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In China, the re-emerging pseudorabies virus (PRV) variant has caused large-scale

outbreaks of pseudorabies in swine herds with classical PRV vaccine immunization

since late 2011. Here, a recombinant PRV with TK/gI/gE/11k/28k deletion was

constructed based on variant HN1201 strain isolated in 2012, by the bacterial

artificial chromosome infectious clones. Compared with the parental virus, the

recombinant PRV rHN1201TK−/gE−/gI−/11k−/28k− showed a similar virus grown curve

and exhibited smaller plaques. The vaccination of rHN1201TK−/gE−/gI−/11k−/28k− could

elicit an earlier and higher level of gB antibody, and the neutralizing antibodies

elicited by rHN1201TK−/gE−/gI−/11k−/28k− were effective against both PRV classical

and variant strains. Clinically, the body temperature of the pigs immunized with

rHN1201TK−/gE−/gI−/11k−/28k− was significantly lower than that of the classical

PRV vaccine immunized pigs, and the recombinant PRV could provide effective

protection against the challenge with the PRV variant. These results imply that

the rHN1201TK−/gE−/gI−/11k−/28k− could be a promising vaccine candidate for the

prevention of the current epidemic of pseudorabies in China.
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INTRODUCTION

Pseudorabies (PR), also called Aujeszky’s disease, is caused by the infection of an alpha-herpesvirus
Pseudorabies virus (PRV) (1). The double-stranded DNA genomic sequence of PRV is ∼145 kb in
size, containing almost 70 open reading frames (ORFs) that encode 70–100 viral proteins (2).

The herpesvirus PRV has a broad host range, which is known to cause acute fatal disease in
a variety of mammals (3–5). The PRV infection may lead to acute symptoms and even death
in piglets, and the clinical signs of coughing, sneezing, lethargy, nervousness, uncoordinated
movements, and abortion in sows (1), resulting in heavy economic losses in the pig industry. Like
other alpha-herpesviruses, PRV is characterized by a lifelong latent infection in the host peripheral
nervous system. Stress-induced reactivation of latent PRV is a difficulty for PR prevention (6).

Highly efficacious gene-deleted modified-live vaccines, such as the strain PRV Bartha-K61 that
attenuated from wild-type strain Bartha via multiple passages on pig kidney cells and chicken
embryos, and their companion differential serological tests have been widely used to control PR
during the past several decades (7, 8). Compared with the wild-type strain, the attenuated Bartha
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carries a large deletion in the unique short region of the genome,
including the complete genes of gE and US9 (11k), and part of the
US2 (28k) and gI (9). However, the emerging virulent PRV strains
have caused severe PR in the vaccinated pigs in China since late
2011 (10–13), while the widely used PRV vaccines of classical
strains only provide limited protection to the new-emerging
PR (12). After the new-emerging PR outbreaks, a virulent PRV
variant HN1201 in China was isolated, which induced high
fever, anorexia, coughing, dyspnea, and systemic neurological
symptoms in the infected pigs (12, 14, 15). Multiple studies have
shown that the highly virulent PRV was the causal agent of this
PR epidemic (12, 14–16). Therefore, it is urgent to develop more
effective PRV vaccines based on the emerging PRV strains for the
disease control.

Bacterial artificial chromosome (BAC) infectious clone is
widely used for the studies of viral genome manipulation, and
then be used for evaluating the efficacy of vaccine candidates
(17–20). In herpesvirus, the BAC system was a powerful
tool for generating recombinant viruses, which promotes the
understanding of viral pathogenesis, vaccine development, and
gene therapy (21). The gI, gE, and TK genes were critical for PRV
virulence, but with no obvious effect on viral immunogenicity
(22, 23). The gene of 11k is required for the efficient spread
of PRV in the nervous system (24, 25). The deletion of 28k
gene in the attenuated PRV vaccine strain strongly suggested an
important role of 28k in virulence determination (26), and more
recently, the 28k gene deletion showed an enhancement of PRV
titers in vitro (27).

Here, a TK/gE/gI/11k/28k deleted PRV strain was generated
based on amodified RPV,HN1201TK− (15), using BAC infectious
clone, and then the immunogenicity of the 5-gene-deleted
vaccine candidate was evaluated in pigs.

MATERIALS AND METHODS

Animals
Pigs (28-day-old) used in this study were tested free of PRV,
porcine reproductive and respiratory syndrome virus (PRRSV),
classical swine fever virus (CSFV), and porcine circovirus
2 (PCV2). All the animal samples were collected according
to the protocol approved by the Animal Care and Ethics
Committee of National Research Center for Veterinary Medicine
(Permit 20170625005).

Virus and Cells
The PRV variant HN1201 (GenBank accession no. KP722022.1)
isolated in 2012 has been described previously (15). Pig
kidney cells (PK-15 cells, ATCC R© CCL-10) and African green
monkey kidney (Vero) cells were grown in Dulbecco’s modified
Eagle medium (DMEM) (Gibco, CA, USA) supplemented with
10% fetal bovine serum (FBS) (Gibco), and then incubated
in a humidified incubator with 5% CO2, while the cell
culture medium used during viral infection was the DMEM
supplemented with 2% FBS.

Generation of rHN1201TK–/gE–/gI–/11k–/28k–

The Escherichia coli (E. coli) competent cells DY380 that harbor
the plasmid pBAC-HN1201TK− were obtained as described
previously (15). The DY380 cells were electroporated with a PCR
product, a positive selection marker of ampicillin (Amp) gene
containing the short extensions (SE) that are homologous to the
gI and 28k genes in both ends, to produce intermediate plasmid
pBAC-HN1201TK−/gE−/gI−/11k−/28k−/Amp+. The positive clones
were selected on agar plates containing 100µg/ml Amp and
30µg/ml chloramphenicol, and further confirmed by digestion
of BamHI. After digestion using I-SceI, the linear plasmid was
transformed into DY380 cells to remove the Amp gene and get
the plasmid pBAC-HN1201TK−/gE−/gI−/11k−/28k−.

To remove the BAC gene cassette and the Loxp residual
sequence, a PCR product [a cassette of kanamycin (Kan) gene
with homologous arm sequence of Cat-OriS from pBeloBAC11
plus the inverted repeat fragment of the homologous arm
of PRV TK gene] was transformed into the DY380 cells
containing the plasmid pBAC-HN1201TK−/gE−/gI−/11k−/28k−

to produce pBAC-HN1201TK−/gE−/gI−/11k−/28k−/Kan+. After
digestion using I-SceI, the linear plasmid was transformed into
DY380 cells to remove the Kan gene, and finally to produce
pBAC-HN1201TK−/gE−/gI−/11k−/28k−. After that, the positive
clone of pBAC-HN1201TK−/gE−/gI−/11k−/28k− was transfected
into Vero cells to produce markerless 5-gene deleted virus
rHN1201TK−/gE−/gI−/11k−/28k−, which was obtained after 3
rounds of purification by plaque assay.

In vitro Growth Properties and Plaque
Morphology
One-step growth curve of the rescued
rHN1201TK−/gE−/gI−/11k−/28k− was assessed, and then was
compared with that of the parental virus HN1201. After
infection by the parental and rescued virus (MOI of 1.0), the
supernatants of Vero cells were harvested at 0, 4, 8, 12, 16, 20, 24,
28, 32, and 36 h post-infection (hpi) and stored at −80◦C. The
virus titers were determined by the 50% tissue culture infectious
dose (TCID50). Growth kinetics for each virus were tested in
triplets and the resulting titers were averaged.

Plaque sizes were determined at 48 hpi in Vero cells. Briefly,
in the 6-well plates with monolayer cells, the culture medium
(DMEM supplied with 2% FBS) containing 1.0 × 103 TCID50

of the virus was aspirated at 1 h after incubation, and then the
cells were overlaid with 1% low-melting-point agarose in DMEM
supplied with 2% FBS for plaque formation. For each virus,
100 plaques were randomly selected, and the plaque size was
determined by ImageJ software (National Institutes of Health).

Animal Experiment
A total of 15 pigs (28-day-old), free of PRV, PRRSV, CSFV,
and PCV2, were randomly divided into 3 groups (n = 5).
The piglets in groups 1 and 2 were vaccinated intramuscularly
with 1.0 × 105.0 TCID50 rHN1201TK−/gE−/gI−/11k−/28k− and
one dose of Bartha-K61, respectively. DMEM medium was used
as the placebo in group 3 (unvaccinated). After vaccination,
rectal temperature and clinical signs were recorded daily. The
pig serum samples in days post-vaccination (dpv) of 0, 8, 10,
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12, 14, and 21 were collected to monitor gB and neutralizing
antibodies (NAbs). All pigs were challenged with HN1201 (1.0
× 106.0 TCID50 per pig) intranasally at 21 dpv. At 14 days
post-challenge (dpc), all pigs were euthanized and necropsied,
and organ samples were collected for immunohistochemistry
(IHC) assay.

Antibody Testing
For antibody testing, gB antibodies of the serum samples were
evaluated by the Aujeszky gB (Pseudorabies Virus) Antibody Test
Kit (BioChek, The Netherlands) according to the instructions.
The PRV-specific NAbs titers were tested by serum-neutralization
test (SNT). Briefly, serum samples were inactivated at 56◦C for
30min prior to the SNT. Two-fold serially diluted serum (50 µl)
was mixed with an equal volume of the HN1201 or Bartha-K61
(1.0 × 102 TCID50) in 96-well plates and incubated at 37◦C for
1 h in an atmosphere with 5% CO2. After incubation, 100 µl of
PK-15 cell suspension containing 2.0 × 104.0 cells was added to
each well. The inoculated cells then were incubated at 37◦C in an
atmosphere with 5%CO2 for 5 days, and the titers of PRV-specific
NAbs were determined based on cytopathic effect (CPE), and the
titers were expressed as the reciprocal of the highest dilution at
which infection of the PK-15 cells was inhibited in 50% of the
culture wells.

qPCR
The viral loads in the tissue samples of brain and lung from
pigs were tested by qPCR, using the primers specific for

gB gene, gB-f (5
′
-ACAAGTTCAAGGCCCACATCTAC-3

′
), gB-r

(5
′
-GTCYGTGAAGCGGTTCGTGAT-3

′
), and Probe-gB (FAM-

ACGTCATCGTCACGACC-TARAM), on the CFX96 Touch
Real-Time PCR Detection System (Bio-Rad). The copy number
for each sample was expressed as log10 copies per gram
of samples.

Immunohistochemistry Assay
Brain, cerebellum, tonsils, and lung samples were collected from
the pigs from 3 groups for IHC assay. The samples were fixed
with 10% formaldehyde, processed into paraffin blocks, and cut
into sections. The sections were stained with hematoxylin and
eosin. PRV antigen in the infected pigs’ tissues was detected using
an IHC with a PRV monoclonal antibody 3B5 (a gB-specific IgG
antibody), as described previously (28, 29), and the HRP goat
anti-mouse IgG (BTI, USA) served as the secondary antibody.

Statistical Analysis
Data were presented as mean ± SD. The survival rates were
analyzed by the Kaplan–Meier test. The differences in plaque
areas of viruses, body temperature, and antibody titers of
piglets between groups were determined by using Student’s t-
test. Differences were considered statistically significant when
p < 0.05.

RESULTS

Rescue of rHN1201TK–/gE–/gI–/11k–/28k– and
Growth Properties
The PCR product of SE(gI)/I-SceI/Amp/SE(28k) was applied
to replace the fragment SE(gI)/gI/gE/11k/28k/SE(28k) in
pBAC-HN1201TK− by homologous recombination in E.coli
DY380 (Figure 1). The 5-gene deleted plasmid pBAC-
HN1201TK−/gE−/gI−/11k−/28k−/Amp+ was selected on an
agar plate containing chloramphenicol and ampicillin, and
further confirmed by sequencing. After digestion using I-
SceI, the linear plasmid was transformed into E. coli DY380
to remove the Amp gene, and then the plasmid pBAC-
HN1201TK−/gE−/gI−/11k−/28k− was generated. The CPE could
be observed at 72 hpi (Figure 2A). Plaques of rescued PRV were
isolated and subjected to three rounds of purification. The virus
was named rHN1201TK−/gE−/gI−/11k−/28k−, which lacked TK,
gE, gI, 11k, and part of the 28k genes compared with the parental
virus HN1201.

As shown in Figure 2B, the growth features of rescued virus
rHN1201TK−/gE−/gI−/11k−/28k− were virtually identical to that of
parental virus HN1201 in PK-15 cells. However, the plaque areas
of the rescued virus were smaller than those formed by HN1201
in PK-15 cells (Figure 2C).

Protection of Vaccinated Pigs After
Challenge
To determine the immunogenicity of
rHN1201TK−/gE−/gI−/11k−/28k−, 15 piglets were selected for
vaccination with rHN1201TK−/gE−/gI−/11k−/28k− and Bartha-
K61, and subsequent challenge with the HN1201 strain at 21 dpv.
The results showed that no clinical symptoms were observed
in all pigs after vaccination. After challenge with HN1201
intranasally, all pigs in group 3 (unvaccinated) exhibited high
fever (40.5–41.7◦C, Figure 3A), depression, anorexia, cough,
and systematic neurological signs like convulsion and ataxia.
All the unvaccinated pigs died at 6–7 dpc, and no pigs died
after being vaccinated with rHN1201TK−/gE−/gI−/11k−/28k− or
Bartha-K61 (Figure 3B). As with the clinical signs of group
3 at 2–6 dpc, the pigs in group 2 (Bartha-K61) showed a
transient period of high fever after challenge (three out of
five pigs showed the temperature higher than 40.5◦C for 4
days), and all pigs recovered from 7 dpi. In contrast, pigs
in group 1 showed no clinical signs throughout the whole
experiment. The result indicates that the vaccination with
rHN1201TK−/gE−/gI−/11k−/28k− could protect pigs against
challenges with the new virulent PRV strain.

Antibody Response After Vaccination and
Challenge
After vaccination, the levels of gB antibody increased in
all the vaccinated groups. The results showed that the gB
antibodies elicited by rHN1201TK−/gE−/gI−/11k−/28k− in the
serum samples were all positive at 10 dpv and with the highest
level at 21 dpv before challenge (S/P-value of 1.4), which were
earlier and higher than that of the Bartha-K61 group (not
fully positive and S/P-value of 0.6 at 21 dpv) (Figure 4A),
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FIGURE 1 | Overview of strategies for the TK/gE/gI/11k/28k deletion. Boxes of the same color represent identical sequences.

FIGURE 2 | Rescue and the characterization of recombinant PRV. (A) Cytopathic effect in Vero cells after transfection with recombinant PRV pBAC plasmids. The

white arrow indicated the CPE. Bar = 100µm. (B) Multiple growth curves of the chimeric viruses. The culture supernatants were collected at the indicated time points

for the viral titer determination. (C) Plaque size of the recombinant viruses. The plaques were measured at 48 hpi. The plaque size induced by the parental virus was

set at 100%. Asterisk denotes a statistically significant difference (p < 0.05).
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FIGURE 3 | Body temperature and survival rate of pigs after challenge. (A) Body temperature of pigs challenged with HN1201. (B) Survival rate of pigs challenged

with HN1201. The survival rates were analyzed by the Kaplan Meier test.

indicating an enhanced protective effect of the recombinant
PRV strain. The anti-PRV NAbs of pig serum elicited by
rHN1201TK−/gE−/gI−/11k−/28k− vaccination showed a high level
against both the HN1201 and Bartha-K61 strains at 14 and
21 dpv, while anti-PRV NAbs of pig serum from the Bartha-
K61 vaccination group showed a significantly lower NA titer
against HN1201 (Figure 4B), which indicated an insufficient
effect of Bartha-K61 for protecting animals from infection of
epidemic strains. Of note, no gB-specific antibodies and NAbs
were detected in the unvaccinated group.

Viral Load Assay After Challenge
After the challenge, the viral loads of the tissue samples were
detected in the DNA levels by qPCR. The results showed a
significantly higher viral load in the lungs and nasal swab of the
piglets in the rHN1201TK−/gE−/gI−/11k−/28k− group than those
in the Bartha-K61 group (p < 0.05) (Figure 4C), but not in the
tissues of the brain and tonsil, whichmight be caused by the easier
exposure of the respiratory tract to PRV.

The Result of IHC Assay After Challenge
In the IHC assay of tissue samples, as shown in Figure 5,
the pigs in the unvaccinated group showed strong positive
reaction in the tonsil, lung, brain, and trigeminal ganglion.
While no positive reactions was detected in the tissues of
unchallenged and vaccinated pigs recovered after the challenge,
which indicated a sufficient protection effect of vaccination
of rHN1201TK−/gE−/gI−/11k−/28k−.

DISCUSSION

Thewidely used PRV vaccines of classical strain, such as the strain
Bartha-K61, were effective in PR control during the past several
decades in China (7, 8). However, the re-emergent outbreaks

of PR in the Bartha-K61 vaccinated pig farms since late 2011
indicated the insufficient protection of classical PRV vaccines
(10–12, 16). In this study, a TK/gE/gI/11k/28k deleted PRV
strain, rHN1201TK−/gE−/gI−/11k−/28k−, was generated based on
the RPV variant strain HN1201. The full protection in pigs
immunized with rHN1201TK−/gE−/gI−/11k−/28k− indicated that
it is a safe and protective vaccine candidate to control the PR
caused by new epidemic PRV variants.

The 3-kb deletion in the unique short (US) region of Bartha
genome, partial loss of 28k, most of US7 (gI), and complete
deletion of US8 (gE) and 11k (9) indicated an important role of
these genes in the virulence determinant during infection. So, the
genes of gI, gE, 11k, and 28k were selected for the construction
of the 5-gene deleted PRV. The absence of the glycoprotein gE/gI
complex in the Bartha genome partly explains the increased type
I interferon response by plasmacytoid dendritic cells, and the
potential of PRV Bartha vaccine strain to induce a strong type I
interferon may contribute to the efficacy of the highly successful
vaccine (9). In the future, the immunogenicity of the PRV 5-
gene deleted vaccine candidate will be evaluated at the level of
cellular immunity.

As reported, PRV gE and gI are required for efficient cell-
to-cell spreading, gE/gI participates in the envelopment of
nucleocapsids into cytoplasmic membrane vesicles (30), and
delivery of virus particles to cell junctions would enhance virus
spread (31). The viral protein of 11k interacts with a microtubule
motor Kif1a to mediate virus transport (32); this mechanism
could be strengthened by other viral proteins such as gE and
gI (33). The interaction among these viral proteins reveals the
transmission mechanism of PRV and provides a perspective to
understand PRV virulence.

In herpes simplex virus, gI and gE null mutants lead to the
formation of small plaques (34), and in PRV, the deletion of
gI/gE/TK/UL13 also resulted in the formation of small plaques
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FIGURE 4 | Production of PRV-specific antibodies after vaccination and viral load test of pigs after challenge. (A) The gB antibodies were detected at the indicated

time points after vaccination. The ELISA values of pig serum samples are given as S/P ratios, S/P > 0.5 was considered positive. (B) NAbs against the HN1201 and

Bartha-K61 in the indicated groups at 21 dpv and 35 dpv (14 dpc). Standard deviations are shown as error bars. The t-test was performed for statistical analysis.

(C) Viral load detection of pigs after challenge with HN1201. The viral loads between different groups were analyzed by t-test. Asterisk denotes a statistically

significant difference (P < 0.05), ns indicated no significant difference.

FIGURE 5 | Results of IHC assay of tonsils, lungs, brains, and trigeminal ganglions. Representative IHC images of tonsils, lungs, brains, and trigeminal ganglions were

shown corresponding to animal groups infected with HN1201. The groups’ names were indicated on the left of the figure. Bar = 50µm.

(35), which was consistent with the findings in our study. An
attenuated PRV strain with the deletion of US8/11k/28k genes
results in a higher titer and larger plaque size than that of WT
treatment in Vero cells (36), while the larger size of the plaque
formed by JS-2012 was considered induced by the cell adaption
in Vero cells (120 passages).

The rapid improvement of biotechnology promoted the
research of genetically modified PRV in recent years, such as
the application of BAC system in gene deletion (16, 37–39),
and the identification of foreign gene insertion sites in a PRV
vector (40) and non-coding regions (UL11-10, UL35-36, UL46-
27, or US2-1). Notably, the method that allowed PRV genome
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manipulation by using the CRISPR/Cas9 system in PK15 cells
was developed (23, 41) and showed a high positive rate without
constructing homology arms, offering a simple and efficient
method tomanipulate the viral genome in the future, especially in
the identification of potential new virulence genes for the highly
safe vaccine development to control PR.

In summary, here, a recombinant PRV
rHN1201TK−/gE−/gI−/11k−/28k− was constructed by the BAC
system, which elicited an earlier and higher level of gB antibody,
and the NAbs elicited by rHN1201TK−/gE−/gI−/11k−/28k− were
effective against both PRV classical and variant strains. The
rHN1201TK−/gE−/gI−/11k−/28k− vaccination could provide
effective protection against the challenge with the PRV variant.
Therefore, it is a promising vaccine candidate for the prevention
of the current epidemic of PR in China.
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