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Abstract

Pathogens are embedded in a complex network of microparasites that can collectively or individu-
ally alter disease dynamics and outcomes. Endemic pathogens that infect an individual in the first
years of life, for example, can either facilitate or compete with subsequent pathogens thereby exac-
erbating or ameliorating morbidity and mortality. Pathogen associations are ubiquitous but
poorly understood, particularly in wild populations. We report here on 10 years of serological
and molecular data in African lions, leveraging comprehensive demographic and behavioural data
to test if endemic pathogens shape subsequent infection by epidemic pathogens. We combine net-
work and community ecology approaches to assess broad network structure and characterise asso-
ciations between pathogens across spatial and temporal scales. We found significant non-random
structure in the lion-pathogen co-occurrence network and identified both positive and negative
associations between endemic and epidemic pathogens. Our results provide novel insights on the
complex associations underlying pathogen co-occurrence networks.
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INTRODUCTION

Identifying and determining the nature of interactions between
multiple pathogens is increasingly considered critical to under-
standing infectious disease dynamics (e.g. Pedersen & Fenton
2007; Graham 2008; Telfer et al. 2010; Johnson et al. 2015;
Gorsich et al. 2018). Individuals are often co-infected by a
diverse infra-community of pathogens, and interactions
between pathogens can both alter infection patterns (Catta-
dori et al. 2008; Lass et al. 2013; Susi et al. 2015) and influ-
ence disease outcomes (Moss et al. 2008; Munson et al. 2008;
Knowles 2011; Wejse et al. 2015). Pathogens infecting individ-
uals in the first years of life may impact infection by subse-
quent pathogens (Fenton 2008; Randall et al. 2013;
Rynkiewicz et al. 2015; Aivelo & Norberg 2018; Budischak
et al. 2018). For example endemic pathogens that compete for
the same resources as epidemic pathogens and can reduce the
likelihood of infection (Randall et al. 2013) or, conversely,
facilitate infection via immune suppression (e.g. Geldmacher
& Koup 2012). The sequence in which pathogens infect an
individual or ‘priority effects’ have been experimentally shown
to be important in shaping co-infection dynamics in a variety
of systems (e.g. Hoverman et al. 2013; Halliday et al. 2017),
yet are rarely demonstrated in non-experimental contexts.
How priority effects and pathogen traits (e.g. transmission
mode) affect the nature and frequency of associations between

endemic and epidemic pathogens, ultimately shaping pathogen
infra-communities is a knowledge gap that has significant con-
sequences for understanding patterns of infection (Munson
et al. 2008; Telfer et al. 2010; Ezenwa & Jolles 2015; Halliday
et al. 2017).
Quantifying associations between pathogens from observa-

tional data and inferring interactions from these patterns,
however, is a methodological challenge (Fenton et al. 2014).
Discriminating between positive (i.e. two pathogens are more
likely to occur together) or negative associations (i.e. two
pathogens are less likely to occur together) between pathogens
in populations is complicated by the short time window that a
pathogen is shedding (and thus detectable with molecular
methods) and by potentially confounding host immune envi-
ronments (Tompkins et al. 2011). This is particularly the case
for microparasites where pathogen detection often relies on
serology, and, thus, without resampling the same individual,
the precise timing of exposure cannot be estimated. Detection
of pathogens that form chronic infections may be more
straightforward as the infection is active for longer periods,
but deducing pathogen associations is difficult without exten-
sive longitudinal data (Fenton et al. 2014; Hellard et al.
2015). Identifying whether two pathogens are associated due
to host–habitat preferences, the increasing likelihood of expo-
sure with age, or are a product of a negative (e.g. com-
petition) or positive (e.g. facilitation) interactions is
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methodologically challenging (Poulin 2007; Johnson & Buller
2011; Fenton et al. 2014; Hellard et al. 2015; Clark et al.
2016). Identifying associations that could represent candidate
interactions based on observational data can not only provide
a basis for experiments to test potential interactions but
also provide novel insights into pathogen infra-community
dynamics.
Detecting associations between pathogens is also likely to

depend on taxonomic and spatial scales that are seldom con-
sidered (Ara�ujo & Rozenfeld 2014; Stutz et al. 2018). Studies
commonly aggregate pathogen data to genus level, but associ-
ations between pathogens can be subtype or genotype-specific
(e.g. Wejse et al. 2015; Benesh & Kalbe 2016; Brook et al.
2017). For example individuals infected with human immun-
odeficiency virus subtype 1 (HIV-1) are four times more likely
to become co-infected with tuberculosis compared to individu-
als with HIV-2 (Wejse et al. 2015). Beyond subtype or genus,
genotype-specific associations have been demonstrated in
snails infected by trematodes (Louhi et al. 2015) and in
rodents infected by Bartonella bacteria (Brook et al. 2017).
Infra-community dynamics are also likely to vary with spa-
tiotemporal scale. In general, associations between free-living
species are more apparent at scales where interactions occur
compared to broader spatiotemporal scales (Eltonian noise
hypothesis; Peterson et al. 2011; Ara�ujo & Rozenfeld 2014),
but it remains unclear if this is true for pathogens. Nonethe-
less, for cross-sectional datasets, important patterns may be
missed unless multiple spatiotemporal scales are considered
(Ovaskainen et al. 2017). To overcome these challenges, ana-
lytical approaches that can quantify associations between
pathogens, whilst controlling for potential confounding fac-
tors are required to assess the role of associations in shaping
pathogen infra-communities.
Recent applications of network theory to parasite commu-

nity ecology provide an opportunity to move beyond the pair-
wise associations between two pathogens (Clark et al. 2016;
Aivelo & Norberg 2018; Stutz et al. 2018). Network measures
have frequently been used to study food webs but are increas-
ingly applied to pathogen infra-communities where nodes are
pathogens, and edges represent pathogen co-occurrences
within the host (Vaumourin et al. 2015). Networks are modu-
lar if pathogens co-occur more frequently in particular
groups, ‘nested’ if pathogens frequently share interaction part-
ners across the network, or ‘segregated’ if the inverse is true
(Strona & Veech 2015; Ulrich et al. 2017). If, for example net-
works are segregated, targeted control of one ‘keystone’
pathogen may lead to co-extinction of other pathogens in a
module (Pedersen & Fenton 2007; S€aterberg et al. 2013). If a
network is nested, perturbations to the pathogen infra-com-
munity may spread throughout the network (Griffiths et al.
2014).
Although pathogen co-occurrence networks are valuable for

quantifying broad structural patterns, they do not account for
environmental or host factors, pathogen traits or differences
in spatial or temporal scale. Joint species distribution models
(JSDMs) fill this gap by simultaneously assessing environmen-
tal influences and interspecific co-occurrences across multiple
scales using hierarchical Bayesian mixed models (Warton
et al. 2015; Ovaskainen et al. 2017). Here we use both

co-occurrence networks and JSDMs to examine the structure
of pathogen-pathogen networks and quantify pathogen associ-
ations while controlling for environmental/host factors and
scales. We include information on pathogen traits such as
transmission mode to assess what role they played in the dis-
tribution of each pathogen. We collate 10 years of cross-sec-
tional data on endemic and epidemic pathogens in 105
African lions (Panthera leo) as well as extensive host and envi-
ronmental data from the Serengeti Lion Project (SLP, Packer
et al. 2005). The SLP datasets provide a unique opportunity
to understand pathogen co-occurrence networks in a wild
population while controlling for group, individual and
environmental characteristics. We use this data to ask the fol-
lowing interlinked questions at two levels of taxonomic
resolution:

(I) To what degree is the pathogens’ co-occurrence network
of Serengeti lions nested or segregated?

(II) After accounting for environmental/host factors and
spatiotemporal scale, is the type of endemic pathogen an
individual is infected by early in life associated with
exposure to epidemic pathogens later in life?

(III) Are there significant endemic–endemic or epidemic–epi-
demic pathogen co-occurrences?

Because we could not directly determine the order of
infection events from cross-sectional data in isolation, we
used age–prevalence relationships in combination with the
natural history of each pathogen to estimate probable tim-
ing of events. We describe an analytical pathway that can
assess broad network structure and quantify pathogen asso-
ciations across multiple scales that can generally be applied
to understand infectious disease dynamics. The co-occur-
rence network detects clusters of pathogen sharing amongst
individuals and screens for disconnected nodes (pathogens
that rarely co-occur with others), while the JSDM approach
was used to quantify pathogen–pathogen associations. To
assess the plausibility of these putative interactions, we com-
pare our findings to similar mammalian pathogens in exper-
imental studies. Detecting pathogen co-occurrences not only
provides novel insights into pathogen infra-community
dynamics but also helps aide surveillance efforts in the field
and generate testable hypotheses that can be answered in
laboratory experiments.

METHODS

Pathogen data

Serological testing and quantitative PCR (qPCR) were per-
formed to detect endemic and epidemic pathogens from blood
samples taken from lions in the Serengeti National Park, Tan-
zania from 1984 to 1994. In total, 394 individuals were sam-
pled throughout this period, but our analysis was restricted to
the 105 individuals tested for the full suite of 10 pathogens
(Table 1: pathogen natural history; Table S1: number of indi-
viduals tested per year included in the analyses). Nomadic
individuals (i.e. lions that were not resident in any pride) were
excluded due to the difficulty of assigning environmental vari-
ables (see Confounding variables below). Serological data on
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canine distemper virus (CDV), feline calicivirus, parvovirus
and coronavirus has been published previously, except Rift
Valley Fever (RVF) (Packer et al. 1999, see Table S2 for
assay details). To detect RVF exposure we conducted a pla-
que reduction virus neutralizing test (PRNT) that quantified
virus neutralizing antibodies from serum following Scott
et al.(1986)protocol.
We used qPCR to identify nucleotides for feline immunode-

ficiency virus (FIVPle) and the protozoan pathogens in this
study (Table 1). Three distinct subtypes of FIVPle co-circulate
in Serengeti lions (Troyer et al. 2005, 2011; Antunes et al.
2008) and thus subtype specific qPCR was performed (see
Troyer et al. 2004, 2005 for qPCR protocols). The resultant
300 base pair sequences from the pol gene were aligned and
assigned to 21 operational taxonomic units/genotypes based
on a 95% molecular similarity threshold (see Fountain-Jones
et al. 2017 for details). Lions also commonly get infected by a
rich protozoan fauna including Babesia and Hepatazoon gen-
era. We developed quantitative PCR protocols using density
gel gradient electrophores is to identify each protozoan species
(see Munson et al. 2008).
We categorised each pathogen as likely endemic or epi-

demic in the lion population: endemic pathogens were consid-
ered to be constantly circulating and often infecting the
young while epidemic pathogens sweep through the popula-
tion every few years infecting all age classes (Packer et al.
1999; Penzhorn 2006; Troyer et al. 2011). Many of the patho-
gens have been previously classified as endemic or epidemic
(Packer et al. 1999). We supported our classification with
age–prevalence plots (Fig. S1) and we plotted yearly preva-
lence (Fig. S2) for the pathogens not previously classified.
Pathogens with a high prevalence at a young age (≤ 2 years
old) with little fluctuation across all years and age classes
were considered to be likely endemic, whereas an increasing
age–prevalence relationship and high temporal variation were
classified as more likely to be epidemic in this population.
Feline coronavirus can have epidemic and endemic cycles,

and it is challenging to assess which form the individual was
infected with from serological data, but based on age–preva-
lence relationships we categorised coronavirus as an endemic
infection (Fig. S1). Furthermore, we used patterns of age–
prevalence to infer the potential timing of infections. As most
individual lions were likely to be infected by the pathogens
we considered endemic within the first 2 years after birth
(Troyer et al. 2011, Fig. S1), we assume that endemic expo-
sure typically occurred prior to exposure by an epidemic
pathogen. We partitioned the endemic pathogen data into
two sets based on taxonomic resolution (high and medium).
The high taxonomic resolution dataset encompassed FIVPle

genotype and Babesia species data, whereas the medium reso-
lution dataset aggregated FIVPle subtype information and
Babesia data to genus level.

Co-occurrence network

We examined pathogen co-occurrence patterns to evaluate
preferential associations among pathogens. We constructed
co-occurrence networks for each taxonomic resolution as well
as for pathogens tested for using qPCR and by serology in
cases combining both lines of diagnostic evidence led to
altered network structure. To do so, we first built an m 9 n
matrix that described presences/absences (i.e. occurrences) of
both endemic and epidemic pathogens across individual lions,
where m was the number of individual lions and n the number
of pathogens. By multiplying it by its transpose, we then cre-
ated a summary n 9 n co-occurrence matrix that described,
for each pair of pathogens, the number of observed co-occur-
rences across all individual lions. Pathogens detected infre-
quently in this lion population were included in this analysis
to help screen for pathogens disconnected in the network. The
co-occurrence matrix was used to evaluate which pathogens
were carried by the same individuals utilizing a modularity-
based ‘greedy’ approach (Clauset et al. 2004). Measures of
modularity aim to determine the adequacy of different

Table 1 Traits of both endemic and epidemic pathogens in this study

Pathogen Type Trans. mode One host? Immune sup. Exposure timing?* Test type

Data type (binary) (categorical) (binary) (binary) (binary) (binary)

EPIDEMIC

Feline calicivirus (calicivirus)† Virus Direct/env N NE Epidemic year Serology

Canine distemper virus (CDV) Virus Direct N Yes Epidemic year Serology

Feline panleukopenia (parvovirus) Virus Vertical, direct/env N Yes Epidemic year Serology

Rift valley fever (RVF) Virus Vector (mosquito) N Yes Throughout life# Serology

ENDEMIC

Feline enteric coronavirus (coronavirus)† Virus Direct/env N U Epidemic year Serology

B. gibsoni Protozoa Vector (tick) N NE < 2 years old qPCR

B. leo with insertion Protozoa Vector (tick) N NE Throughout life qPCR

B. felis Protozoa Vector (tick) N NE < 2 years old qPCR

Hepatozoon felis Protozoa Vector (tick) N NE < 2 years old qPCR

Feline immunodeficiency virus

FIVPle A, B and C and FIV genotypes A1, B1-12, C1-C8

Virus Vertical/direct Y Yes < 2 years old qPCR

Notes Trans.mode: Transmission mode (all pathogens can be horizontally transmitted). Immune sup.: Pathogen can suppress the immune system. Vertical:

Vertical transmission is also possible. Env: Environmentally persistent. Direct: Transmission through host contact. Immune sup.: Immune suppression.

*Likely time of exposure.

†Determined by age–prevalence relationships (see Methods and Fig. S1) but can have endemic or epidemic variants. U: Unknown NE: No evidence.

#More likely after heavy rainfall (Fig. S2).
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classification schemes in representing clusters and divisions in
datasets; here, the clusters represented the co-occurrence of
pathogens in individual hosts. Estimates of modularity were
calculated for each possible classification by comparing the
expected fraction of pathogen co-occurrence to random co-
occurrences (Newman 2006). The classification with the high-
est modularity from all the generated classifications was
selected.
We then computed a measure of network structure (Ɲ̅) and

modularity index based on node overlap and segregation
(Strona & Veech 2015; Ulrich et al. 2017). Ɲ̅ ranges from
scaled from �1 (entirely segregated network) to 1 (entirely
nested network). These analyses were performed in R using
the ‘igraph’ and ‘nos’ libraries (Cs�ardi & Nepusz 2006; Strona
& Veech 2015). The co-occurrence matrix was obtained from
the incidence matrix using the graph.incidence and the bipar-
tite.projection functions. The classification analysis was per-
formed using the fastgreedy.community function in igraph
(Cs�ardi & Nepusz 2006).

Joint species distribution modelling

Joint species distribution models are a flexible multivariate
extension of generalised linear mixed models that can exam-
ine how environment (and host) shape multiple species simul-
taneously across biological scales (Ovaskainen et al. 2017;
Bj€ork et al. 2018). JSDMs can quantify associations between
species across scales using latent factor models to estimate
species–species covariance for each random effect (Ovaskai-
nen et al. 2017; Bj€ork et al. 2018). We fitted JSDMs for both
high and medium taxonomic resolution datasets, combining
information on environmental and host covariates as fixed
effects (see Confounding variables below for details), to the
occurrence data for each of the pathogens. Pathogens
detected fewer than five times were excluded from this analy-
sis leaving 10 pathogens in the medium taxonomic model
and 17 in the high-resolution dataset. Including pathogens
with fewer than five occurrences may lead to spurious associ-
ations (Ovaskainen et al. 2017). We fitted all the JSDMs
with Bayesian inference, using ‘Hierarchical Modelling of
Species Communities’ (Blanchet et al. 2018). For each analy-
sis, we modelled the response pathogen co-occurrence matrix
using a probit model based on the approach outlined in
Ovaskainen et al. (2016). In contrast to the network
approach, the JSDM co-occurrence matrix is a product of
the pathogen-to-pathogen variance–covariance matrix esti-
mated for each random effect (e.g. pride-year) in the model.
Each random effect (and thus each estimated co-occurrence
matrix) measures a component of the variation in the
response that is different than the other random effects and
of the set of explanatory variables (fixed effects) considered
in the model. In our models, we added individual (e.g. sex
and age), pride and environmental characteristics (see Con-
founding variables below) as fixed effects. Individual sampled,
pride-year (i.e. which pride and year the individual was sam-
pled in) and year-landscape (i.e. what year was the individual
sampled in the Serengeti) sampled were added as random
effects. As pathogen traits may shape the distribution of each
pathogen (e.g. similar environmental and host variables may

shape tick-borne pathogens), we included traits such as
pathogen type (see Table 1) in each analysis. We utilised the
default priors (described in full detail in Ovaskainen et al.
2017) and ran the HMSC model twice using 3 million
MCMC samples (the first 300 000 of which being burn-in).
Each run was carried out using a different seed. Visual
inspection of MCMC traces and the Gelman–Rubin diagnos-
tic calculated to assess convergence. In addition, we made
sure that the effective sample size (ESS) of each parameter
was > 200.

Confounding variables

As part of the SLP, most of the individuals in this study have
been regularly observed since birth (Mosser & Packer 2009).
We selected 13 predictor variables that we thought were likely
to be important for pathogen exposure and thus could con-
found possible associations patterns (Table 2). We included
variables that captured individual variability (e.g. age at sam-
pling), and pride characteristics including environmental vari-
ables (e.g. average vegetation cover of the pride’s territory; see
Table 2 for measurement details).

RESULTS

The Serengeti lions were exposed to an average of 5 patho-
gens (two epidemic and three endemic, SD = 1); one individ-
ual had been infected by 9 of 10 pathogens (based on medium
resolution data, Fig. S3). Cubs between 1 and 2 years old
were often already infected with an average of four pathogens
(SD = 1), with one 1.5 years old cub positive for 5. All lions
were qPCR positive for at least one protozoan species, and
25% of them were infected by all four protozoans tested.

Pathogen co-occurrence networks are highly nested

The high taxonomic resolution summary network indicated a
significantly nested architecture (Ɲ̅ = 0.74) with relatively
low modularity (modularity index = 0.393, z = 3.307,
P ≤ 0.001) with three clusters (Fig. 1a). The largest cluster
(green nodes) included all of the protozoans, epidemic patho-
gens and some FIVPle genotypes, whereas the remaining two
clusters consisted of FIVPle genotypes (Fig. 1a). When we
modelled networks based on diagnostic test, the general pat-
tern did not substantially change, with the exception that
RVF clustered separately from the other viruses detected
using serology. In both network formulations, phylogeneti-
cally similar genotypes of FIV did not cluster together (Foun-
tain-Jones et al. 2017, see Fig. S5). In contrast, the medium
resolution network was completely nested with no modularity
(Ɲ̅ = 1, modularity index = 0, z = ∞, P = 0) and no signifi-
cant clusters (Fig. 1b).

Strong associations between endemic and epidemic pathogens

After accounting for environmental, individual and pride fac-
tors and scale, the JSDM analysis identified strong associa-
tions between pathogens (Fig. 2) that were not detected in the
summary co-occurrence network. Including individual, pride-
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year and landscape-year scales in our co-occurrence models
was important as our ability to detect associations varied. At
an individual and pride-year level, we detected strong associa-
tions between a small subset of epidemic and endemic patho-
gens. FIVPle B and Hepatozoon felis were negatively
associated with RVF (Fig. 2), and FIVPle B was also nega-
tively associated with parvovirus (Fig. 2a and Fig. S6a). How-
ever, these associations could only be detected at medium
taxonomic resolution. In contrast, at high taxonomic resolu-
tion, we identified positive associations between B. gibsoni and
RVF that were not detected at medium-resolution.
The strongest associations between endemic and epidemic

pathogens were detected at the lowest spatial-temporal resolu-
tion (landscape-year). In the high taxonomic resolution
model, pathogens separated into two groups with each group
having a very similar association profile. One group was char-
acterised by positive associations between the Babesia species,
FIVPle C2, CDV and parvovirus. The other group was char-
acterised by positive associations between two FIVPle geno-
types (C1 & B2), coronavirus, H. felis and calicivirus
(Figs. 2c and Fig. S6c). There were strong negative associa-
tions between pathogens in each separate group (e.g. CDV
and FIVPle C1). Generally, the same associations held in the
medium taxonomic resolution models (Fig. 2c and Fig. S6c),
but there were exceptions. For example FIVPle C1 and C2
had opposing association profiles, but as FIVPle C1 had a
higher prevalence (Fig. S7), C1 had the same overall associa-
tion profile as FIVPle C.
Associations between epidemic pathogens were rare. At the

year-level, we detected positive associations between CDV and
parvovirus with both pathogens negatively associated with cali-
civirus (Fig. 2c and Fig. S6c). In contrast, associations between
the endemic pathogens were common, but the nature of the
associations also differed at each taxonomic scale. For example
in the medium resolution model, we detected a positive

association between H. felis and FIVPle C not found in the
high-resolution model indicating that FIVPle subtype, but not
genotype, was important for this association (Fig. 2b and
Fig. S6b). Strikingly, we found that FIVPle subtypes had con-
trasting association profiles. At the individual level, FIVPle B
and C were negatively associated with each other, and FIVPle C
was positively associated with coronavirus, whereas FIVPle B
was negatively associated with coronavirus (Fig. 2a and
Fig. S6a). Both high and medium taxonomic resolution JSDMs
had reasonable explanatory power (Tjur R2 = 0.381 & 0.330,
respectively). In both models, the landscape and host factors
that explained the distribution of each pathogen were not pre-
dicted well by pathogen traits (Fig. S8). See Fig. 3 for a sum-
mary of all of the associations detected across scales from our
cross-sectional data and Figs S9/S10 for model details.

DISCUSSION

Here we demonstrate non-random associations in the patho-
gens infecting wild African lions, with both negative and
positive associations detected between endemic and epidemic
pathogens. While there was minimal structure in the co-
occurrence network (Fig. 1a), we uncovered structure after
accounting for scale and controlling for potentially confound-
ing environmental and host variables (Fig. 2). Using age–
prevalence relationships we could assess the likely order of
infection using cross-sectional data. We found that the partic-
ular endemic pathogen an individual is infected by as a cub
may have consequences for which novel epidemic pathogen
the individual is infected with later in life (Fig. 3). We empha-
sise that the approach used here can start to untangle patho-
gen infra-community relationships and identify potential
endemic–epidemic associations in wild populations. These can
then be compared with knowledge of pathogen pathogenesis
and validated in-vitro in a laboratory setting. While clinical or

Table 2 Details of the individual, pride-level and environmental predictors used in the joint species distribution models to help account for potential

confounding factors. All variables were calculated based on the year of sampling

Predictor Type Measurement details Data

Sex Individual Male or female SLP data

Age Individual Age of lion when sampled (days) SLP data

Number of immigrations Individual Number of prides an individual has immigrated into prior to sampling SLP data

Pride or coalition male? Individual Was the male involved in a coalition occupying multiple prides (binary)? SLP data

Group size Pride Average number of individuals in pride 2 years† prior to sample collection SLP data

Despotic Pride Was the pride considered despotic at time of sample collection? SLP data

Territory size Pride Based on location data over a 2-year period based on utilisation–distribution curves

with a 75% kernel

SLP data

Territory overlap Pride What percentage of territory size overlapped with other prides SLP data

Habitat quality Pride Pride habitat quality score calculated across a 2-year period Mosser et al. (2009)

Number of neighbours Pride Number of individuals in neighbouring prides. Neighbouring prides had territory

overlap

SLP data

Yearly rainfall Environmental Yearly rainfall experienced in each pride territory based on weather stations in the

plains and woodlands

Sinclair et al. (2013)

Average vegetation cover Environmental Average vegetation cover across the pride’s territory based on a 75% kernal Reed et al. (2009)

Soil pH Environmental Average pH throughout the pride’s territory based on a 75% kernel World Harmonised

Soil Database

(FAO & IIASA 2009).

*We calculated this predictor 2 years prior to sampling to account for differences in individual status at a potential time of exposure or infection (e.g. indi-

viduals that had just immigrated into a pride when sampled were considered nomads as exposure or infection was likely to have occurred previously).

†We averaged over past 2 years to reduce the variability in pride counts as exposure was unlikely to have happened during the sampling year.
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laboratory studies of co-infection in lions are rare for good
reason, the associations we found have clear precedence in
similar pathogens co-infecting humans and represent plausible
interactions. Our results not only provide new insights on
pathogen community structure in the Serengeti lions but also
provide a valuable framework for exploring pathogen co-
occurrence networks and infra-community dynamics.
Co-occurrence networks were highly nested with relatively

low modularity, particularly at a medium taxonomic resolu-
tion. Nonetheless, RVF did cluster separately from the other
pathogens tested via serology which potentially indicates that
RVF, unlike the other epidemic viruses, has a distinct epi-
demic cycle with most of the interacting partners being more
chronic pathogens. This is supported by the RVF association
profile detected in our JSDM analysis and is intuitive given
that RVF is the only mosquito-borne pathogen that we sam-
pled. Even though we sampled pathogens considered impor-
tant for lion health, we lacked data on other potentially
pathogenic bacteria, helminths and fungi that the lions were
exposed to or potentially infected by. Furthermore, symbiont
interactions can also be important in shaping pathogen
dynamics (e.g. Halliday et al. 2017) and could be considered
in pathogen infra-community studies. These additional taxa
may lead to further segregation in the network, as larger and
more diverse networks typically show increased modularity

and segregation (Thebault & Fontaine 2010; Sauve et al.
2014). Expanding sampling to construct a more complete
microbe and macroparasite network would also capture a
broader array of potentially facilitative and competitive asso-
ciations (Ezenwa 2016; Aivelo & Norberg 2018).
After accounting for environment, host and scale, we found

that the endemic pathogens were strongly associated with the
epidemic pathogens and, based on mammalian laboratory-
based experiments, suggest that these patterns represent plausi-
ble interactions between pathogens. For example we detected
negative associations between endemic pathogens (FIVPle B and
H. felis) and RVF after accounting for differences between indi-
viduals. Co-infections between bunyaviruses like RVF and
retroviruses are likely common in humans and wildlife, though
there are surprisingly few studies addressing the topic. In con-
trast, relationships between dengue virus (a flavivirus) and HIV
are relatively well understood. Flaviviruses and HIV share simi-
lar immune receptors that can inhibit HIV replication and the
molecular machinery used to do so may be a viable way to con-
trol HIV infection (e.g. Xiang et al. 2009). Given the overall
structural similarity of flaviviruses and bunyaviruses (Hernan-
dez et al.2014), it is possible that a similar mechanism underlies
the association in lions between RVF and FIVPle that we
observed, although we show that this association was subtype
specific. If this was true, RVF might inhibit FIVPle B infection –

Fig. 1 Pathogen summary co-occurrence network for (a) high taxonomic resolution and (b) medium taxonomic resolution data, where nodes are pathogens

and edges reflect co-occurrence. Edges are shown only when there were ≥ 3 co-occurrences. Node colours reflect separate clusters. Edge weights are

proportional to the number of co-occurrences. Pathogen labels in bold (in boxes) were considered epidemic. See Fig. S4 for networks of pathogens detected

via qPCR and serology separately.
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counter to our assumption that endemic pathogens in our sys-
tem infected each individual first (Fig. 3).
The greatest number of associations between epidemic and

endemic pathogens were detected when we included differ-
ences across years (year-landscape scale) in our analysis.
These associations could represent plausible facilitative or
competitive interactions. CDV and Babesia are well-known to
interact with high levels of Babesia infection magnifying the
impacts of consequent T-cell depletion caused by CDV infec-
tion leading to mortality of nearly 40% of the lion population
in 1994 (Munson et al. 2008). We found that all tick-borne
haemoparasites showed positive associations with CDV
including B. leo (with insert) despite its low prevalence in
1993/1994 (Fig. S9). Parvovirus was also positively associated
with CDV, but this was likely due to similarities in timings of
epidemics with a parvovirus epidemic in 1992 just before the
1994 CDV epidemic (Packer et al. 1999). Parvoviruses are
also immune suppressive, and so the timing of the parvovirus
outbreak may also have contributed to the CDV/Babesia-
induced mortality. The general negative relationship between
FIVPle C and CDV/Babesia supports the theory that individu-
als infected by subtype C were more likely to die in the conse-
quent Babesia/CDV outbreak (Troyer et al. 2011). Thus, this
negative association may not be due to competition between
pathogens but rather to mortality.
Our approach detected strong associations between the ende-

mic pathogens also. For example there were opposing associa-
tions between the FIVPle subtypes and coronavirus (Fig. 2).

Negative associations between retroviruses and coronaviruses
are rarely reported, yet there are plausible molecular pathways.
HIV-1 and human coronaviruses (HCoV) share remarkably
similar binding receptors (Chan et al. 2006) and some mild
HCoV strains are even considered a viable vaccine against HIV
(Eriksson et al. 2006). This may explain the negative associa-
tion we detected for FIVPle B and coronavirus but does not
explain the positive association between FIVPle C and coron-
avirus we detected across scales. The mechanism driving FIVPle

subtype specific relationships with coronaviruses remain
unclear, and as coronaviruses infecting lions are also likely to
be genetically diverse, examining the genetic structure of coron-
avirus may help untangle these associations further. In contrast,
competitive associations between HIV strains are well charac-
terised with HIV-1 found to outcompete HIV-2 for blood
resources (Ari€en et al. 2005). For FIVPle, even though co-infec-
tion is relatively common (Troyer et al. 2011) competition
between subtypes could be important as there is anecdotal cell
culture evidence that FIVPle B can propagate more rapidly than
FIVPle C (M. Roelke, unpublished data).
There were also contrasting associations between the proto-

zoan species. For example the distribution of B. felis was not
shaped by any other protozoan and in general, had a narrow
association profile (Fig. 2), unlike the other Babesia species.
For the individuals co-infected by protozoans, associations
involving B. felis were also common, whereas co-infections
involving H. felis and the other Babesia species varied in preva-
lence and composition (Fig. S9). Even though B. gibsoni and B.

Fig. 2 Pathogen–pathogen associations detected at (a) individual, (b) pride-year and (c) landscape-year level after controlling for individual, pride and

environmental variables in high and medium taxonomic resolution models. Blue represents negative correlations and red indicates positive associations.

Only associations with posterior coefficient estimates ≥ 0.4 with 95% credible intervals that do not cross 0 are shown. The light red line indicates the

association between Hepatozoon felis and CDV that was ≥ 0.4 in the medium resolution model but was below the threshold (0.38) in the high-resolution

model. Pathogens in bold and in boxes are the epidemic viruses (all other pathogens are likely endemic). This figure was drawn using the R package

‘circleplot’ (Westgate 2016). See Fig. S6 for association matrices and Figs S9/S10 for covariate partitioning and effect size.
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felis show similar age prevalence profiles (Fig. S1), the preva-
lence of B. felis over time was relatively stable compared to the
other protozoa (Fig. S10). Differences in the host range for
individual Babesia species and potential host differences in viru-
lence may partially explain these patterns. For example B. felis
has only ever been detected in felids, whereas B. gibsoni has a
much broader host range including canids (Penzhorn 2006).
Generalist pathogens may have greater pathogenicity as there

can be reduced selective restraint on virulence particularly in
‘dead end’ hosts (Woolhouse et al. 2001). If more pathogenic
species are more likely to interact with other pathogens com-
pared to less virulent pathogens is an open question in disease
ecology. Importantly, patterns like these would be missed with-
out incorporating high-resolution pathogen data.
There are, however, limitations to this approach. The inabil-

ity to distinguish mortality or correlated exposure (i.e. an indi-
vidual is infected by multiple pathogens in the same
transmission event) from negative or positive associations is
one of them, and careful interpretation of associations is neces-
sary. Incorporating approaches such as structural equa-
tion models that explicitly include potential mechanisms that
underlie candidate pathogen associations (Carver et al. 2015)
could be a valuable additional step in future pathogen network
studies. Another weakness is the inability to estimate the tim-
ing of these infections more precisely. For example the nega-
tive association between RVF and H. felis could be due to
temporal differences when ticks and mosquitoes emerge after
rains. Years with higher rainfall increase mosquito abundance
thus increasing RVF prevalence (Fig. S2), whereas ticks
emerge en masse when rains follow a dry period potentially
increasing H. felis prevalence (Munson et al. 2008). As rainfall
was calibrated to the year of sampling rather than the age of
infection (which could differ) the JSDM approach could not
capture this variation. Studies using longitudinal data to quan-
tify associations using a similar framework to ours (e.g. Telfer
et al. 2010; Henrichs et al. 2016) will be beneficial as they are
likely to provide more robust estimates of the order of infec-
tion in wild populations. Furthermore, we cannot quantify the
importance of these associations in shaping pathogen distribu-
tion across scales compared to processes such as host density.
Lastly, incorporating immune function and host resources in
both the summary network and JSDM analyses are likely to
provide mechanistic insight into pathogen network structure
(Griffiths et al. 2014). Higher resolution pathogen traits, such
as duration of infection, are likely to provide further mechanis-
tic insight into how and why pathogens co-occur as they do in
free-living communities (Ulrich et al. 2017). However, given
the daunting complexity of pathogen infra-community dynam-
ics, our two-step approach can assess broad network structure
and identify useful candidate interactions between pathogens
thereby reducing some of this complexity.
The high frequency of co-occurrence and co-infection in

lions – and the potential for specific associations to cause
population decline – highlights the importance of understand-
ing pathogen associations. The lion pathogen co-occurrence
network was highly connected with both positive and negative
associations between endemic and epidemic pathogens. Our
findings indicate that the lion pathogen infra-community is
influenced by a number of ecological factors and associations
between pathogens. We identify useful associations between
pathogens thereby reducing some of this complexity. More
broadly, our work demonstrates how different network
approaches can be combined to gain insights into the ecologi-
cal factors underlying pathogen associations and how this can
be applied to the study of pathogen communities in wildlife
populations. In addition to these biological insights, the study
highlights several critical areas for methodological improvement

Fig. 3 Summary of the strong positive (red line/arrows) and negative

(blue lines/arrows) associations between endemic (grey circles) and

epidemic (orange circles) pathogens in the Serengeti lions; dark-grey

borders indicate protozoa. The direction of the red or blue arrows

indicates the potential sequence of infection events. The black arrow

along the X-axis represents age; the circles reflect the ages when lions

were likely to be infected by each pathogen (based on age-exposure data

rather than longitudinal data, see Fig. S1). Dashed circles indicate major

co-occurrence clusters identified at the landscape-year scale.
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that can currently limit robust inference of pathogen associa-
tions from cross-sectional serological and qPCR data. Address-
ing these limitations is timely, given the ongoing threat of
wildlife population decline, creating a need to integrate better
molecular, ecological and network information for disease
control.
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