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Abstract

Background: The selection of optimal deep brain stimulation (DBS) parame-

ters is time-consuming, experience-dependent, and best suited when acute

effects of stimulation can be observed (e.g., tremor reduction). Objectives: To

test the hypothesis that optimal stimulation location can be estimated based on

the cortical connections of DBS contacts. Methods: We analyzed a cohort of 38

patients with Parkinson’s disease (24 training, and 14 test cohort). Using

whole-brain probabilistic tractography, we first mapped the cortical regions

associated with stimulation-induced efficacy (rigidity, bradykinesia, and tremor

improvement) and side effects (paresthesia, motor contractions, and visual dis-

turbances). We then trained a support vector machine classifier to categorize

DBS contacts into efficacious, defined by a therapeutic window ≥2 V (threshold

for side effect minus threshold for efficacy), based on their connections with

cortical regions associated with efficacy versus side effects. The connectivity-

based classifications were then compared with actual stimulation contacts using

receiver-operating characteristics (ROC) curves. Results: Unique cortical clus-

ters were associated with stimulation-induced efficacy and side effects. In the

training dataset, 42 of the 47 stimulation contacts were accurately classified as

efficacious, with a therapeutic window of ≥3 V in 31 (66%) and between 2 and

2.9 V in 11 (24%) electrodes. This connectivity-based estimation was success-

fully replicated in the test cohort with similar accuracy (area under

ROC = 0.83). Conclusions: Cortical connections can predict the efficacy of

DBS contacts and potentially facilitate DBS programming. The clinical utility of

this paradigm in optimizing DBS outcomes should be prospectively tested,

especially for directional electrodes.

Introduction

Among its other applications, deep brain stimulation

(DBS) is often used as an adjunct treatment for advanced

Parkinson’s disease (PD).1,2 Over the last three decades,

the technique used to select stimulation parameters, or

stimulation titration, has remained unchanged. Neurolo-

gists often perform a monopolar review under medication

ON and OFF conditions3, which involves a step-wise

increase in the stimulation amplitude to elicit acute clini-

cal effects (ACEs) at each DBS contact; these effects may

either be therapeutic or unwanted side effects. A

therapeutic window (voltage threshold for side effect

minus threshold for efficacy) is then calculated to guide

the final selection of stimulation contact to maximize effi-

cacy and minimize side effects.4 Stimulation titration can

take between 30 and 60 min for each hemisphere and is

dependent on the experience of the clinician and active

participation by the patient. Participation is required,

often while the patient is experiencing unpleasant side

effects, such as speech difficulty or mood changes.5 Addi-

tionally, this method is best suited for clinical effects that

are easily tested and have short latency for improvement

upon stimulation adjustment, but it is not practical for
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complex clinical phenomena with longer latency, such as

improvements in gait or dystonia. Overall, this process

can be highly experience-dependent; for example, Okun

et al. reported that one-third of patients labeled as “DBS

failures” improved after diligent reprogramming.6 Finally,

stimulation titration will likely become more cumbersome

with future use of segmented DBS leads, which have more

stimulating contacts and enhanced capability for shaping

the electrical field. Therefore, novel and potentially auto-

mated methods for stimulation titration based on brain

connectivity are required to make the programming pro-

cess easier and more efficient.

The subthalamic nucleus (STN) is the most common

target for DBS in patients with PD. The STN has dense

connections with the cortex,7 and similar to the func-

tional segmentation of the basal ganglia, has motor, asso-

ciative, and limbic regions.8 The dorsal STN is rich in

kinesthetic cells, with connections to the primary motor

cortex, supplementary motor cortex, and premotor cor-

tex, while the medial and ventral segments of the STN are

connected to the limbic and associative networks, respec-

tively.9 In recent years, researchers have explored the

mechanisms underlying the efficacy of STN DBS. In a

landmark study, de Hemptinne and colleagues observed a

decrease in phase-amplitude coupling in the motor cortex

coinciding with improvement in motor cardinal symp-

toms (rigidity, bradykinesia, tremor) after acute STN

stimulation.10 This effect may be mediated through the

STN’s cortical connections to the motor cortex, either

directly or indirectly via the thalamus,11 and likely involv-

ing the hyper-direct pathway.12,13 However, the transla-

tion of these findings into clinical practice faces two

hurdles. (1) The regions associated with efficacy are often

adjacent to those associated with side effects and therefore

these must be differentiated; for example, adjacent subre-

gions within the motor cortex may be involved in

improvement of rigidity and motor contractions. (2) Dis-

tinct cortical areas may be involved in therapeutic efficacy

for different clinical symptoms, and these should be iden-

tified and incorporated into a connectivity-based titration

algorithm; for example, PD can have different clinical

phenotypes and patients may often experience more

symptom improvement in one clinical domain with cer-

tain stimulation settings (tremor improvement more than

bradykinesia, etc.). For these reasons, a connectivity-based

approach for stimulation titration will require the precise

identification and modeling of distinct cortical regions

associated with the plethora of stimulation-induced clini-

cal effects, both improvement and side effects.

We hypothesized that optimal stimulation location can

be estimated based on the cortical connections of DBS

contacts. To test this hypothesis, we first sought to deter-

mine which cortical regions were associated with

stimulation-induced therapeutic effects (rigidity, bradyki-

nesia, and tremor improvements), and side effects (pares-

thesia, motor contractions, and visual disturbances). We

analyzed acute stimulation data from 24 patients who

underwent STN DBS and identified cortical connections

using probabilistic tractography. We then created a con-

nectivity-based algorithm to estimate the therapeutic win-

dow (voltage threshold for side effect minus therapeutic

effect) to classify DBS contacts into efficacious (therapeu-

tic window ≥2 V) or nonefficacious (therapeutic window

<2 V). We subsequently compared this classification to

actual stimulation settings. Finally, we tested the accuracy

of the estimations using an independent test cohort.

Materials and Methods

Patient selection

All patients provided informed consent and the study was

approved by The Ohio State University Wexner Medical

Center Ethics Board. The work described in this article

has been carried out in accordance with the Code of

Ethics of the World Medical Association (Declaration of

Helsinki). We retrospectively analyzed clinical and imag-

ing data from 38 patients with a clinical diagnosis of aki-

netic rigid PD who underwent STN DBS with Medtronic

3389 lead (Medtronic Inc., Minneapolis, MN). Prior to

surgery, all participants completed a multidisciplinary

evaluation with neuropsychology, radiology, movement

disorders neurology, and functional neurosurgery. Intra-

operative microelectrode recordings and macrostimulation

were used for localization of therapeutic target. Using a

wide bipolar configuration (0–3+), the therapeutic win-

dow of the entire range of DBS contacts was tested before

final implantation. All patients also completed a 1-year

follow-up.

Imaging acquisition

Each patient underwent preoperative T1 (1 mm isovoxel,

MPRAGE) and diffusion-weighted imaging (61 directions,

2 mm isovoxel, 71 axial slices encompassing the whole

brain; diffusion-weighting with b = 1000 s/mm2 was

applied along 64 directions, uniformly distributed on the

sphere, and one b = 0 sec volume was also acquired),

using a Philips Achieva dStream 3 Tesla magnet (Philips

Healthcare, Best, The Netherlands) and a padded 32-

channel birdcage coil to minimize discomfort and head

motion. Postoperatively, all patients underwent a CT scan

(64 channels, slice thickness 0.7 mm, no interslice gap) of

the head, 4–6 weeks after implantation of the DBS elec-

trodes. Details of the surgical procedure and postoperative

imaging have been previously described.14
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Recording of ACEs

Four to 6 weeks following the surgery, each patient

returned for a motor assessment and programming of

the DBS electrodes. The data from these visits were col-

lected in a prospective database and retrospectively

reviewed for this analysis. A movement disorder special-

ist increased the stimulation amplitude in a step-wise

manner while maintaining frequency at 130 Hz and

pulse width at 90 lsec. The appearance of ACEs was

noted separately for each implanted electrode contact.

We classified ACEs into two categories (“improvement”

or “side effects”). The improvement category comprised

the following domains: (1) rigidity, (2) bradykinesia,

and (3) tremor improvements; side effects comprised:

(1) sensory, (2) motor, and (3) eye deviation or

vision changes. We then combined each of the voxel

maps for improvement in motor cardinal symptoms

(rigidity, bradykinesia, tremor) into “improvement” and

the side effects voxel maps into “side effects” to gener-

ate relevant voxel maps for training a classifier to

distinguish DBS contacts into efficacious versus noneffi-

cacious.

Imaging analysis

The images were preprocessed using customized MATLAB

scripts interfacing with different software packages,

including FSL,15 SPM,16 AfNI17 and lead-DBS

(Figure 1).18 Each diffusion scan was corrected for distor-

tions due to eddy currents and head motion using affine

transformations (using EDDY in FSL). Next, we

Figure 1. Schematic representation of the processing steps implemented to identify the cortical voxels associated with each clinical domain,

followed by the steps required to train and test the support vector machine (SVM) classifier for the prediction of optimal combination of contact

location and amplitude of stimulation.
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computed a nonlinear transform from diffusion to MNI

ICBM 2009b asymmetric template (0.5 mm) space, ini-

tialized by an affine transform to each patient’s T1 image,

using FLIRT and FNIRT in FSL. BEDPOSTX software

(part of the FSL suite) was used for Bayesian estimation

of the diffusion parameters at each voxel (3 fiber model).

We determined the spatial location of each DBS contact

on the postoperative CT, co-registered the CT with the

preoperative T1-weighted MR images using Advanced

Normalization Tools (ANTs) routines, and then normal-

ized both images to the MNI ICBM 2009b asymmetric

template (0.5 mm) using ANTs.

We generated individual models of the volume of tis-

sue activation (VTA) for each patient and stimulation

pairs (voltage without clinical effect and voltage with

clinical effect) associated with each ACE (FEM-based

VTA model in Lead-DBS).19 Using the VTA as seeds,

we then performed whole-brain probabilistic tractogra-

phy in each patient’s native diffusion space, using Prob-

trackx2 in FSL. The following settings were used: 5000

samples per voxel, curvature threshold of 0.2, maximum

number of steps per sample of 2000, step length of

0.5 mm, subsidiary fiber volume threshold of 0.01,

loopback check, and no exclusion mask (“masking” in

tractography refers to the inclusion or exclusion of

specific regions in the brain, based on prior understand-

ing of white matter pathways). To identify significant

voxels associated with each clinical domain, we applied

a nonparametric permutation inference approach (using

paired t-test between no-effect/effect tractography

maps with the Randomize function in FSL and thresh-

old-free cluster enhancement with 5000 permutations)

and selected voxels with P < 0.0001 for group-level

analysis.

Identification of cortical voxels specific for each
domain

To determine the differences in cortical voxels associated

with different clinical domains, we performed a group-

level multivariate analysis. Voxel maps for each domain

were thresholded at the maximum voxel intensity

(P < 0.0001) and masked to include voxels at the cortex–
white matter interface (using a 3 mm cortical ribbon dila-

tion mask in the ICBM template space). Using 3dMVM

in AfNI, “hemisphere” was selected as a between-subject

variable and “domain” as a within-subject variable. We

then performed individual linear t-tests to compare the

specific magnitude of effects associated with each clinical

domain. The resulting voxel maps were then thresholded

by the highest false discovery rate (FDR) value

(q < 0.0001) and binarized for subsequent analysis. A

high-resolution multi-modal cortical atlas20 was used to

spatially localize significant voxels for therapeutic effects

and side effects.

SVM classifier training and validation

To test the study hypothesis, we developed a classifier to

distinguish the cortical clusters associated with therapeu-

tic and side effect categories using support vector

machine (SVM) analysis. SVMs are supervised learning

models based on feature classification and regression anal-

ysis that are able to assign observations into different

labeled categories (usually two conditions). From each

individual electrode, we created VTAs at 0.5 V increments

between 1 and 4 V. To help define the training space, we

performed probabilistic tractography using 100 samples21

from each VTA for each subject, and used the cortical

voxels associated with motor improvement and side

effects as termination masks, respectively. After normal-

ization by total number of streamlines (waytotal in FSL)

and thresholding of the connectivity maps to an index of

0.01, we clustered the surviving voxels by intensity using

a finite normal mixture modeling approach, which led to

the extraction of nine features for each entry. An SVM

algorithm based on 10-fold repeated cross-validation with

100 permutations was trained on the data using the Caret

library in R, reaching an accuracy of 51.8% in the error

matrix (95% CI = 0.5001–0.5761).22 The testing dataset

used similar parameters, but used the whole-brain trac-

tography from each VTA without restricting it to a subset

of cortical masks. Each data point consisted of a contact

number and voltage specification; DBS contacts were clas-

sified as efficacious based on the span of the therapeutic

window (calculated by subtracting the voltage threshold

for side effect and the voltage threshold for efficacy). The

efficacious contacts were further divided into two cate-

gories based on the therapeutic window: excellent (≥3 V)

and good (2–2.9 V). All others were classified as “subop-

timal” or “non-efficacious”. Estimated efficacious contacts

were then compared with the actual stimulation contacts

used for each patient at 1-year follow-up. We used empir-

ical receiver operating characteristic (ROC) curves to

examine the sensitivity and specificity of this classifier at

multiple cutoffs.23

SVM classifier testing

The classifier was tested on a separate cohort of 14 STN

DBS patients. Eight patients were imaged using the same

MRI scanner and protocol of the training cohort. Six

additional patients were imaged using different scanners

with comparable structural and diffusion-weighted proto-

cols. (see Data S1 for the DTI sequence parameters used

in this cohort).
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Results

Demographics and clinical measures

The mean age of the patients at the time of surgery was

65 years (SD: 8 years). All patients showed significant

improvement in motor cardinal symptoms (rigidity,

bradykinesia, tremor) after DBS (preoperative OFF medi-

cation, UPDRS-III: 35.1 � 8.8; postoperative OFF medi-

cation and ON DBS, UPDRS-III: 16.1 � 8.2),

corresponding with a significant and consistent reduction

in Levodopa-equivalent dose (preoperative:

1590.8 � 642.2 mg vs. postoperative: 730.7 � 409.4 mg).

Twenty-four patients received DBS implantation in 38

hemispheres (14 bilateral and 10 unilateral).

Cortical clusters associated with efficacy
and side effects

Distinct cortical clusters are associated with
stimulation-induced improvements in motor
symptoms (rigidity, bradykinesia, tremor) versus
side effects

Figure 2 displays the cortical areas associated with stimu-

lation-induced improvements in motor symptoms: supe-

rior frontal gyrus, dorsolateral prefrontal cortex

(corresponding atlas notation 8Ad, 9a, 9p), supplemen-

tary motor cortex (atlas notation 6 m), and medial pre-

frontal (atlas notation 8BL). The voxel clusters in the

premotor and supplementary motor cortex (Brodmann

area 6) were significantly associated with stimulation

induced motor improvement than involuntary muscle

contractions. Overall, while comparing stimulation-in-

duced efficacy with side effects (sensory, motor, and

vision changes), the voxels in the superior frontal gyrus

and frontal eye field (atlas areas 8BL), bilaterally, were

associated with the efficacy domains20 (Table S1). In con-

trast, the middle and inferior frontal gyrus (middle and

inferior premotor cortex; atlas notation area 9 m and i6-

8) and frontopolar cortex (atlas notation p47r) were asso-

ciated with side effects.

Distinct cortical clusters are associated with
stimulation-induced improvements in motor
symptoms (rigidity, bradykinesia, tremor)

In addition to the shared cortical regions, improvements in

rigidity, bradykinesia, and tremor were also associated with

distinct cortical connections (mixed effect model for each

individual domain, with FDR correction, q < 0.0001). The

complete results are presented in Table S1. The motor cor-

tex (atlas area 4) was associated with improvement in both

bradykinesia and tremor, while the premotor cortex and

medial prefrontal cortex (atlas area 9 m) were uniquely

associated with tremor and bradykinesia, respectively. Both

rigidity and bradykinesia improvement, but not tremor

improvement, were associated with connections to the mid-

dle frontal gyrus (area 8Ad).

Estimation of efficacious contacts

To train the SVM classifier, 794 out 1064 entries were

classified as “efficacious” and 270 as “side effects”, based

on nine selected features. The graph visualizing the

Figure 2. Summary of cortical voxels associated with efficacy (A; improvements in rigidity, bradykinesia, and tremor) and side effects (B; sensory,

motor, and visual). The voxels are overlaid on the Conte69 standard surface in left and right lateral hemispheres. Below each hemispheric

representation are waterfall plots displaying the cortical areas with the highest connections (number of voxels connected), using the cortical

parcellation and nomenclature published previously in Glasser et al. (2016).
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importance of individual variables estimated by a learning

vector quantization model24 is available in Figure S1.

Out of 152 implanted contacts, 137 (90.1%) were esti-

mated to have a therapeutic window between 2 and 3 V.

At 1-year follow-up, 47 stimulation contacts were being

used in 38 implanted hemispheres. The SVM algorithm

classified 42 out of these 47 stimulation contacts (89.4%)

as efficacious with a therapeutic window of either ≥3 V

(n = 31) or 2–2.9 V (n = 11). Five stimulation contacts

were incorrectly classified as either nonefficacious or

within the therapeutic window of 1–2 V. The ROC curve

is displayed in Figure 3; the AUC (area under curve) is

0.8506 (95% CI = 0.7026–0.9987). The sensitivity of this

estimation was 89.4% (95% CI = 76.9–96.5%) and the

specificity 5% (95% CI = 1.6–11.3%). The contacts esti-

mated for each patient are outlined in Table 1.

In the test cohort, the classifier was able to match the

long-term stimulation settings for 19 out of 37 stimulated

contacts – Table S3). The ROC curve is displayed in Fig-

ure S3; the AUC is 0.8333.

Discussion

Here, we demonstrate the feasibility of identifying effica-

cious STN DBS contacts based on diffusion MRI (dMRI)

connectivity in PD patients. Using probabilistic tractogra-

phy, we first created cortical connectivity maps associated

with improvements and side effects. An automated algo-

rithm was then created to identify efficacious stimulation

location based on the preferential connectivity of DBS

contacts to the cortical regions of interest.

Cortical connectivity patterns

Cortical regions associated with therapeutic effects of

STN DBS have previously been investigated using

dMRI.12 In line with these reports, we also observed that

improvements in bradykinesia, rigidity, and tremor were

associated with preferential white matter connectivity to

motor areas in the premotor, supplementary motor, and

motor cortex. We were also able to distinguish clusters

associated with side effects from the neighboring regions

associated with efficacy; for example, adjacent voxels

within the motor cortex were associated with stimulation-

induced efficacy and motor side effects. Similarly, pares-

thesia was associated with voxel clusters in the sensory

cortex. In addition, we found unique cortical regions

associated with efficacious clinical domains; for example,

tremor and bradykinesia were associated with significant

connections to the primary motor cortex (M1). Similar

findings were recently reported by Horn et al.19 The

pathophysiology of resting tremor is thought to be dis-

tinct from levodopa-responsive bradykinesia and rigidity

mainly because the associative motor areas, instead of the

primary motor (M1), are more involved with execution

than rest.25 Additionally, the involvement of nonmotor

areas including the lateral frontal, paracentral, inferior-

parietal, and parieto-occipital regions, has been previously

linked to the severity of bradykinesia.26

It is important to emphasize that whole-brain proba-

bilistic tractography analysis has high sensitivity but poor

specificity, implying that some cortical clusters identified

in this analysis may be false positives. One strategy to

avoid this involves restricting the target masks to prede-

fined regions of interest; for example, based on the pro-

posed existence of the hyper-direct pathway between the

STN and the motor cortex, the analysis can be restricted

to the motor and premotor cortices.27 We identified cor-

tical regions using whole-brain probabilistic tractography

in an effort to increase sensitivity and to maximize the

likelihood of identifying all potential cortical voxels13

without restricting the analysis based on the known exis-

tence of specific white matter pathways.28 Similarly, we

did not limit the tractography analysis to one hemisphere

Table 1. The estimated therapeutic window in the ≥3 V and 2–2.9 V

categories for the training cohort.

Subject ID

Estimated therapeutic window

Left hemisphere Right hemisphere

≥3 V 2–2.9 V ≥ 3V

2–

2.9 V

1 0 1 2 3 0 3 2 1

2 3 0 1 1 3 2 0

3 0 1 2 3 0 1 3 2

4 0 1 3 2

5 0 1 3 2 0 1 2 3

6 0 1 2 3 0 1 2 3

7 0 1 2 3

8 1 2 3

9 1 0 2 3 0 1 2 3

10 0 1 2 3 1 2 0 3

11 0 1 2 3

12 0 3 1 2

13 1 1 2 3

14 1 2 3 0

15

16 0 2 3

17 0 2 3 1

18 0 3 1 2

19 0 1 2 3 0 1 2 3

20 1 2 0 3 0 1 2 3

21 0 1 3 2 0 1 2 3

22 1 3 0 2 1 2 3 0

23 0 3 2 1

24 0 1 3 2 0 1 2 3

The actual stimulation contacts at 1 year are highlighted in green

(≥3 V) and orange (2–2.9 V categories).
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because there may be some overlap of white matter path-

ways at the brainstem level, and their modulation may

result in DBS-induced ACEs.29 To increase the specificity,

we used nonparametric statistics to threshold the results,

based on the established statistical methods from functional

connectivity literature.30 To predict therapeutic contacts,

we aimed to eliminate false positive results and therefore

restricted target masks to voxels significantly associated

with clinical efficacy or side effects during the SVM train-

ing.

Implications for stimulation titration

Stimulation titration may be challenging, even in patients

with optimally-placed electrodes. This aspect will become

even more important with the wider use of multi-contact

directional DBS leads,31 which exponentially increase the

number of available options for testing and programming.

Investigations into the modeling of electrical fields

associated with DBS electrodes have improved visualiza-

tion and identification of potential neural elements asso-

ciated with therapeutic effects of DBS. Assuming that

each patient has a unique connectivity fingerprint,32 we

used probabilistic tractography to formulate an alternative

approach for selecting optimal stimulation amplitude &

contact. We trained an SVM classifier to categorize con-

nectivity patterns associated with either “improvement”

or “side effect”. We then tested the classifier to label

whole-brain connectivity maps from each simulated VTA.

Future strategies to improve the sensitivity and specificity

may include analysis of connectivity to subcortical struc-

tures, clinical information (e.g., levodopa response), and

potentially using advanced machine learning algorithms.

Recent advances in GPU-based statistical programs

improve computational time, which makes it possible to

accomplish extensive repetitive tasks in a relatively short

amount of time. Using a dedicated server with a 16-core

CPU and two GPU graphics cards, the prediction of

Figure 3. The ROC curve comparing the sensitivity and 1-specificity of the SVM classifier in the 24 patients (training) cohort.
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optimal stimulation settings in a bilateral STN DBS cases

takes 30–45 min from the stages of imaging import and

normalization to probabilistic tractography and building

the SVM feature table required to classify the contacts.

Limitations

This was a retrospective analysis using data from 38

patients with PD. Given the constraints of acquisition

times in a clinical population, we chose a dMRI sequence

with 2 9 2 9 2 mm voxel size. However, this scheme

limits the number of voxels sampled within STN, for

example, we will sample 12 voxels in the STN assuming

its size to be 4 9 4 9 6 mm. The feasibility of improving

voxel resolution to 1.5 mm iso-voxel should be explored

in future studies to further increase the number of voxels

sampled in STN. Despite the rigorous criteria for patient

selection and DBS programming, the results may not be

immediately generalizable due to the limited sample size.

Additionally, we did not analyze the degree of improve-

ment or severity of side effects. The model used for VTA

estimation is based on a FEM model that does not accu-

rately capture the different impedances of cellular popula-

tions in white matter versus gray matter.18 It is also

worth mentioning that electrode impedances change over

time, affecting the stimulation volume.33 The proposed

solution does not take into consideration the spatial loca-

tion of the DBS electrode relative to the STN boundaries

and the sampling of LFPs from each contact, that can

potentially improve the predictive value of the model. We

limited our analysis to only cortical targets because prob-

abilistic tractography is limited in its ability to accurately

capture local connectivity in subcortical gray matter

structures.34 A larger sample size is desirable to rank the

contacts based on their likelihood for individual symptom

improvement (e.g., tremor more than rigidity or bradyki-

nesia). While this algorithm is able to predict optimal

stimulation contacts, the prediction of other stimulation

parameters like stimulation frequency and pulse width

will require further investigation. The processing time

needed for prediction currently, can potentially be

reduced to a manageable scale by the use of advanced

machine learning algorithms.
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Figure S1. The graph visualizing the importance of indi-

vidual variables in the SVM model estimated by a learn-

ing vector quantization approach.

Figure S2. The group parcellation of the subthalamic

nucleus (A–C) based on their connections with cortical

masks associated with rigidity (violet), bradykinesia (yel-

low), rigidity (green), involuntary motor contractions

(red), paresthesias (blue), and visual disturbances (sea

green). The parcellation with the actual location of STN

(pink) as identified with intraoperative physiology (D–F).
Figure S3. The ROC curve comparing the sensitivity and

1-specificity of the SVM classifier in the 14 patients (test-

ing) cohort.

Table S1. Full list of cortical areas (in both Glasser et al.

and Brodmann naming convention) associated with each

clinical domain.

Table S2. The MNI coordinates of the clusters in the sub-

thalamic nucleus.

Table S3. Test cohort results. For each patient the cor-

rectly predicted option for each side is highlighted in

bold.

Data S1. Supplementary methods.
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