced negative feedback loop allowing the termination of local
ILC2 responses at different sites of the human body.

The controlled resolution of ILC2-driven immune reactions
might further be supported by the checkpoint inhibitor
PD-1 (programmed cell death protein 1), which was co-
expressed by a relevant subset of KLRG1+ human blood ILC2s.
Experimental blockade of PD-1 signaling in human ILC2s
significantly enhanced their proliferation and IL-33-induced
cytokine production via the STAT5 pathway. Together with
the in vivo finding that functional PD-1 signaling hindered
murine ILC2s to efficiently clear Nippostrongylus brasiliensis
infections, these results implied a role for PD-1 as an important
checkpoint inhibitor regulating activated ILC2s. Although the
interaction partner of PD-1+ ILC2s has not yet been analyzed
in humans, the PD-1 ligands PD-L1 and PD-L2 are classically
induced in various immune cell types (182). Murine data even
demonstrated that ILC2s themselves can express PD-L1, which
was upregulated upon type-2 inflammation. Unexpectedly, PD-
L1+ ILC2s stimulated PD-1-expressing CD4+ T cells rather than
suppressing them (33), demanding deeper research into the PD-1
and PD-L1 functions in human ILC2s.

Collectively, our current knowledge on the regulation of
human ILC2s indicates the existence of a tight network involving
numerous control mechanisms but also offering many potential
cellular and molecular targets for dysregulation.

Local Regulation of Human Helper ILC3s
By secreting IL-22 and IL-17, helper ILC3s are crucial for
preserving the barrier integrity of mucous epithelia and thereby
protecting the host against invading pathogens. However,
when dysregulated, the host-protective functions of ILC3s can
transform into detrimental immune activation, finally leading
to chronic inflammation (183–185). So far, ILC3 research has
primarily focused on their function in the intestine, where IL-22-
expressing ILC3s are present even under steady-state conditions,

while only very low numbers of IL-17-producing ILC3s could be
detected in the non-inflamed human gut (6).

Classically known from the maintenance of Th17 cells in
the adaptive immune system (186), the cytokines IL-23 and IL-
1β also represent prototypical inducers of IL-22 secretion by
human ILC3s (30, 52, 142, 187) and are mainly released by
DCs and epithelial cells upon tissue inflammation (6). Thus,
IL-23 and IL-1β serve as potent mediators that translate the
intestinal penetration of commensal and pathogenic bacteria into
the induction of a tissue-protective immune response initiated
by ILC3-derived IL-22 via CD11c+ myeloid DCs. Indeed,
human intestinal ILC3s that had been in contact with fecal
bacteria in the intestine were characterized by increased IL-22
production ex vivo compared to those derived from tissue sites
without fecal bacteria exposure (30). Interestingly, this indirect
stimulation of human ILC3s by bacteria was more pronounced
in intestinal ILC3s than in tonsillar ILC3s (188), suggesting a
tissue-specific regulation of this phenomenon. Independent of
accessory cell mediators, bacterial products can also directly
induce the proliferation and cytokine production of ILC3s via
the activation of Toll-like receptor (TLR) signaling, as shown
for NFκB-dependent TLR2 activation in tonsillar human LTi
ILC3s in the presence of IL-2 (103). Moreover, products of
the bacterial tryptophan metabolism are suggested to directly
stimulate ILC3s via binding to the aryl hydrocarbon receptor
(AHR), which was shown to be expressed on human ILC3s
(104, 105). The functional relevance of AHR signaling on ILC3s
was later demonstrated in mice in the context of resolution of
Citrobacter rodentium infection (189). In contrast, other bacterial
products inhibit ILC3 activity, likely to delay epithelial repair
and favor their own dissemination. A candidate for this is the
Bacillus anthracis toxin, which could be shown to suppress IL-22
production by IL-23-stimulated human ILCs in vitro via MAPK
signaling disruption (106).

Under in vitro conditions, ILC3 proliferation and IL-22
secretion could also be induced by the combined effect of the
survival factor IL-15 and the pro-inflammatory cytokine IL-18.
The stimulatory effect of IL-18 was mediated via ligation of the
IL-18Rα and IL-18Rβ subunits on the surface of tonsillar human
ILC3s, resulting in functional signaling of the heterodimeric
IL-18 receptor, subsequent NFκB activation and finally the
transcription of the IL22 gene (100). In vivo, IL-18 secretion
could be detected in CD11c+ DCs located in direct proximity
to ILC3s in human tonsils (100), enabling paracrine ILC3
stimulation. Moreover, increased IL-18 levels (190) together with
the enhanced IL-22 secretion observed in ileal ILCs from CD
patients (30) indicate a significant role of IL-18 stimulated ILC3s
in the pathological context of CD.

Data acquired in a murine model of spontaneous colitis and
in vitro analyses of human LPMCs additionally demonstrated a
certain stimulatory function of the pro-inflammatory cytokine
IL-6 on the ILC3-mediated cytokine secretion in the gut (101).
Colon explant cultures of IBD and control subjects further
detected a subgroup of IBD patients with high IL-6 production
compared to controls (101), implying that IL-6 might be, at least
partly, responsible for the increase in IL-17-expressing mucosal
ILCs observed in a subgroup of CD patients (52).
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In addition to its functional impact on ILC2s (28), the DR3
ligand TL1A also acts as a co-stimulatory trigger for the IL-
1β- and IL-23-induced cytokine production and proliferation
of human ILC3s, as shown in both stimulated intestinal and
in vitro differentiated human ILC3 cultures (30, 102, 191).
Mechanistically, TL1A was suggested to induce the expression of
the IL-2 receptor subunit CD25 on TL1A-stimulated ILC3s and
thus to prime ILC3s for acquiring proliferative signals via IL-2
(192). The idea of a functional DR3-TL1A interaction on human
ILC3s was further strengthened by the finding that human
ILC3s expressed DR3 transcripts even under resting conditions
(192). Under pathophysiological conditions, microbial-sensing
mononuclear phagocytes appeared to be an important source
of TL1A. They were thus able to initiate an anti-microbial,
tissue-restoring immune response (30) and should be taken
into account, especially in the context of IBD. In line with
this, inflammatory intestinal tissue sites of IBD patients were
characterized by increased levels of IL-22, likely derived from
ILC3s (30). In parallel, intestinal inflammation in IBD patients
is associated with an accumulation of IL-17+ ILC3s in the ileum
and colon and an increased capacity of IL-23 to trigger the
expression of IL-17A in gut-derived ILC3s (6, 52).

Besides the here described involvement of cytokines (Table 1),
mucosal immune cells, and bacteria in the ILC3-activating
machinery, several other factors have been suggested to be crucial
promotors of local ILC3 accumulation and function in humans,
such as neurotransmitters, vitamin metabolites, and even lifestyle
(e.g., obesity and cigarette smoking) (107, 108, 193, 194). In
the case of neurotransmitters, vagus-derived acetylcholin was
described to stimulate the PCTR1 pathway in both murine
and human ILC3s, favoring the resolution of inflammation
(107). Moreover, the enteric neuron-derived vasoactive intestinal
peptide (VIP) was shown, at least in mice, to modulate ILC3
activity upon food intake, though with controversial effects (195,
196). Ingested as a food component or directly synthesized in
sun-exposed skin, the active metabolite of vitamin D, 1,25D,
was additionally described to alter the transcriptional profile of
human ILC3s, skewing them toward the IL-1β pathway while
downregulating IL-23R signaling at the same time. In IBD, where
vitamin D deficiency has been reported to be a risk factor, the
observed beneficial effects of vitamin D substitution (197) might
thus mechanistically include the inhibition of IL-23- and IL-
17A-secretion by ILC3s (108). In general, only little is clearly
known about the mechanisms negatively regulating human ILC3
proliferation and their activity so far. The first hints of potential
ILC3 cytokine inhibitors were acquired from in vitro stimulated
human tonsillar ILC3s only and demonstrated the suppressive
effect of recombinant human IFN-α and IFN-γ on ILC3 numbers
(100). Future research should therefore intensify its work on
the identification of inhibitors regulating ILC3 activity in order
to potentially pave the way for novel therapeutic strategies in
inflammatory diseases characterized by an overwhelming ILC3
activity, like IBD.

ILC Plasticity and Tissue Differentiation
Since a markedly altered local ILC composition has been
described in inflammatory diseases (75, 183, 198–200), it is

important to understand the underlying mechanisms as well
as the pathological relevance of this observation. Changes
in local cell numbers can be explained by cell death, local
proliferation, intercompartmental redistribution, or directed
recruitment of existing ILC fractions from distal sites. Moreover,
the differentiation of tissue-resident ILC precursors and the
transdifferentiation ofmature ILCs (Figure 2) can also contribute
to altered ILC numbers in inflammatory tissue sites (Figure 1),
allowing adaption to local requirements without recruiting
additional cells (201). While initial studies identified three helper
ILC subsets, a more complex diversity has now been described
(10, 104, 202), including intermediates between distinct mature
subgroups and ex-ILCs derived from the transdifferentiation of
one ILC subgroup into another (202).

ILC3 ↔ ILC1 Plasticity
ILC plasticity seems to be particularly interesting in pathologies
characterized by the increase of one ILC subgroup at the expense
of another. This was observed, for instance, in CD patients,
who are characterized by having enhanced ILC1 frequencies
in inflamed intestinal tissue with a simultaneous decrease
in the NKp44+ ILC3 population compared to non-inflamed
control tissue (15). Searching for a functional link between
these associated phenomena, it was important to learn that
the type-1 cytokine IL-12 not only represents a potent ILC1
activator (44) but also serves as a key inducer of ILC3-to-ILC1
transdifferentiation. In vitro experiments with human tonsillar
and fetal gut ILC3s confirmed the plasticity of mature ILC3s,
differentiating into IFN-γ-producing ILC1s upon IL-2 and IL-12
stimulation with or without the addition of IL-1β (15, 201, 203).
Moreover, TGF-β was also suggested to induce T-bet expression
in stimulated human ILC3s (202). Ex vivo analyses of human
ileal LPMCs revealed the existence of ILC subgroups in the
transition phase that share both ILC3 and ILC1 characteristics,
thus hinting at a biological relevance of the ILC3-to-ILC1-shift
even in the complex in vivo situation (202). This was further
proven in a humanized mouse model: after adoptive transfer of
ex vivo expanded IL-22-secreting human ILC3s, an organ- and
time-dependent switch to IFN-γ secretion was observed (202).
For transition, the transcription factors Aiolos and Ikaros were
suggested to shut down the transcription of ILC3 signature genes,
thereby allowing the induction of an ILC1-like phenotype and
function (202, 203).

Conversely, the combined effects of IL-2, IL-23, and IL-1β
induced the phenotype and function of mature ILC3s in former
human ILC1s, including RORC expression and IL-22 secretion,
which could be further triggered by the vitamin A metabolite
retinoic acid. Indeed, the intravenous transfer of human ILC1s
into a humanized mouse model resulted in the appearance of
human NKp44+ ILC3s in the gut of recipient animals, further
proving the in vivo validity of the ILC1-to-ILC3 switch even
under non-inflammatory conditions (201). In the pulmonary
mucosal tissue, the clinical significance of the ILC3-to-ILC1 shift
was described in the tumor context in patients with pulmonary
squamous cell carcinoma. Induced by IL-23-secreting tumor
cells, human lung ILC1s gave rise to functional ILC3s and thereby
supported IL-17-mediated tumor growth. This was, in particular,
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FIGURE 2 | (Trans-) Differentiation of human ILCs in mucosal tissues. To adapt the local pool of tissue-resident ILCs, mature ILCs can differentiate from local

precursors or transdifferentiate into other ILC subsets. This shift in local ILC subgroups is mediated by the local cytokine environment and can be observed in various

fibro-inflammatory diseases affecting the lung and gut. CD and severe COPD, for instance, are characterized by an ILC1-dominated immune response. In line with

this, human ILC1s can be induced from c-Kit+NKp44− ILC precursors as well as from mature ILC2s and ILC3s in these pathologies; this is mainly regulated by IL-12.

In contrast, in chronic rhinosinusitis with nasal polyps (CRwNP), ILC2s rather than ILC1s represent important effector cells triggering the immune response.

Accordingly, ILC2 plasticity can be suppressed by IL-4 and vitamin D3, hampering the acquisition of ILC1- or ILC3-like characteristics to preserve type-2 immunity.

Nevertheless, retinoic acid can trigger ILCreg formation from mature ILC2s, likely representing a negative feedback mechanism to control ILC2 responses. Though

characterized by nasal polyps as well, cystic fibrosis patients (CFwNP) display an ILC3-driven phenotype in upper airways that can be induced by TGF-β-driven

transdifferentiation of ILC2s into ILC3s. Potentially, ILC1s might also represent a source of mature ILC3s, as shown in vitro in response to IL-23, TGF-β, and retinoic

acid. Whether further ILC plasticity exists in humans needs to be targeted in future studies.

reflected by the finding that high ILC3 numbers and IL-23 and
IL-17 levels turned out to significantly correlate with decreased
patient survival (204). An even higher level of flexibility in
the ILC1/ILC3 ratio is achieved by the availability of local
immature human ILCs (c-Kit+NKp44−), which can undergo
differentiation toward either functional ILC1s or NKp44+ILC3s

in the presence of IL-2 and IL-12 or IL-2, IL-23, and IL-1β,
respectively (15).

ILC2 ↔ ILC1 Plasticity
Another ILC1-dominated disease, COPD, is characterized by
enhanced ILC1 frequencies at the cost of ILC2s in the peripheral
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blood and also the inflamed lung tissue (55, 200). Since the
number of total ILCs was unaffected by the IL-12-enriched
inflammation in COPD patients (200), the transdifferentiation of
mature ILC2s into functional ILC1s might explain this inverse
correlation of ILC1 and ILC2 frequencies, pointing to the ILC1-
inducing cytokine IL-12 as a candidate mediator. And indeed, in
vitro stimulated human ILC2s lost their type-2 characteristics in
the presence of IL-12 and acquired the phenotype and function of
ILC1s instead (55, 200). Interestingly, IL-1β was found to further
support the ILC2-to-ILC1 shift by priming ILC2s for optimal
response to IL-12 (82). In particular, a subset of IL-13+ human
ILC2s turned out to co-express IFN-γ in response to strong IL-
12 signaling (205). Accordingly, ILC2s derived from IL-12Rβ1-
deficient patients with mendelian susceptibility to mycobacterial
disease were unable to exhibit ILC2-to-ILC1 plasticity while
intestinal samples from CD patients harbored transdifferentiated
IL-13+IFN-γ+ ex-ILC2s (205). The functional relevance of
the described ILC2-to-ILC1 switch for the clinical course of
inflammatory pathologies was further confirmed by showing a
positive correlation between increased ILC1/ILC2 proportions in
COPD patients and augmented symptoms of respiratory disease
(200). Chronic exposure to cigarette smoke and respiratory
tract infections, known to be strongly associated with the
occurrence of COPD, might further trigger this conversion (200).
Surprisingly, the classical type-2 cytokine IL-33 was able to
enhance the IL-12-induced IFN-γ production in human ex-
ILC2s, indicating a dual, context-dependent role of IL-33 (200).
In contrast, IL-4 acted as a classical type-2 cytokine and could
reverse human ex-ILC2s into functional ILC2s again in vitro
and might thus be able to support the maintenance of an
ILC2 predominance in mucosal tissues, as observed in patients
suffering from chronic rhinosinusitis with nasal polyps. An
increased proportion of ILC2s was detected in the turbinate tissue
of these patients, while the local frequencies of ILC1s and ILC3s
were diminished. This observation might be partly explained by
the co-localization of ILC2s with IL-4-secreting eosinophils and
the capacity of IL-4 to stabilize the phenotype and function of
ILC2s (55). However, besides the described capacity of IL-4 to
re-convert ex-ILC2s to their initial ILC2 phenotype, there have
been no reports describingmilieu-dependent transdifferentiation
of human ILC2s from bona fide ILC1s or ILC3s (55). Also, in the
clinical context of chronic rhinosinusitis, nasal polyps of affected
patients showed an increased frequency of ILCregs (206). Similar
to Tregs, their counterparts in the adaptive immune system,
ILCregs possess a regulatory capacity exerted via the secretion of
the immunosuppressive cytokine IL-10 (22). Interestingly, ILC2-
to-ILCreg transdifferentiation seemed to appear in the presence
of retinoic acid and resulted in marked IL-10 secretion by former
human ILC2s (206).

ILC2 ↔ ILC3 Plasticity
Unlike the type-2 signature dominating the immune response in
nasal polyps of patients with chronic rhinosinusitis, cystic fibrosis
patients with nasal polyps exhibited a substantially increased
frequency of NKp44− ILC3s compared to chronic rhinosinusitis
patients, even though nasal polyps in the two diseases share
morphological and clinical characteristics (72). Based on in vitro

data showing the transdifferentiation of human ILC2s into ILC3-
like cells in the presence of TGF-β, an ILC2-derived IL-17-
secreting ILC3-like subtype was suggested to be responsible for
this observation (72, 207). Consistently, increased TGF-β levels
have been described in nasal polyps of cystic fibrosis patients
(72). In this context, epithelial cell-released TGF-β was suggested
to induce SMAD2/3 phosphorylation in nasal human ILC2s and
thereby initiate their transdifferentiation into IL-17A-secreting
ILC3s. In turn, ILC-derived IL-17A can recruit neutrophils and
thus further promote inflammation (72). A similar switch of the
c-Kit− ILC2 subgroup was observed in psoriatic skin lesions,
identifying mutual control of GATA3 and RORγt expression as
an important control center deciding the fate of ILC2s (207).
Through cell culture experiments, IL-4 and vitamin D3 could
be revealed as antagonists of this ILC plasticity, suppressing the
TGF-β-initiated subtype switch (72, 207). The biological impact
of this ILC2-to-ILC3 conversion, however, is restricted to the skin
(207) and upper airways (72) so far, and whether this also applies
to the lower airways and other organs needs to be addressed in
future studies (202). In addition, it is still insufficiently clarified
whether ILC2s can fully convert into ILC3s or whether they
might keep certain ILC2 characteristics as ILC3-like cells (207).
This also raises the question of whether multistep ILC plasticity
is possible or whether there are specialized subsets of ILC1s,
ILC2s, and ILC3s that can only adapt defined characteristics of
another subgroup.

Although experimental proof of ILC3-to-ILC2 plasticity
in humans is lacking to date, it was interesting to note
the identification of lin−CD117+CD127+ LTi-like cells as an
intermediate subset between LTi ILC3s and functional ILC2s.
Assuming that there was no contamination of this cell population
with mature ILC2s, simultaneous production of the type-3
cytokine IL-22 and the type-2 cytokines IL-5 and IL-13 has been
demonstrated in response to PMA, ionomycin, and brefeldin
A in expanded human CD127+ LTi-like cells. Moreover, clonal
expansion of LTi-like cells revealed heterogeneous effector
cytokine profiles of analyzed clones, which were skewed either
to the type-3 or the type-1 side but showed comparable RORC
and GATA3 levels (103). Thus, LTi-like cells might represent
an intermediate or precursor ILC subset. Stimulation with IL-
2 or IL-15 and the TLR2 ligand Pam3 increased the IL-13
and IL-22 secretion by human LTi-like cells in vitro, while
only the minority of cells were IL-22+ (103), indicating that
bacterial products might directly activate LTi-like cells and, in
combination with further stimuli, might decide the fate of this
intermediate ILC subset. Further research, however, is necessary
to confirm the direct link between the described LTi-like cells
and the transdifferentiation of ILC3s into ILC2s. In another
study, KLRG1+ ILCs were additionally suggested as intermediate
cells biased toward the ILC2 lineage but with the potential
to differentiate into IFN-γ- and IL-22-producing ILCs upon
stimulation with IL-1β and IL-23 (208). Similarly, NKp46+

ILCs were postulated to represent ILC3 precursors but with
the ability to generate ILC1- and NK cell-like ILCs upon IL-12
treatment (208).

Collectively, human ILCs have been described as highly
plastic cells (Figure 2). Indeed, many key cytokines regulating
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ILC activity have been demonstrated not only to control the
proliferation and effector cytokine secretion of a distinct ILC
subgroup but also to mediate the transdifferentiation of ILCs.
Thus, dependent on the environmental stimuli, the plasticity
of mature ILCs and the differentiation of local ILC precursors
enable a rapid and reversible adaption of the ILC pool to
local requirements and subsequent modulation of the innate
immune response.

Tissue-Specific Migration of ILCs During
Adulthood
In humans, relatively small but distinct populations of ILC
precursors and even mature ILCs are present in the peripheral
blood stream during child- and adulthood (26, 51, 80, 208).
Yet, their functional role in the circulation itself or on local
immune responses has not been fully elucidated. Since disease-
associated tissue inflammation, as observed for instance in
asthma, is not only reflected in an adapted local ILC pool but
also in altered ILC frequencies in the peripheral blood (31, 64),
a biological impact of circulating blood ILCs on systemic or
local immune responses is strongly suggested. Functional data
acquired in parabiotic mouse models initially argued against
this, establishing a paradigm of tissue-resident ILCs that are,
at least in the murine organism, incapable of homing from the
blood stream to the inflamed tissue site (49, 50). Nowadays,
the concept of a strict tissue residency of ILCs has become
outdated, superseded by the idea of a rather time- and context-
dependent homing capacity of blood ILCs (209) as a response
to steady-state losses or under inflammatory conditions. Even
in the model of parabiotic mice, a small but significant homing
of blood ILC2s into tissues could be overserved upon chronic
inflammation (49). In line with this, a recent study described
an infection- and inflammation-triggered interorgan migration
of gut-resident ILC2s via S1P-mediated chemotaxis in mice. In
particular, intestinal inflammatory ILC2s were identified to be
a migratory ILC subset that played a crucial role in clearing
helminth infections and restoring epithelial tissue integrity, not
only in the gut but also in the distant lung tissue (35). Regarding
the translatability of the concept of trafficking ILCs into the
human system, expression of functional S1P receptors was also
proven in human tonsillar ILC1s, ILC2s, and ILC3s. In vitro-
performed chemotaxis assays further confirmed active migration
of human ILC1s and ILC3s in response to S1P analogs with
a prominent role of S1PR1, while ILC2s were not analyzed
in this context. In vivo therapy of patients with relapsing-
remitting multiple sclerosis with the S1P agonist fingolimod
resulted in an impressive reduction of all ILC subgroups in
the peripheral blood, suggesting S1P-dependent trafficking of
blood ILCs into lymph nodes in the human in vivo situation,
too (210). In a completely different clinical setting, partial
repopulation of ILC niches with ILCs after myeloablation was
shown to take place postnatally in patients with severe combined
immunodeficiency after hematopoietic stem cell transplantation
(26). These results indicated the migration of donor-derived
ILCs or their precursors to replenish blood and tissue ILCs
even after birth and fit very well with the recently postulated

model of tissue-specific “ILC-poiesis.” With the identification
of uni- and multipotent CD117+ ILC precursors in peripheral
human blood, milieu-driven recruitment and local maturation
of blood-derived ILC precursors has been suggested to replenish
and adapt the pool of tissue-resident mature ILCs (51). As well
as these circulating CD117+ ILC precursors, mature ILCs also
exist in the blood stream (26, 60, 80) and show a characteristic
surface expression profile of chemokine receptors and integrins,
which are generally known as key regulators of tissue-specific
homing processes (211). Circulating ILC1s expressed varying
levels of CCR4 and CCR6 and were mainly characterized by
high frequencies of CCR7+, CXCR3+, and α4β7+ cells but
lower percentages of CCR5+, CCR9+, and CXCR6+ ILC1s
(53, 212). In contrast, the vast majority of human blood ILC2s
expressed CCR4, CCR6, and the integrins α4, αL, β1, and β2
and additionally displayed distinct but smaller subsets of CCR9+

and β7 integrin+ cells (53, 167, 212). Only rare ILC2 subsets
expressed CCR5, CCR7, and CCR10, while CXCR3, CXCR5,
and CXCR6 were almost absent on blood ILC2s (53, 212).
While expressing CCR4 and CCR6 in varying levels as well
(53), human blood ILC3s differed from other helper ILCs by
the expression of CCR10 and cutaneous lymphocyte antigen
(CLA) (212). However, they also showed small fractions that
stained positive for CXCR3, CCR7, and α4β7 integrin (53, 212).
In adaptive immune cells, several of those chemokine receptors
have been inferred to drive organ-specific homing pathways
that might be translatable to ILCs as innate counterparts of
Th cells. CCR7, for example, is known to drive homing to
lymphoid tissues, while α4β7 integrin and CCR9 are specific
for intestinal migration (213). CLA was suggested to promote
homing processes to the skin (214).Whether this concept actually
applies to human blood ILCs, however, needs further validation
on a functional level. As a first step, the general homing capacity
of human blood ILCs could be demonstrated in humanized
mouse models: intravenously injected human ILCs could later
be detected in various organs as tissue-resident cells (55, 201).
Moreover, in vitro chemotaxis assays further elucidated specific
ligand-receptor interactions regulating the controlled attraction
of ILCs. Most prominently, the PGD2 receptor CRTH2 not only
serves as phenotypical hallmark and activating receptor on ILC2s
but could also promote directed in vitro migration of ILC2s
toward PGD2 (87, 215, 216). Activated, IgE cross-linked mast
cells were detected to be a major source of PGD2, suggesting
a relevant role of the CRTH2–PGD2 interaction for mast cell-
induced ILC2 recruitment upon allergic inflammation (87). In
line with the accumulation of ILC2s in asthmatic lung tissue
(31), ILC2s derived from asthmatic patients displayed enhanced
migratory potential toward PGD2 compared to ILC2s from
healthy subjects (216). The in vivo relevance of this CRTH2-
driven ILC2 migration was underlined in mice confirming
efficient PGD2-mediated accumulation of murine ILC2s in the
lung and the importance of CRTH2 for efficiently mounting an
anti-helminth lung inflammation (217). Likewise, the leukotriens
LTE4, LTD4, and LTC4 also displayed chemotactic potential
on human blood ILC2s, with LTE4 being the most potent
chemotactic trigger when tested in vitro (89). Though less potent
than PGD2 or LTE4 (87, 89), IL-33 could also trigger in vitro
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ILC2 migration (54, 87, 215). In contrast, other members of
the ILC2 core activating unit, including IL-25 and TSLP, only
showed a minimal chemotactic potential or were effective only
at high concentrations, respectively (54, 87). Furthermore, TGF-
β and the chemokine CCL8 could also attract human ILC2s
in transmigration assays (215), which might be of functional
relevance, as an accumulation of ILC2s could be detected in
TGF-β-enriched asthmatic airways (218), and IL-33-induced
lung inflammation in mice was associated with increased levels
of peribronchial CCL8 (215). In tuberculosis-associated lung
pathology, a reverse correlation of all ILC subsets has been
observed with decreased frequencies in the peripheral blood,
but an accumulation of these cells in the affected lung tissue,
which was suggested to result from CXCL13–CXCR5-driven
ILC lung homing. Thereby, migrated ILC3s were proposed to
have a beneficial role against Mycobacterium tuberculosis in
particular (69).

During the controlled process of immune cell homing,
chemokine receptor-mediated signaling is of crucial importance
for the activation of integrins expressed by rolling blood cells.
Activated integrins mediate the actual adhesion of circulating
immune cells to the endothelium (211). Phenotypically, a
proportion of human blood and tissue ILC2s has been described
to express the integrin subunits α4, αL, β1, and β2 (167). So
far, the contribution of αLβ2 rather than α4 and β1 to the ILC2
lung homing process, however, has been functionally proven
only in the murine system (167). In the context of gut immune
homeostasis, intestinal DCs within mesenteric lymph nodes are
specialized for metabolizing dietary vitamin A toward all-trans
retinoic acid, which is known to induce membrane expression
of α4β7 in CD4+ T cells and thereby imprints T cells for gut
homing (219, 220). Thus, it was interesting to observe a similar
increase in α4β7 expression on the surface of human blood-
derived ILCs after ex vivo exposure to retinoic acid. In synergy
with IL-2, retinoic acid successfully induced upregulation of α4
and β7 expression in ILC1s, ILC2s, and ILC3s and, in addition,
also promoted a significant increase of β1 integrin levels in all
three ILC subgroups (92). In contrast to the indicated capacity of
retinoic acid to facilitate gut homing of ILCs via binding to the
typical intestinal adhesion molecules MadCAM-1 and VCAM-
1, vitamin D seems to counteract this effect. The retinoic acid-
induced increase in surface expression of α4β7 integrins could
be significantly inhibited by the vitamin D metabolite 1,25D in a
dose-dependent manner (92).

Besides the influence of chemokines and integrins, the
migratory behavior of ILCs might also be modulated by
extracellular matrix proteins. In particular, type-I collagen
was found to trigger changes in the cytoskeleton of human
ILC2s, resulting in increased agility in vitro. Type-2 meditated
inflammatory diseases of the lung might therefore be amplified
by locally recruited and retained ILC2s upon pulmonary tissue
remodeling (215).

Apart from the controversial discussion about the tissue
residency or systemic mobility of human ILCs, they are assumed
to be motile within tissues with a tightly controlled intra-organ
localization and spatial distribution (215). But since functional
data on human ILCs have been acquired in transmigration

assays only, information on chemokines mediating inter- and/or
intra-organ migration of ILCs is still lacking. Thus, based
on the expression pattern of chemotactic mediators and their
receptors, for now, it can only be speculated that, for example,
CCR6-driven ILC2 migration might be particularly important
for attracting ILC2s from the blood circulation to the tissue,
since CCR6 expression is downregulated once ILC2s reside
in the lung (221). In contrast, surface expression of integrin
αE (CD103), and potentially also CXCR6, seems to predispose
human NKp44+ ILC1s for intraepithelial accumulation (44).
Interestingly, cell culture experiments indicated that the
epithelium itself is able to control the maintenance of integrin
αE expression on intraepithelial ILC1s via the release of TGF-
β (44). Regarding the intra-organ distribution of ILC3s, the
transmembrane chemotactic receptor GPR183 and its ligand
7a,25-dihydroxycholesterol were suggested to play a key role in
the organization and localization of ILC3s within mesenteric
lymph nodes, which might also be relevant in human GPR183-
expressing ILC3s (222).

An augmented occurrence of highly organized ectopic
lymphoid aggregates in, for instance, gut, lung, or liver
tissue represents a frequently described feature of chronic
inflammatory diseases like IBD, COPD, or rheumatoid arthritis,
respectively (223). As LTi ILC3s crucially contribute to the
formation of ectopic lymphoid aggregates via the secretion of
lymphotoxin, IL-17A, and IL-22 (223), it was interesting to
find a significantly increased number of neuropilin-1 (NRP1)-
positive LTi cells in pulmonary tissue of COPD patients (224).
Indeed, the adhesion molecule NRP1 turned out to represent a
characteristic marker of human LTi ILC3, which impacts their
chemotactic behavior functionally. In vitro analyses indicated
that the chemoattractant vascular endothelial growth factor
A (VEGF-A) was able to induce migration of LTi cells via
engagement of NRP1 in complex with VEGFR2 (224). Together
with a well-described upregulation of VEGF expression under
chronic inflammatory conditions (225, 226), these findings
strongly imply that the VEGF-A—NRP1-dependent recruitment
of LTi ILC3s is able to trigger the formation of ectopic
lymphoid aggregates in inflamed tissue sites and thereby
influence the quality of the mucosal immune response (224).
Besides their impact on the induction of ectopic lymphoid
aggregates, ILC3s might further contribute to the recruitment
of ILCs to local sites of inflammation via the release of GM-
CSF. A study conducted by Pearson et al. (227) identified
circulating and colon-infiltrating ILC3s as a relevant source of
GM-CSF in humans and described a significant upregulation
of GM-CSF+ ILC3s in the blood of IBD patients. Based on
observations in murine colitis, the inflammation-triggered exit
of ILCs from colonic cryptopatches into the adjacent tissue is
GM-CSF-dependent and can thus be promoted by activated
ILC3s (227). However, this functional link between ILC3-
derived GM-CSF and innate immune cell mobilization from
ectopic lymphoid aggregates still needs to be confirmed for the
human system.

Taken together, more intense research is necessary to validate
our current understanding of the systemic and local mobility
of human ILCs, as it is still mainly based on phenotypical
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observations and in vitro findings. Most likely, the availability
of humanized mouse models will substantially support us in
achieving new insights into the chemotactic stimuli attracting
blood ILCs under various in vivo pathophysiological conditions.
Since our current knowledge of chemotactic ILC attraction has
been mainly restricted to ILC2s, upcoming analyses should also
include research into the migratory capacity of ILC1s and ILC3s.

CLINICAL IMPLICATIONS

Even though ILC activity is controlled by a tight regulatory
network within the human body, dysbalanced ILC frequencies
and activity have been observed in the context of numerous
diseases characterized by chronic inflammation, fibrosis, or
malignant transformation of mucosal tissues (15, 60, 146, 228).
Due to their remarkably fast and potent capacity to react
to stress signals with the release of immune coordinating
effector cytokines, ILCs might represent important target
structures for innovative biomarker and treatment strategies.
Although our knowledge of ILCs has grown exponentially in
the last decade, no ILC-specific application has yet entered
the clinics. However, the therapeutic efficacy of several T cell-
targeting standard therapies might actually derive from their
combined suppressive effects on T cells and ILCs. For instance,
glucocorticoid therapy was able to normalize enhanced blood
ILC2 frequencies in asthmatic patients (229). Since ILC2s
have been suggested to be the main producers of the pro-
inflammatory cytokines IL-5, IL-9, and IL-13 in asthmatic
patients (229), their contribution to pathologies must not be
underestimated. Similarly, systemic glucocorticoid treatment
reduced nasal ILC2 proportions in patients with eosinophilic
nasal polyps (230). In accordance with these in vivo observations,
in vitro studies confirmed a direct inhibitory effect of the
glucocorticoids dexamethasone and budesonide on the cytokine
production of activated human blood ILC2s (83, 229, 231),
which were proven to express the glucocorticoid receptor
(229). Interestingly, this dexamethasone responsiveness turned
out to be dependent on the stimuli activating ILC2s. While
IL-25- and IL-33-driven ILC2 activities could be successfully
suppressed by dexamethasone, this was not the case for IL-
7- and TSLP-stimulated human blood ILC2s (231). In line
with this, BAL ILC2s derived from asthmatic patients that had
been exposed to elevated TSLP levels in vivo also displayed
dexamethasone resistance (231). Given the elevated levels of both
IL-33 and TSLP in the BAL of asthmatic patients (232), the
therapeutic efficacy of glucocorticoids might largely depend on
the inflammatory microenvironment.

Another commonly used drug in the therapy of asthma, the
leukotriene receptor 1 antagonist montelukast (233), is known
to relevantly impact the fate of ILC2s. Based on its inhibitory
effect on the cytokine production of human skin and blood ILC2s
in vitro (87, 89), it is reasonable to assume that the in vivo
efficacy of montelukast is also supported by its ILC2-dampening
capacity. In cultured ILC2s, montelukast could further be proven
to abrogate the chemotactic and anti-apoptotic potential of
cysteinyl leukotrienes (89).

More recently, anti-cytokine therapies have been successfully
introduced in the treatment of various inflammatory diseases
and partly also target important ILC effector cytokines. For
instance, patients with severe nasal polyps showed significantly
decreased disease severity upon treatment with the anti-IL-
5 antibody mepolizumab (234). Moreover, beneficial effects
of anti-IL-4 and anti-IL-13 antibodies have been suggested
for a subgroup of asthmatic patients (235, 236). These data
strongly imply that treatments originally designed to target T
cells and their effector cytokines might additionally function by
modifying ILCs. Whether ILCs can also be targeted specifically
is unclear to date and requires further research. Based on our
current knowledge, however, the partial functional redundancy
between ILCs and Th cells under physiological conditions
(26) and the crucial impact of mucosal ILCs on multiple
inflammatory disorders (6, 75) qualifies this innate cell type
as an excellent therapeutic target with minimal adverse events
(5, 237).

CONCLUSION

While the explicit benefit of ILCs for healthy individuals
has been questioned under the very high hygiene standards
in industrialized countries (26), ILCs have been impressively
proven to play essential roles in multiple pathologies. In
particular, their prime function as guardians and first line of
defense at mucosal barrier surfaces makes them a key factor
deciding between the induction of controlled and protective
or overwhelming and detrimental immune responses upon
pathogen entry. Thus, a tight regulation of ILC numbers and their
activity is highly important. Indeed, a dense network has been
identified that regulates human ILCs, consisting of soluble factors
as well as cell contact-dependent processes. These mediators
can directly regulate the activity of local ILCs but can also
adapt tissue-resident ILC numbers by modulating the viability
and proliferative capacity of local ILCs and their potential
for transdifferentiation. Moreover, ILCs can be redistributed
within an organ or recruited from distal sites to adjust the
ILC pool within inflammatory tissue sites according to local
requirements. Albeit controversial, homing of human blood ILCs
to the site of action represents an interesting, yet underrated
phenomenon that requires further analysis (Figure 1). Even
though enormous progress has been made regarding our
knowledge of human ILC regulation, until now, this is largely
based on in vitro experiments. Human in vivo data are,
however, mainly restricted to association studies. These have
successfully identified great correlations of ILC frequencies with
chronic lung and gut inflammation but lack functional evidence.
Meanwhile, in vivo studies have been primarily conducted on
murine ILCs, and translation of functional results to the human
system often remains unsatisfying. Therefore, future studies
might reinforce the use of humanized mouse models in ILC
research. This might allow the central question of whether
altered ILC frequencies in disease are cause or consequence to
be tackled, which is particularly important with regard to the
potential development of ILC-targeting therapeutic strategies.
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Until ILCs can be used therapeutically, however, many gaps
have to be filled, and our understanding of human ILCs has
to be expanded significantly. Therefore, larger patient cohorts
should be examined in combination with sophisticated in
vitro and in vivo analyses. Overall, a crucial role of ILCs in
mucosal immunity has been impressively determined in the
last decade, making the analysis of the functional contribution
of human ILCs to fibro-inflammatory diseases and their
potential therapeutic modulation a central target for the next
10 years.
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