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Complex systems arising in a modern society typically have many resources and strategies available for
their dynamical evolutions. To explore quantitatively the behaviors of such systems, we propose a class
of models to investigate Minority Game (MG) dynamics with multiple strategies. In particular, agents
tend to choose the least used strategies based on available local information. A striking finding is the
emergence of grouping states defined in terms of distinct strategies. We develop an analytic theory
based on the mean-field framework to understand the ‘‘bifurcations’’ of the grouping states. The
grouping phenomenon has also been identified in the Shanghai Stock-Market system, and we discuss its
prevalence in other real-world systems. Our work demonstrates that complex systems obeying the MG
rules can spontaneously self-organize themselves into certain divided states, and our model represents a
basic and general mathematical framework to address this kind of phenomena in social, economical and
political systems.

T
he Minority Game (MG) was originated from the El Farol bar problem in game theory first conceived
by Arthur in 19941, where a finite population of people try to decide, at the same time, whether to go to
the bar on a particular night. Since the capacity of the bar is limited, it can only accommodate a small

fraction of all who are interested. If many people choose to go to the bar, it will be crowded, depriving the
people of the fun and thereby defying the purpose of going to the bar. In this case, those who choose to stay
home are the winners. However, if many people decide to stay at home then the bar will be empty, so those
who choose to go to the bar will have fun and they are the winners. Apparently, no matter what method each
person uses to make a decision, the option taken by majority of people is guaranteed to fail and the winners
are those that choose the minority strategy. Indeed, it can be proved that, for the El Farol bar problem there
are mixed strategies and a Nash-equilibrium solution does exist, in which the option taken by minority wins2.
A variant of the problem was subsequently proposed by Challet and Zhang, named as a MG problem3, where
a player among an odd number of players chooses one of the two options at each time step. Subsequently, the
model was studied in a series of works4–22. In physics, MG has received a great deal of attention from the
statistical-mechanics community, especially in terms of problems associated with non-equilibrium phase
transitions23–25.

In the current literature, the setting of MG is that there is a single resource but players have two possible
strategies (e.g., in the El Farol bar problem there is a single bar and the two strategies are going to the bar or
staying at home), and an agent is assumed to react to available global information about the history of the
system by taking on an alternative strategy that is different than its current one. An outstanding question
remains of the nonlinear dynamics of MG with multiple resources. The purpose of this paper is to present a
class of multi-resource MG models. In particular, we assume that, at any time, an individual agent has k . 1
resources/strategies to choose from. We introduce a parameter p, which is the probability that each agent
reacts based on the available local information by selecting a less crowded resource in an attempt to gain
higher payoff. Here we assume realistically that only local information about the immediately preceding step
is available, which constitutes the input to the model. This differs from the original MG model where global
information is assumed to be available to all the agents and they make actions based on the past history. We
call p the minority-preference probability. We find that, as p is increased, the striking phenomenon of
grouping emerges, where the resources can be distinctly divided into two groups according to the number
of their attendees. In addition, the number of stable pairs of groups also increases. We will demonstrate the
phenomenon numerically and derive an analytic theory to fully explain the phenomenon. We will also show
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that the grouping phenomenon plays a fundamental role in shaping
the fluctuations of the system. An application to a real financial-
market system by analyzing the available empirical data will also
be illustrated, where grouping of stocks (resources) emerges. Our
model is not only directly relevant to nonlinear and complex dynam-
ical systems, but also applicable to social and economical systems.

Our multi-resource MG model and the emergence of grouping
phenomenon are presented in the Results section. A general theory
is also developed in the Results section to elucidate the dynamics of the
emergence and evolution of the strategy groups, together with a dis-
cussion of relevance to real-world systems. Concluding remarks are
presented in the Discussion section.

Results
Multi-resource minority game model. We consider a complex,
evolutionary-game type of dynamical system of N interacting
agents competing for multiple resources. Each agent chooses one
resource in each round of the game. Each resource has a limited
capacity, i.e., the number of agents it can accommodate has an
upper bound nc. There are thus multiple strategies (s 5 1, 2, …, k,
where k is the maximum number of resources/strategies) available to
each agent. On average, each strategy can accommodate N/k agents,
and we consider the simple case of nc 5 N/k. Let ns be the number of
agents selecting a particular strategy s. If ns # nc, the corresponding
agents win the game and, consequently, s is the minority strategy.
However, if ns . nc, the associated resource is too crowded so that the
strategy fails and the agents taking it lose the game, which defines the
‘‘majority strategy.’’ The optimal solution of the game dynamics is
thus ns 5 nc.

In a real-world system, it is often difficult or practically impossible
for each agent to gain global information about the dynamical state
of the whole system. It is therefore useful to introduce the concept of
local information network in our multipleresource MG model. At
each time step, with probability p, namely the minority-preference
probability, each agent acts based on local information that it gains
by selecting one of the k available strategies. In contrast, with prob-
ability 1 2 p, an agent acts without guidance of any local informa-
tion. For the minority-preference case, agent i has d neighbors in the
networked system. The required information for i to react consists of
all its neighbors’ strategies and, among them, the winners of the
game, i.e., those neighboring agents choosing the minority strategies
at the last time step. Let P 5 {sm} be the set of minority strategies for
i’s winning neighbors, where a strategy may appear a number of
times if it has been chosen by different winning neighbors. With
probability p, agent i will chose one strategy randomly from P.
Thus, the probability Ps for strategy s to be selected is proportional

to the times it appears in P, i.e., Ps 5 Ns/Card(P), where Card(P) is
the number of elements in P and Ns the times strategy s appears in
P. If P is empty, i will randomly select one from the k available
strategies. For the case where an agent selects a strategy without any
local information with probability 1 2 p, it will either choose a
different strategy randomly from the k available ones with mutation
probability m10, or inherit its strategy from the last time step with
probability 1 2 m.

Numerical results. As a concrete example to illustrate the strategy-
grouping phenomenon, we set k 5 5. Figures 1(a–c) show time series
of ns, the number of agents selecting each strategy s, for p 5 0, 0.45,
and 1.0, respectively. For Fig. 1(a) where p 5 0, an agent makes no
informed decision in that it changes strategy randomly with pro-
bability m 5 1. In this case, ns’s appear random. For the opposite
extreme case of p 5 1 [Fig. 1(c)], each agent makes well informed
decisions based on available local information about the strategies
used by its neighbors. In this case, the time series are quasiperiodic (a
detailed analysis will be provided in the Discussion section). For the
intermediate case of p 5 0.45 [Fig. 1(b)], agents’ decisions are
partially informed. In this case, an examination of the time series
points to the occurrence of an interesting grouping behavior: the 5
strategies, in terms of their selection by the agents, are divided into
two distinct groups g1 and g2 that contain kg1~2 and kg2~3
strategies, respectively. The time series associated with the smaller
group exhibit larger fluctuations about its equilibrium.

To better characterize the fluctuating behaviors in the time series
ns, we calculate the variance s2 5 Æ[ns(t) 2 N/k]2æ as a function of the
system parameter p, where Æ?æ is the expectation values averaged over
a long time interval, as shown in Fig. 2 on a logarithmic scale. We
observe a generally increasing behavior in s2 with p and, strikingly, a
bifurcation-like phenomenon. In particular, for p , pb, where pb is
the bifurcation point, s2 for all strategies assume approximately the
same value. However, for p . pb, there are two distinct values for s2,
signifying the aforementioned grouping behavior [Fig. 1(b)]. From
Fig. 2, we also see that, after the bifurcation, the two branches of s2 are
linear (on a logarithmic scale) and have approximately the same slope
a, suggesting the following power-law relation: s2

gi
~bgi p

a, for i 5 1, 2,
where log (bg1 ) and log (bg2 ) are the intercepts of the two lines in
Fig. 2. We thus obtain

s2
g1

s2
g2

~
bg1

bg2

: ð1Þ

In the Discussion section, we will develop a theory to explain the rela-
tions among the variances of the grouped strategies and to provide
formulas for the amplitudes of the time series in Fig. 1 and the sizes

Figure 1 | (a–c) For a square-lattice system of N 5 10000 agents, time series of the number of agents selecting each of the k 5 5 available strategies for p
5 0, 0.45, and 1.0, respectively. The probability of random alteration of strategy for an agent in the absence of local information

(with probability 1 2 p) is set to be m 5 1. A strategy grouping behavior can be seen in (b), where the whole strategy set is broken into two groups: one of

two and another of three strategies.
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of the groups (denoted by kg1 and kg2 , respectively). Specifically, our
theory predicts the following ratio between the variances of the two
bifurcated branches:

s2
g1

s2
g2

~
kg2

kg1

� �2

, ð2Þ

which is identical to the numerically observed ratio in Eq. (1), with the
additional prediction that the strategies in the group of smaller size
exhibit stronger fluctuations since the corresponding value of s2 is
larger. Overall, the emergence of the grouping behavior in multiple-
resource MGs, as exemplified in Fig. 2, resembles a period-doubling like
bifurcation. While perioddoubling bifurcations are extremely common
in nonlinear dynamical systems, to our knowledge, in complex game
systems a clear signature of such a bifurcation had not been reported
previously.

A careful examination of the time-series for various p has revealed
that the strategy-grouping processes has already taken place prior to
the bifurcation point pb in the variance s2, but all resulted grouping
states are unstable. Take as an example the 5-strategy system in Fig. 1.
In principle, there can be two types of pairing groups: (1, 4) and (2, 3).
For any grouping state, the following constraint applies:

kg1zkg2~k, kg1
:kg2=0 ð3Þ

There are in total k/2 (if k is even) or (k 2 1)/2 (if k is odd) possible
grouping states for the system with k available strategies. However,
the grouping states are not stable for p , pb. What happens is that a

strategy can remain in one group but only for a finite amount of time
before switching to a different group. Assume that the sizes of the
original two pairing groups are kg1 and kg2 , respectively. The sizes of
the new pair of groups are thus kg1+1 and kg2+1, as stipulated by
Eq. (3). Associated with switching to a different pair of groups, the
amplitudes of the time series ns for each strategy also change. As the
bifurcation parameter p is increased, the stabilities of different pairs
of grouping states change. At the bifurcation point pb, one particular
pair of groups becomes stable, such as the grouping state (2, 3) in
Fig. 2.

The bifurcation-like phenomenon and the emergence of various
strategy-grouping states are general for multiple-resource MG game
dynamics. For example, Fig. 3 shows s2 as a function of p for a system
with k 5 16 available strategies. There are in total 8 possible grouping
states, ranging from (8, 8) to (1, 15). As p is increased, the grouping
states (8, 8), (7, 9), (6, 10), (5, 11) and (4, 12) become stable one after
another, as can be seen from the appearance of their corresponding
branches in Fig. 3. The behavior can be understood theoretically
through a stability analysis (the Discussion section).

Another phenomenon revealed by Fig. 3 is the merging of bifur-
cated branches. For example, as p is increased through about 0.8, the
grouping states disappear one after another in the reverse order as
they initially appeared. This can also be understood through the
stability analysis (the Discussion section).

A real-world example: emergence of grouping states in financial
market. The financial market is a representative multiresource
complex system, in which many stocks are available for investment.
We analyze the fluctuation of the stock price from the empirical data
of 27 stocks in the Shanghai Stock Market’s Steel Plate between 2007
and 2010. We regard the 27 stocks, which are mostly from the iron
and steel industry, as constituting a MG system with k 5 27
resources, where the agents selecting the resources correspond to
the capitals invested. This system is open in the sense that capital
typically flows in and out, which is the main difference from our
closed-system model. In particular, given the time series xi(t) of the
daily closing price of stock i, the daily log-return is defined as Ri(t) 5

ln xi(t) 2 ln xi(t 2 1). The average return of the 27 stocks at time t,
denoted by ÆRi(t)æ, signifies a global trend of the system at t, which is
caused by the change in the total amount of the capital in this open,
27-stock system. However, when we analyze the detrended log-
returns R’i tð Þ~Ri tð Þ{ Ri tð Þh i, the system resembles a closed
system, as in our model. We shall demonstrate that the strategy-
grouping phenomenon occurs in this real-world system.

We calculate the Pearson parameter cij of each pair of the
detrended log-returns R’i tð Þ and R’j tð Þ, which leads to a k 3 k cor-
relation matrix C, as shown in Fig. 4(a). In terms of the eigenvector
associated with the maximum eigenvalue of matrix C, we rank the

Figure 3 | For a multiple-resource MG system of N 5 10000 agents on a square lattice and k 5 16 available strategies, (a) numerically obtained
bifurcation-like behavior that leads to the emergence of various pairs of grouping states [e.g, (8,8), (4,12), etc.], (b) predicted bifurcation from
mean-field theory (the Discussion section), and (c) results from an improved mean-field theory (the Discussion section). The probability of random

selection in the absence of local information is set to be m 5 1.

Figure 2 | For the same system in Fig. 1, variance s2 of the time series ns as
a function of p on a logarithmic scale. Different symbols indicate different

resources/strategies. A period-doubling like bifurcation occurs, at which

a grouping behavior emerges. Inset is the same plot but on a linear scale.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 703 | DOI: 10.1038/srep00703 3



order of the stocks and obtain matrix C9, as shown in Fig. 4(b). The
striking behavior is that the matrix is apparently divided into 4 blocks,
a manifestation of the grouping phenomenon. In particular, the
matrix elements cij among the first 15 stocks and those among the
remaining 12 stocks are generally positive, but the cross elements
between stocks in the two groups are negative. It is thus quite natural
to classify the first 15 stocks as belonging to group g1 and the remain-
ing 12 to group g2. We can then write the matrix in a block form as

C’~
Cg2g1 Cg2g2

Cg1g1 Cg1g2

� �
,

where the elements of Cg1g1 and Cg2g2 are positive, and those of
Cg1g2 and Cg2g1 are negative. The phenomenon is that the 27-stock
system has self-organized itself into a (12, 15) grouping state, a nat-
ural consequence of the MG dynamics in multi-resource complex
systems.

For one given stock i, the mean absolute correlation is

ci~
Xk

j~1

cij

�� ��� k{1ð Þ, j=i:

This parameter reflects the weight of the stock in the system. If
ci R 0, oscillations of stock i are contained in the noise floor. In this
case, there is no indication as to whether this stock belongs to group
g1 or g2. The larger the value of ci, the less ambiguous that the stock
belongs to either one of the two groups. From the value of ci ranked in
the same order as in C9, we can see that the boundary of the two
groups is the stock with minimum ci. Thus ci can be considered as a
characteristic number to distinguish different groups. We can also
reorder the matrix C9 according to ci within group g1 and g2, respect-
ively. This leads to matrix C0, as shown in Fig. 4(c), further dem-
onstrating the grouping phenomenon.

Generality of strategy-grouping phenomenon in multi-resource
MG systems. We have observed numerically from model MG
systems with multiple resources the grouping phenomenon in
terms of the emergence, characteristics, and evolutions of the
strategy groups. An issue of discussion is whether the phenomenon
is generic. To address this issue and also to gain a comprehensive
understanding of multiple-resource MG systems in general, we
develop an analytic theory.

Relationship among variance, amplitude and group size. In general,
for a multiple-resource MG system of N agents, as the parameter p is
increased so that agents become more likely to make informed
decision for strategy selection, the available strategies can be divided
into pairs of groups. The example in Fig. 1(b) presents a case where
there are two distinct strategy groups g1 and g2, which contain kg1 and
kg2 strategies, respectively, where kg1zkg2~k. For Fig. 1(b), we have
kg1vkg2 . The strategies belonging to the same group are selected by
approximately the same number of agents, i.e., the time series ns(t)
for strategies in the same group are nearly identical. During the time
evolution, a strategy s can switch iteratively from being a minority
strategy [ns(t) , nc ; N/k] to being a majority one [ns(t 1 1) . nc]. In
particular, as shown in the schematic map in Fig. 5, for the strategy in
group g1 denoted by si, and the strategy in group g2 denoted by sj, if
nsi tð ÞvN=kvnsj tð Þ, we will have nsi tz1ð ÞwN=kwnsj tz1ð Þ. In
addition, the time series ns reveals that the average numbers of agents
for strategies si and sj, denoted by nsih i and nsj

� �
(the blue dash line

and red dot line in Fig. 5), respectively, are not equal to N/k (the black
solid line in Fig. 5). In fact, we have

Figure 4 | Correlation matrix of log-returns for 27 stocks in Shanghai Stock Market’s Steel Plate. (a) Original matrix C, (b) matrix C9 ordered according

to the eigenvector for the maximum eigenvalue of C, and (c) reordered matrix C0 from C9 with respect to ci within each group. The ci values of the stocks

are shown for each matrix.

Figure 5 | For the case of two groups [e.g., Fig. 1(b)], schematic
illustration of time series nsi

in group g1 (blue circles) and nsj in group g2

(red triangles), where various quantities such as the amplitude A are
labelled.
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nsih i~
N
k

zDnsi , nsj

� �
~

N
k

{Dnsj , ð4Þ

where nsih iwN=k and nsj

� �
vN=k. Here, Dnsx is the absolute

value of the difference between nsxh i and N/k. The number of
agents nsi tð Þ [or nsj tð Þ] typically fluctuates about the equilibrium
nsih i [or nsj

� �
] with amplitude Asi [or Asj ], as shown in the schem-

atic map in Fig. 5.
Based on the numerical observations, we can argue that the strat-

egy grouping phenomenon is intimately related to the fluctuations in
the time series ns. Assuming the MG system is closed so that the
number of agents is a constant, we can obtain (see Supplementary
Information for detail)

Asi

Asj

~
kg2

kg1

,
Dnsi

Dnsj

~
kg2

kg1

,
s2

si

s2
sj

~
kg2

kg1

� �2

: ð5Þ

We see that the fluctuations of the time series are closely related to the
grouping of the strategies. As shown in Fig. 2, the ratio of the var-
iances of group g1 and g2 from the simulation agree very well with Eq.
(5).

Mean-field theory. In Supplementary Information, we also develop a
mean-field theory, as well as its modified version to understand the
fluctuation patterns of the system. The mean-field treatment gives
the iterative dynamics of agents selecting strategy si in terms of the
values of nsi , the expression of the amplitude Asi of the fluctuation,
the mean value nsih i, and its difference from N/k, as follows:

n 2að Þ
si

~
abzbzcg1

1{a2
,

n 2az1ð Þ
si

~
abzacg1

zb

1{a2
,

ð6Þ

and,

Asi~ n 2að Þ
si

{n 2az1ð Þ
si

h i.
2~

cg1

2 1zað Þ ,

nsih i~ n 2að Þ
si

zn 2az1ð Þ
si

h i.
2~

2bzcg1

2 1{að Þ ,

Dnsi~ nsih i{N=kj j~
kcg1

{2Np

2k 1{að Þ

����
����~ Np k

�
kg1{2

�� ��
2k 1{að Þ :

ð7Þ

with a g R, and n t’ð Þ
si stands for the number of agents choose si at

time t9. Here, a ; (1 2 p)(1 2 m), b ; N(1 2 p)m/k, and
cg1

:Np
�

kg1 . The corresponding equations for sj are also obtained
in Supplementary Information.

The mean-field theory is ideally suited for fully connected net-
works. Indeed, results from the theory and direct simulations agree
with each other very well, as shown in Fig. 6. However, in real-world
situations, a fully connected topology cannot be expected, and the
mean-field treatment will no longer be accurate. For example, we
have carried out simulations on square-lattice systems and found
noticeable deviations from the mean-field prediction.

To remedy this deficiency, we develop a modified mean-field ana-
lysis for MG dynamics on sparsely homogeneous networks (e.g.,
square lattices or random networks). Due to the limited number of
links in a typical large-scale network, it is possible for a failed agent to
be surrounded by agents from the same group (who will likewise fail
the game). In this case, the failed agent has no minority strategy to
imitate (set P is empty) and thus will randomly select one strategy
from the k available strategies. From the modified mean-field ana-
lysis, which takes this effect into account, we obtain the formulas for
nsi , Asi , nsih i, and so on. A good agreement with simulation results is
shown in Fig. 6 for a square-lattice system.

Stability of strategy grouping states. Our mean-field treatment yields
formulas characterizing the stable oscillations associated with the

Figure 6 | Comparison of the time series of nsi
in group g1 (and nsj in group g2) from the mean-field formula [Eq. (6)] and modified mean-field formula

[Eq. (15) in Supplementary Information], and from simulations. The upper and lower figures show the results for the grouping state (8; 8) and (7; 9),

respectively. The left panels are the results from mean-field theory (MF) and from simulations on fully connected networks (FCN). The right panels are

the results from our modified mean-field theory (MMF) and simulations on the square lattice (SL). The system parameters are N 5 10000, k 5 16,

p 5 0.45, and m 5 1.
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grouping state (kg1 , kg2 ), which include the variance ratio of the
pairing groups [Eq. (5)] and time series ns [Eq. (6)].

However, from the simulation result shown in Fig. 3, we see that
not all the grouping states are stable in the parameter space. As p is
increased, the strategy-grouping state of the smaller kg1 becomes
stable, and the corresponding branch appears. It is therefore useful
to analyze the stability of the grouping state.

In our treatment we have assumed n 0ð Þ
si wN=k and n 0ð Þ

sj vN=k.
Then, the necessary condition for the grouping state (kg1 , kg2 ) to

become stable is n 1ð Þ
si vN=k and n 1ð Þ

sj wN=k. Using the equations of
the time series ns for strategy si and sj, [Eq. (6), or see Supplementary
Information Eqs. (12) and (13)], we get

kg1w
k 1{m{pzpmð Þ

2{m{pzpm
:j1 p,mð Þ,

kg 2v
k

2{m{pzmp
:j2 p,mð Þ,

ð8Þ

where j1 and j2 are continuous functions of the parameters p and m,
and j1 1 j2 5 k. The two inequalities in Eq. (8) are nevertheless
equivalent to each other. Figure 7 presents a phase diagram in the
parameter space, where the curves of j1(p, m) 5 k9 (k9 5 8, 7, …, 1)
are shown. The necessary condition for the strategy-grouping state
with kg1~k0 to be stable is that the parameters p and m are in the
upper-right region of the curve j1(p, m) 5 k9. For certain value of m,
only when p . pb(m, k9) will the state of kg1~k0 be stable. While the
value of pb from simulation is different from the theoretical value
pb(m, k9), our mean-field theory does provide a qualitative explana-
tion for the phenomenon in Fig. 3(a), where more branches of smal-
ler strategy-grouping states become stable as p is increased.

We have also seen in Figs. 2 and 3(a) that, as p approaches 1,
the bifurcated branches of different grouping state merge together.
For the case of even k, ns fluctuates stably in the grouping state
with kg 1~kg 2~k=2. While, for the case of odd k, ns fluctuates
quasi-periodically [see Fig. 1(c)]. In fact, the grouping state always
switches between (kg 1 1, kg) and (kg, kg 1 1), with kg 5 (k 2 1)/

2. We can understand the instability and merging of grouping
states from Fig. 1(c), and the schematic map in Fig. 5, as follows.
As p is increased to 1, Dnsi and Dnsj increase and become com-
parable to the amplitudes Asi and Asj , respectively. Namely, the
attendances ns of strategies can be very close to nc 5 N/k. In case
where ns of one strategy does not become larger than nc because of
noise, i.e., it acts as minority (or majority) strategy twice, then the
fluctuation of ns as well as the grouping state are necessarily
changed.

Relevance to real-world systems. We have observed the strategy-
grouping like phenomenon in a subsystem of Shanghai Stock
Exchange by analyzing the available time series of daily stock
price. In principle, by observing the detailed behavior of the
strategies employed by the agents in the market, an unequivocal
demonstration of the grouping phenomenon could be made. This,
however, is practically impossible. That grouping is a generic
phenomenon in real-world systems such as the stock market
remains therefore to be speculative. Our confidence, however,
comes from the close analog between any subsystem of the stock
market and MG system with multiple resources, and the generality of
the grouping phenomenon in such systems as established by our
analytic theory. It would certainly be interesting to develop
approaches to probing directly the grouping phenomenon in real-
world complex systems.

Other real-world systems for which our MG model may be applic-
able include, e.g., hedge-fund portfolios in financial systems, routing
issues in computer networks and urban traffic systems, and the
selection process of high-school candidates in the college admission
system. Specifically, in the Chinese college admission (Gaokao) sys-
tem, candidates often select their dream colleges according to pre-
vious years admission scores, but their destiny actually depends more
on the present admission scores determined according to some kind
of minority game mechanism. Further, the oscillations of annual
admission scores and their trends for a number of colleges, corres-
ponding to the grouping of resources investigated in this paper, is not

p

m
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Figure 7 | Phase diagram indicating the stability region of strategy-grouping states. The stable parameter region of one given grouping state with

kg1 ~k0 is at the upper right of the corresponding curve of k9.
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an uncommon phenomenon in the history of Chinese Gaokao
admission system.

Discussion
Minority game, since its invention about two decades ago, has
become a paradigm to study those social and economical phenomena
where a large number of agents attempt to make simultaneous
decision by choosing one of the available strategies2. In the most
commonly studied case of single available resource with players’
two possible strategies, agents taking the minority strategy are the
guaranteed winners. Various minority game dynamics have also
received attention from the physics community due to their high
relevance to a number of phenomena in statistical physics. It has
become more and more common in the modern world that multiple
resources are available for various social and economical systems. If
the rule still holds that the winning options are minority ones, the
questions that naturally arise are what type of collective behaviors
can emerge and how they would evolve in the underlying complex
system. Our present work aims to address these questions computa-
tionally and analytically.

The main contribution and findings of this paper are the follow-
ing. First, we have constructed a class of spatially extended systems in
which any agent interacts with a finite but fixed number of neighbors
and can choose either to follow the minority strategy based on
information about the neighboring states or to select one randomly
from a set of available strategies. The probability to follow the local
minority strategy, or the probability of minority preference, is a key
parameter determining the dynamics of the underlying complex
system. Second, we have carried out extensive numerical simulations
and discovered the emergence of a striking collective behavior: as the
minority-preference probability is increased through a critical value,
the set of available strategies/resources spontaneously break into
pairs of groups, where the strategies in the same group are associated
with a specific fluctuating behavior of attendance. This phenomenon
of strategy grouping is completely self-organized, which we conjec-
ture is the hallmark of MG dynamics with multiple resources. Third,
we have developed a mean-field theory to explain and predict the
emergence and evolution of the strategy-grouping states, with good
agreement with the numerics. Fourth, we have examined a real-
world system of a relatively small-scale stock-trading subsystem,
and found unequivocal evidence of the grouping phenomenon.
Our results suggest grouping of resources as a fundamental type of
collective dynamics in multipleresource MG systems.

Finally, we remark that the bifurcation-like phenomena associated
with resource grouping in minority-game systems are not limited to
the double-grouping (or paired grouping) behavior. In fact, we have

also observed phenomena such as period–3 double-grouping
[see Fig. 8(a)(b)], and period–3 triplet-grouping bifurcation [see
Fig. 8(c)]. Further efforts are warranted to explore various nonlinear
dynamical phenomena in minority-game type of systems that
describe a large variety of social, economical, and political systems.

1. Brian, W. Arthur, Inductive Reasoning and Bounded Rationality. Ame. Econo.
Rev. 84, 406–411 (1994).

2. Gintis, H. Game Theory Evolving (Princeton University Press, Princeton, 2009).
3. Challet, D. & Zhang, Y.-C. Emergence of Cooperation and Organization in an

Evolutionary Game. Physica A 246, 407–418 (1997).
4. Challet, D. & Marsili, M. Phase Transition and Symmetry Breaking in the

Minority Game. Phys. Rev. E 60, 6271(R) (1999).
5. Challet, D., Marsili, M. & Zecchina, R. Statistical Mechanics of Systems with

Heterogeneous Agents: Minority Games. Phys. Rev. Lett. 84, 1824 (2000).
6. De Martino, A., Marsili, M. & Mulet, R. Adaptive Drivers in a Model of Urban

Traffic. Europhys. Lett. 65, 283–289 (2004).
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