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1  | INTRODUC TION

Fish of the genus Tor, commonly known as mahseers, are import-
ant to most nations in the Asian region due to its biodiversity and 

high- value (Ng, 2004). Tor tambroides also known as “empurau” in 
Sarawak or “kelah merah” in Peninsular Malaysia is the most valued 
freshwater fish species in Malaysia (Ingram, Sungan, Tinggi, Sim, & 
De Silva, 2007). The T. tambroides has generated much interest in 
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Abstract
Aims: The aim of this study was to identify and compare the gut microbial community 
of wild and captive Tor tambroides through 16S rDNA metagenetic sequencing fol-
lowed by functions prediction.
Methods and results: The library of 16S rDNA V3- V4 hypervariable regions of gut 
microbiota was amplified and sequenced using Illumina MiSeq. The sequencing data 
were analyzed using Quantitative Insights into Microbial Ecology (QIIME) pipeline 
and Phylogenetic Investigation of Communities by Reconstruction of Unobserved 
States (PICRUSt). The most abundant bacterial phyla in both wild and captive T. tam-
broides were Firmicutes, Proteobacteria, Fusobacteria and Bacteroidetes. 
Cetobacterium spp., Peptostreptococcaceae family, Bacteroides spp., Phosphate solu-
bilizing bacteria PSB-M-3, and Vibrio spp. were five most abundant OTU in wild 
T. tambroides as compared to Cetobacterium spp., Citrobacter spp., Aeromonadaceae 
family, Peptostreptococcaceae family and Turicibacter spp. in captive T. tambroides.
Conclusion: In this study, the specimens of the wild T. tambroides contain more di-
verse gut microbiota than of the captive ones. The results suggested that 
Cetobacterium spp. is one of the core microbiota in guts of T. tambroides. Besides, high 
abundant Bacteroides spp., Citrobacter spp., Turicibacter spp., and Bacillus spp. may 
provide important functions in T. tambroides guts.
Significance and impact of the study: The results of this study provide significant 
information of T. tambroides gut microbiota for further understanding of their physi-
ological functions including growth and disease resistance.
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its artificial propagation for both conservation and aquaculture pro-
duction due to its high market demand, high flesh quality and high 
commercial value (Ng, Abdullah, & De Silva, 2008).

One of the major problems with T. tambroides captive breeding 
is the slow growth of T. tambroides (Lee et al., 2014). There were 
many studies on the different feed formulations and feed additives 
that improved the growth rate of T. tambroides (Ishak, Kamarudin, 
Ramezani- Fard, & Yusof, 2016; Kamarudin, Ramezani- Fard, Saad, 
& Harmin, 2011; Misieng, Kamarudin, & Musa, 2011; Ng & Andin, 
2011; Ng et al., 2008; Ramezani- Fard, Kamarudin, Saad, Harmin, & 
Goh, 2012). There were also studies on effects of host gut- derived 
probiotic bacteria to T. tambroides where the probiotic improved 
nutrients utilization and metabolism, adjusting gut microbiota bal-
ance and enhanced growth by promoting muscle fiber hypertrophy 
(Asaduzzaman, Iehata, et al., 2018; Asaduzzaman, Sofia, et al., 2018). 
Nevertheless, there is no report on the phylogenetic and functional 
characterization of gut microbiota of T. tambroides.

Gut microbiota can be considered as an “extra organ” due to its 
crucial role in intestinal development, homeostasis and immuno-
logical protection, growth and health (O’Hara & Shanahan, 2006). 
The gut microbiota in vertebrate is complex and contains diverse 
and abundant bacteria, archaea, viruses, and fungi (Liu et al., 2015; 
Neuman & Koren, 2015). Gut microbiota of aquatic animals is tran-
sient and has higher fluidity than terrestrial animals; thus, changes 
in environmental factors such as temperature, salinity, trophic level, 
and host phylogeny may affect the gut microbial community (Denev, 
Staykov, Moutafchieva, & Beev, 2009; Guerreiro et al., 2016; Ringø 
et al., 2016; Sullam et al., 2012). More than 99% of environmental 
prokaryotes including the gut microbiota of animals are unculturable 
in laboratory that limits our understanding of microbial physiology, 
genetics, and community ecology (Schloss & Handelsman, 2005). 
The development of next- generation sequencing (NGS) technol-
ogy allows the recognition of discrete populations (culturable and 
unculturable) based on DNA sequences in the environmental sam-
ples (Konstantinidis & Rosselló- Móra, 2015; Tarnecki, Burgos, Ray, 
& Arias, 2017). Esposito and Kirschberg (2014) clarified that the 
metagenomic study means the whole genome sequencing and anal-
ysis of each member of the microbial community in an environmental 
sample by 16S rDNA- based sequencing should be called as metage-
netic sequencing.

Illumina MiSeq (Illumina, USA) has been widely used for 16S 
rRNA gene sequencing of gastrointestinal tract microbiota of fresh-
water fishes such as blunt snout, grass carp, mandarin fish, top-
mouth cutler, common carp, crucian carp, silver carp, bighead carp, 
and Prussian carp (Kashinskaya et al., 2015; Liu et al., 2015) and 
marine fishes such as emerald rockcod, crocodile icefish, ploughfish, 
bald rockcod, yellowtail scad, brown- marbled grouper, spotted coral 
grouper and Atlantic salmon (Dehler, Secombes, & Martin, 2017; 
Hennersdorf et al., 2016; Song et al., 2016).

The objectives of this study were to identify and compare gut 
microbiota in wild and captive T. tambroides. Determination of core 
bacteria and prediction of their functions in gut microflora lead to 
identification of potential bacteria that could be used as probiotics 

to improve growth performance and disease resistance of T. tambroi-
des in captivity.

2  | MATERIAL S AND METHODS

2.1 | Fish sampling and species verification

Three captive adult T. tambroides (standard length 35.77 ± 1.39 cm, 
weight 960.57 ± 58.29 g) were obtained from hatchery at Agro- 
Biotechnology Institute (ABI) on 6 April 2015. The captive fish 
were obtained from the wild and reared in hatchery for 3 years. 
They were fed twice daily (8.00 a.m. and 4.00 p.m.) with com-
mercial floating pellet containing 42% crude protein and 6% lipid. 
Fish were reared in rectangular fiberglass tank with 1,500 L of 
dechlorinated tap water with continuous aeration. Each tank was 
attached to a recirculating aquaculture system (RAS) with 30% 
water changes fortnightly. Three wild adult T. tambroides (stand-
ard length 31.73 ± 0.78 cm, weight 630.27 ± 56.32 g) were ob-
tained by angling from Kenyir Lake, Terengganu, Malaysia (GPS 
Coordinates:	 5°0′14″N,	 102°38′19″E)	 on	 13	 April	 2015.	 These	
fish were packed in Kenyir Lake water and transported alive to 
ABI,	 Serdang,	 Selangor,	 Malaysia	 (GPS	 Coordinates:	 2°59′18″N,	
101°41′52″E)	 (approx.	 5	hr).	 These	 fish	were	 processed	 upon	 ar-
rived at the destination.

DNA of the fish was extracted from dorsal fin samples using 
Phenol- Chloroform- Isoamyl- Alcohol (PCI) DNA extraction method 
(Tan et al., 2008). The cytochrome b gene was amplified using 
GluDG-	L	 (5′-	TGACTTGAARAACCAYCGTTG-	3′)	 and	 CB2-	H	 (5′-	CC
CTCAGAATGATATTTGTCCTCA-	3′)	 primers	 (Palumbi	 et	al.,	 2002).	
Reaction mixture (25 μl) included HotStarTaq Plus Master Mix (10 μl) 
(Qiagen, Germany), forward and reverse primers (1 μM and 5 μl of 
each) and template DNA (10 ng). Amplification conditions were the 
following: initial denaturation at 95°C for 5 min; denaturation at 95°C 
for 45 s, annealing at 47°C for 45 s, elongation at 72°C for 45 s (25 
cycles); final elongation at 72°C for 7 min. The PCR products were 
purified using QIAquick PCR Purification Kit (Qiagen, Germany). 
DNA sequencing was outsourced to First BASE Laboratories Sdn. 
Bhd. (Malaysia). The results were analyzed using NCBI BLASTn 
(NCBI, 1988).

2.2 | Fish dissection and DNA extraction

Tor tambroides were anesthetized using 30 ppm clove oil (Neiffer & 
Stamper, 2009) and euthanized by pithing (Leary et al., 2013). Fish 
skin was disinfected with 70% ethanol prior to autopsy. The abdo-
men of fish was dissected using sterile instruments in laminar flow 
cabinet. The gut samples were removed and separated from other 
internal organs. The gut parts from esophagus to anus were then 
cut into small pieces and placed in sterile phosphate- buffered saline 
(PBS) (Nie, Zhou, Qiao, & Chen, 2017) followed by mixing with vortex 
and	kept	at	−80°C.	Gut	microbiota	DNA	in	these	gut	samples	was	
extracted using PCI DNA extraction method (Tan et al., 2008).
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2.3 | Library preparation and MiSeq sequencing

V3–V4 hypervariable regions of 16S rRNA genes of gut microbiota 
were amplified by polymerase chain reaction (PCR) using primers 
(Forward	 primer:	 5′-	TCGTCGGCAGCGTCAGATGTGTATAAGAGAC 
AGCCTACGGGNGGCWGCAG-	3′	 and	 Reverse	 primer:	 5′GTCTCG 
TGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATC 
TAATCC-3′)	according	to	the	manufacturer’s	instructions.	Reaction	
mixture (25 μl) included 2X KAPA HiFi HotStart ReadyMix (12.5 μl) 
(Kapa Biosystems, USA), forward and reverse primers (1 μM and 5 μl 
of each), and template DNA (7.5 ng). Amplification conditions were 
as the following: initial denaturation at 95°C for 3 min; denaturation 
at 95°C for 30 s, annealing at 55°C for 30 s, elongation at 72°C for 
30 s (25 cycles); final elongation at 72°C for 5 min.

Amplicons were cleaned up followed by PCR to attach unique 
index adapter pairs to the amplicons using Nextera XT Index kit 
(Illumina). These indexed DNA libraries were cleaned up with 
Agencourt AMPure XP (Beckman Coulter, USA) followed by concen-
tration quantification using Qubit dsDNA HS Assay Kit and Qubit 2.0 
Fluorometer (Thermo Fisher Scientific, USA) and size validation using 
Agilent DNA 1000 Kit and Agilent 2100 Bioanalyzer (Agilent, USA).

The libraries were serial diluted and quantified by quantitative 
real- time PCR (qRT- PCR) through Eppendorf Mastercycler RealPlex2 
(Eppendorf, Germany) followed by normalization to 4 nM and pooled 
into one tube. Pooled DNA libraries were denatured and spiked 
with 15% denatured PhiX as quality control. A mixture of 600 μl of 
denatured pooled DNA libraries with denatured PhiX loaded into 
the sample well in MiSeq Reagent Kit v2 (2 × 250 cycles) (Illumina) 
and sequenced using Illumina MiSeq (Illumina) at Malaysia Genome 
Institute (MGI), Kajang, Selangor, Malaysia. All sequences were also 
submitted to NCBI Sequence Read Archive (SRA).

2.4 | Data analysis using Quantitative Insights into 
Microbial Ecology (QIIME)

The analysis of MiSeq sequencing results was done using 
Quantitative Insights into Microbial Ecology (QIIME ver. 1.9.0) 
pipeline (Caporaso, Kuczynski, et al., 2010). Adapter sequences 
were trimmed from the paired- end forward and reverse reads and 
merged. Merged reads were quality filtered at Phred Quality Score 
of 20 (Q20) (Cock, Fields, Goto, Heuer, & Rice, 2010). Length filter 
was used to remove reads shorter than 100 bp (below 20% of the li-
brary length) to avoid unspecific match that will disturb the accuracy 
of the calling (Edgar, 2010). Chimeric sequences were removed using 
RDP Gold databases as reference (Edgar, Haas, Clemente, Quince, 
& Knight, 2011). De novo OTU picking strategy was used as it did 
not cause any information lost although may be time- consuming for 
large datasets (Edgar, 2010; Edgar et al., 2011).

The OTUs in generated OTU BIOM file were summarized into 
different taxonomic levels. Taxa summary plots were plotted to 
show the differences in taxonomic levels of the samples. Alpha 
rarefactions curves were plotted to determine the adequacy of 
sequencing depth. Alpha diversity indexes (Chao1, Shannon and 

Simpson) were calculated to explain the species richness and diver-
sity in each sample (Udayangani et al., 2017). Good’s Coverage esti-
mator was used to estimate the percentage of the total species that 
are represented in a sample. In beta diversity analysis, the number 
of sequences per sample had been rarified to equal number based 
on the sample which had the lowest sequences number. Principle 
coordinates analysis (PCoA) was used to visualize similarities or dis-
similarities of data based on phylogenetic or count- based distance 
metrics. Weighted UniFrac was used in the PCoA analysis of this 
study because it accounted for differences in relative abundances 
of each taxon within the communities (Lozupone, Hamady, Kelley, 
& Knight, 2007). Mann–Whitney U test was used to determine the 
differences of the gut microbial communities in the wild and captive 
T. tambroides (Jonsson, Österlund, Nerman, & Kristiansson, 2016).

2.5 | Functions prediction using Phylogenetic 
Investigation of Communities by Reconstruction of 
Unobserved States (PICRUSt)

PICRUSt (ver. 1.1.0) was used to predict the metabolic func-
tions of the microbial communities in each sample (Langille et al., 
2013). Closed reference OTU picking strategy was used with the 
GreenGenes database (version 13.5) as reference at 97% identity 
threshold (Caporaso, Bittinger, et al., 2010; DeSantis et al., 2006). 
The OTU table was then normalized, and the microbiota functions 
were predicted with referenced to Kyoto Encyclopedia of Genes and 
Genomes (KEGG) Orthology (KO) database (Kanehisa & Goto, 2000).

3  | RESULTS

3.1 | Dissection and species verification

Autopsy of T. tambroides revealed that the gut digesta color of wild 
T. tambroides obtained from Kenyir Lake was green while it was brown 
in captive T. tambroides obtained from hatchery which was fed with 
commercial floating feed pellets. The cytochrome b gene of both 
wild and captive T. tambroides was analyzed using NCBI BLASTn and 
found to be 98%–99% similar to cytochrome b gene in complete mi-
tochondrial genome of T. tambroides (GenBank Accession Number: 
JX444718.1) (National Center for Biotechnology Information (NCBI), 
1988; Norfatimah, Teh, Salleh, Mat Isa, & SitiAzizah, 2014).

3.2 | Metagenetic sequencing of wild and captive 
T. tambroides gut microbiota with QIIME analysis

The de novo OTU picking generated 7,749 and 9,468 OTUs for wild 
and captive T. tambroides gut microbiota, respectively (Table 1). 
Nevertheless, the number of species found in wild T. tambroides was 
501 as compared to 442 in captive ones. 304 genera were shared 
between wild and captive T. tambroides (Supporting Information 
Table SA). All sequencing data (three wild and three captive T. tam-
broides gut microbiome) were submitted to NCBI Sequence Read 
Archive (SRA) under accession number of SRP094031.

info:ddbj-embl-genbank/JX444718.1
info:ddbj-embl-genbank/SRP094031
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3.3 | Alpha diversity analysis of T. tambroides 
gut microbiota

The OTUs found in both wild and captive T. tambroides were re-
duced as the number of sequences increased at 50,000 sequences 
per sample (Figure 1). In Table 2, Good’s Coverage confirmed that 
the sequencing covered up to 99% of all gut microbiota in wild and 
captive T. tambroides. Chao1 index showed that captive T. tambroides 
gut microbiota had higher species richness than wild T. tambroides. 
Nevertheless, both Shannon and Simpson indexes for wild T. tam-
broides gut microbiota were higher than captive T. tambroides, indi-
cated higher species diversity in fish that live in natural environment.

3.4 | Gut taxonomy of wild and captive T. tambroides

The gut microbiota of wild T. tambroides was dominated mainly 
by Firmicutes followed by Fusobacteria, Proteobacteria, and 
Bacteroidetes which together accounted for 85.7% of total population. 
Gut of captive T. tambroides was dominated mainly by Proteobacteria 
followed by Fusobacteria, Firmicutes and Bacteroidetes which to-
gether accounted for 91.67% of total population (Figure 2). The most 
abundant genus in wild T. tambroides gut microbiota was Cetobacterium 
(23.48%), followed by genera in Peptostreptococcaceae family 
(11.87%), Bacteroides (9.60%), PSB-M-3 from Erysipelotrichaceae fam-
ily (7.70%), Vibrio (4.94%), and others (42.41%). Cetobacterium (29.07%) 
also was the most abundant genus in captive T. tambroides gut micro-
biota, followed by Citrobacter (9.35%), genera in Aeromonadaceae 

family (8.63%), genera in Peptostreptococcaceae family (7.66%), 
Turicibacter (6.47%), and others (38.82%) (Supporting Information 
Table SA). The 10 most abundant unique species in either wild or cap-
tive samples were listed in Table 3. These unique species only existed 
in small percentages (<0.31%).

3.5 | Beta diversity analysis of wild and captive 
T. tambroides gut microbiota

The PCoA plots in Figure 3 showed clusters based on wild and 
captive samples were observed at Principal Coordinate 1 versus 
Principal Coordinate 2 (PC1 vs PC2) and PC3 vs PC2. Cetobacterium 
spp. was the highest OTU found in both wild and captive T. tam-
broides gut microbiota but there was no any significant difference 
between both samples (Figure 4). Unclassified species from genus 
PSB-M-3, unclassified order from class CK- 1C4- 19, Caldilinea spp., 
and Clostridium spp. were significantly higher (p < 0.05) in wild T. tam-
broides. On the other hand, Turicibacter spp., unclassified genus from 
Rhodospirillaceae family, unclassified genus from Microbacteriaceae 
family, Bacillus spp., Citrobacter spp., and unclassified genus from 
Xanthomonadaceae family were significantly higher (p < 0.05) in 
captive T. tambroides.

3.6 | Predicted metabolic functions using PICRUSt

PICRUSt analyses revealed a total of 293 predicted functions where 
277 functions existed in both samples (Supporting Information 

TABLE  1 Summary of gut microbiome in wild and captive Tor tambroides

Sample
Sequences after merging of 
forward and reverse reads

Sequences after QC 
quality filter

Sequences after length 
filter (>100 bp)

Sequences after 
chimera filter

Operational taxonomic units 
(OTUs) after OTU picking

Wild 785,128 751,324 751,318 558,171 7,749

Captive 1,024,668 983,240 983,010 702,194 9,468

Each value was a mean value calculated from the raw data.

F IGURE  1 Alpha rarefaction curves 
of wild and captive Tor tambroides gut 
microbiota (C1–C3: biological replicates of 
captive T. tambroides; W1–W3: biological 
replicates of wild T. tambroides)
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Table SB). 10 unique functions were found only in wild T. tambroides 
gut microbiota while six unique functions were only found in cap-
tive T. tambroides gut microbiota. Bile secretion and lysine biosyn-
thesis were significantly higher (p < 0.05) in wild T. tambroides gut 
microbiota while carbohydrate metabolism was significantly higher 
(p < 0.05) in captive T. tambroides (Figure 5).

4  | DISCUSSION

Although previous studies (Esa et al., 2008; Sati et al., 2013) mostly 
used cytochrome c oxidase subunit I (COI) for mahseer species 
identification, all six T. tambroides used in this study for metage-
netic analysis were identified using mitochondrial Cytochrome b 
(CytB) gene. Comparison of CytB gene and COI gene showed that 
CytB gene is more accurate to construct phylogeny trees and re-
veal evolutionary relationships, and it gave better resolution during 

separating species based on sequence data (Tobe, Kitchener, & 
Linacre, 2011). Although Hampala showed considerable geographi-
cal variation in coloration and morphological characteristics, the 
mitochondrial cytochrome b gene sequencing was able to resolve 
phylogenetic relationship of Hampala fishes (Ryan & Esa, 2006). 
It was necessary to accurately verify the species of the mahseer 
fish used in this study prior to MiSeq sequencing since other fishes 
such as Tor spp. and Neolissochilus spp. are morphological similar 
to T. tambroides (Laskar et al., 2013). Identification of fish species 
based on morphological appearances is also subjective and can lead 
to misidentification.

Due to the different types of the feeds, eating habits and habitats 
of the wild and captive T. tambroides, it is anticipated that their gut 
microbiota community will be different (Li et al., 2014; Ringø et al., 
2016). The wild T. tambroides in Kenyir Lake lives in natural environ-
ment that contains various types of algae belonging to cyanophytes, 
bacillariophytes and chlorophytes (Rouf, Phang, & Ambak, 2010). 
Digesta of all three wild T. tambroides were green in color indicating 
these fish may be fed in various kinds of algae or plant as food in 
Kenyir Lake. In contrast, the gut digesta of captive T. tambroides was 
brown due to the formulated pellet diet which consists of complete 
nutrients from animal and plant sources. Therefore, T. tambroides in 
captivity would grow faster than wild T. tambroides at the same age. 
Temperature fluctuation had effect to the composition of the gut 

TABLE  2 Summary of alpha diversity of wild and captive Tor 
tambroides gut microbiota

Sample Chao1 Shannon Simpson Good’s coverage

Wild 19,280.31 4.83 0.87 0.99

Captive 26,814.36 4.44 0.81 0.99

F IGURE  2 Relative abundance of phyla 
found in wild and captive Tor tambroides 
gut microbiome
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microbiota in farmed Atlantic salmon (Neuman et al., 2016). Various 
habitats with different environmental factors formed the gut mi-
crobiota composition of Atlantic salmon parr (Dehler et al., 2017). 
Higher species richness of gut microbiota was found in Atlantic 
salmon parr exposed to open water natural environment than in cap-
tive reared ones (Dehler et al., 2017). Although the weight and sizes 
of captive T. tambroides were higher compared to wild T. tambroides 
used in this study, it was anticipated that their gut microbiota will 
be highly influenced by the living environment, feed, and feeding 
habits.

Operational taxonomic units (OTUs) are groups of sequences 
that clustered together based on percent similarity threshold 

(typically 97%) assuming they delineate a species (Nguyen, Warnow, 
Pop, & White, 2016). Number of OTUs found in wild T. tambroides 
guts were lower than captive T. tambroides. However, one OTU 
does not represent one species because OTUs were clustered 
based on similarity of the other sequences in the bacterial com-
munity regardless of whether the sequence is represented by ref-
erences within a taxonomy outline (Schloss & Westcott, 2011). 
Thus, a few OTUs may refer to the same species. In alpha diversity 
analysis, high Chao1 value indicated high species richness (Hughes, 
Hellmann, Ricketts, & Bohannan, 2001). In our study, the Shannon 
and Simpson indexes of the wild T. tambroides gut microbiota were 
higher indicating higher bacterial diversity compared to captive 

F IGURE  3 Principal Coordinates Analysis (PCoA) plots of beta diversity analysis based on weighted UniFrac distance metric

Wild T. tambroides Percentage (%) Captive T. tambroides
Percentage 
(%)

g__Synechococcus 0.306 g__Virgibacillus 0.200

o__SHA- 20;f__;g__ 0.185 g__Geobacillus 0.049

c__Betaproteobacteria; Other; 
Other; Other

0.107 c__OP11- 4;o__;f__;g__ 0.014

g__Methylocaldum 0.105 g__Salinivibrio 0.013

o__HOC36;f__;g__ 0.099 g__Pseudoxanthomonas 0.012

c__
Betaproteobacteria;o__;f__;g__

0.080 g__Jeotgalicoccus 0.011

o__ASSO- 13;f__;g__ 0.077 g__Cloacibacterium 0.008

f__A4b;g__ 0.075 g__Ureibacillus 0.007

f__Methylocystaceae; Other 0.061 f__
[Tissierellaceae];Other

0.005

f__Pseudanabaenaceae; Other 0.045 g__Tepidimicrobium 0.004

TABLE  3 Ten most abundant unique 
OTUs in either wild or captive Tor 
tambroides gut
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T. tambroides gut microbiota. Shannon and Simpson indexes are cal-
culated based on both species richness and species evenness of the 
microbial community (Gihring, Green, & Schadt, 2011; Spellerberg 
& Fedor, 2003).

Firmicutes and Bacteroidetes are able to degrade wide range of 
polysaccharides (Cockburn & Koropatkin, 2016). This may explain 
the higher percentages of Firmicutes and Bacteroidetes in wild 
T. tambroides gut microbiota as their habitat in Kenyir Lake con-
tains huge amount of periphyton algae (Rouf et al., 2010). Cell wall 
of green algae contains various polysaccharides such as cellulose, 
pectins, hemicelluloses, lignin, and others (Domozych et al., 2012). 
Digesta in the wild T. tambroides guts used for this study appeared 
to be green in color indicated these fish consumed a lot of algae or 
plant as food which had cell walls made of polysaccharides. In PCoA 
plots, sample data points cluster together indicated high similarity 
of gut microbial population among the samples. One of the data of 
captive T. tambroides sample was not cluster close to the rest as cap-
tive T. tambroides samples that were obtained from separated tanks 
in hatchery where the different microbial community in the tank 
water could contribute to these dissimilarities. Bacterial communi-
ties in water affected Nile tilapia larvae gut microbial communities 
(Giatsis et al., 2015).

Cetobacterium spp. was the most abundant species without any 
significant differences in both wild and captive samples suggest-
ing that it is a core species in T. tambroides guts. The colonization 
of this species in captive T. tambroides even after 3 years of rearing 
in hatchery condition may indicate their roles and functions in the 
fish gut. Anaerobic Cetobacterium spp. promotes decomposition of 
consumed organic debris, phytoplankton, or zooplankton (Borsodi 
et al., 2017). This species was also common in intestinal tracts of 
goldfish, common carp, grass carp, ayu, tilapia, zebrafish, rainbow 
trout, channel catfish, largemouth bass, and bluegill (Adeoye et al., 
2016; Etyemez & Balcázar, 2015; Larsen, Mohammed, & Arias, 2014; 
Roeselers et al., 2011; Tsuchiya, Sakata, & Sugita, 2007; Van Kessel 
et al., 2011). However, the effects of this species have never been 
tested in fish. This may be due to the fact that Cetobacterium spp. is 

obligate anaerobe that will die under normal atmospheric condition 
thus hinder the possibility of using this species as probiotics in aqua-
culture production. There was a report stated that bacteria- mediated 
cobalamin biosynthesis was supported by the presence of cobalamin 
synthesizers such as Bacteroides, Lactobacillus, and Cetobacterium 
(Koo et al., 2017). Besides, C. somerae was reported to produce vita-
min B12 which also known as cobalamin (Tsuchiya et al., 2007).

The number of Bacillus spp. was higher in captive T. tambroides 
gut samples. The Bacillus spp. may originate from probiotics capsules 
that were added into the tanks few years ago. Bacillus species have 
been widely used as probiotics in aquaculture industry. Bacillus spp. 
was discovered to possess anti- pathogenic properties such as an-
tibacterial and anti- quorum sensing properties (Chu, Zhou, Zhu, & 
Zhuang, 2014). Bacillus licheniformis and Bacillus pumilus showed an-
tibacterial activity against Aeromonas hydrophila infection (Ramesh, 
Vinothkanna, Rai, & Vignesh, 2015; Shobharani, Padmaja, & Halami, 
2015). Bacillus subtilis in diets increased growth rate of T. tambroides, 
upregulated immune- related genes, and improved stress tolerance 
toward temperature changes (Nguyen, 2015). Spore production 
ability of B. subtilis has the potential to be used as delivery system 
for vaccine or recombinant spores that expressed surface enzyme 
which induced innate and adaptive immunity, systemic and local mu-
cosal immunity (Jiang et al., 2017).

Dominance of Citrobacter genus was observed in captive T. tam-
broides gut microbiome. Citrobacter freundii had inhibitory effects 
against A. hydrophila (Aly, Ahmed, Ghareeb, & Mohamed, 2008). In 
contrast, C. freundii isolated from intestinal tract of farmed grass 
carp showed pathogenicity to mice and zebrafish (Lü et al., 2011). 
Clostridium spp. was higher in wild T. tambroides gut. Clostridium 
butyricum was reported as a potential probiotic that has strong ad-
hesion and antagonistic activity against A. hydrophila and Vibrio an-
guillarum (Pan et al., 2008).

Bile is essential for digestion and absorption of fats and re-
moval of excess cholesterol, bilirubin, drugs, and toxic compounds 
(Kanehisa, Tanabe, Sato, & Morishima, 2017). Gut microbiota is ca-
pable to convert bile acids into secondary bile acids which modulate 

F IGURE  4 Comparison of top 15 most 
abundant observed bacteria in wild and 
captive Tor tambroides guts (Bars with * 
indicated significant differences between 
wild and captive T. tambroides samples)
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its signaling properties that regulate diverse metabolic pathways in 
the host (Ramírez- Pérez, Cruz- Ramón, Chinchilla- López, & Méndez- 
Sánchez, 2017). Eubacterium lentum and Clostridium perfringens were 
reported to possess the capability to produce iso- bile acids (Hirano & 
Masuda, 1981; Hirano, Masuda, Oda, & Mukai, 1981). Enzymes from 
gut microbiota may contribute significantly to bile acid metabolism 
and essential for bile acid homeostasis in the host and contributed 
to host health (Long, Gahan, & Joyce, 2017). Higher bile secretion 
functions of gut microbiota in wild T. tambroides may offer protection 
to the fishes that exposed to natural environment. In this study, the 

Clostridium spp. was 2.09% in wild samples as compared to 0.42% in 
captive ones.

Carbohydrate needed to be digested to monosaccharides prior to 
absorption in the small intestine (Kanehisa et al., 2017). Some fishes 
may able to digest mono- , di- , and oligosaccharides but not for indi-
gestible complex carbohydrates such as hemicellulose and cellulose 
which usually plenty in plants (Krogdahl, Hemre, & Mommsen, 2005). 
High carbohydrate and high lipid diets have been widely used in aqua-
culture to reduce cost, but they also caused excessive lipid accumu-
lation in the fish liver (Xie et al., 2017). In contrast, wild T. tambroides 
may consume algae, fruits, small fishes, and crustaceans. Thus, the 
gut microbiota in captive T. tambroides showed higher carbohydrate 
metabolism function. Many Bacteroides spp. such as Bacteroides 
thetaiotaomicron are capable of metabolize polysaccharides in gut 
(Ravcheev, Godzik, Osterman, & Rodionov, 2013). Besides, these 
bacteria also can provide energy from indigestible polysaccharides 
comprising part of the host diet (Schwalm & Groisman, 2017).

Lysine biosynthesis evolved separately into two pathways which 
are diaminopimelic acid (DAP) and aminoadipic acid (AAA) pathways 
(Liu, White, & Whitman, 2010). Lysine is an essential amino acid for 
living organism especially those consume vegetarian or low ani-
mal protein diet. Lysine biosynthesis functions were higher in wild 
T. tambroides gut microbiota, and this could be due to consumption 
of microalgae that was abundant in Kenyir Lake. PICRUSt predic-
tions were made based on available genome sequences of bacteria 
thus some OTUs that lack of closely related genomes may be un-
derpredicted (Salinas & Magadán, 2017). Lysine produced by gut mi-
crobiota was reported to be absorbed at the host’s small intestines 
(Metges, 2000). Bacillus sphaericus and Bacillus megaterium were re-
ported to have the capability to synthesize lysine (Bartlett & White, 
1986; Ekwealor & Obeta, 2005).

In conclusion, species diversity was higher in wild T. tambroides 
gut microbiota as compared to captive T. tambroides. The samples 
of wild and captive T. tambroides gut microbiota could be clustered 
in the PCoA plots based on origin of the samples where the gut mi-
crobial composition of wild T. tambroides was different compared 
to captive T. tambroides. The results suggested that Cetobacterium 
spp. is one of the core microbiota in guts of T. tambroides. The other 
bacteria may be important in T. tambroides guts included those pre-
sented in high abundance, like Bacteroides spp., Citrobacter spp., 
Turicibacter spp., and Bacillus spp. Metagenetic sequencing in this 
study revealed much bacteria existed in the guts of wild and captive 
T. tambroides, and future research could be focused on isolate those 
bacteria that may be use as potential probiotics. This requires the 
development of specific media and analysis of growing conditions.
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