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Abstract: Background: Cathepsin L (Ctsl) is a cysteine protease mainly located within the
endosomal/lysosomal cell compartment. High expression of Ctsl indicates poor prognosis in
human breast cancer. However, the cell type-specific Ctsl functions responsible for this association
remain elusive. Methods: Because constitutive Ctsl−/− mice develop a complex phenotype,
we developed a conditional model allowing for cell type-specific inactivation of Ctsl in mammary
epithelium or myeloid cells in the transgenic mouse mammary tumor virus (MMTV)-polyoma middle
T (PyMT) breast cancer model. Results: Ctsl ablation in mammary epithelial cells resulted in delayed
initiation and end-stage of cancers. The latter displayed large dead cell areas. Inducible in vitro
deletion of Ctsl in MMTV-PyMT-derived breast cancer cells revealed expansion of the acidic
cell compartment, alteration of intracellular amino acid levels, and impaired mTOR signaling.
In consequence, Ctsl-deficient cells exhibited slow growth rates and high apoptosis susceptibility.
In contrast to Ctsl-deficient mammary epithelium, selective knockout of Ctsl in myeloid cells had
no effects on primary tumors, but promoted lung metastasis formation. Conclusions: Our cell
type-specific in vivo analysis provides strong evidence for a cancer cell-intrinsic, tumor-promoting
role of Ctsl in primary breast cancer, whereas metastasis is negatively regulated by Ctsl expressed by
bone marrow-derived cells.
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1. Introduction

Proteolysis is a fundamental event at every single stage of tumorigenesis [1,2]. Cysteine cathepsins
modulate physiological as well as pathological processes as important components of the intracellular
proteolytic network [3]. This protease family is often overexpressed in tumor cells, resulting in
their secretion from the acidic cell compartment into the extracellular space [4]. Along with both
tumor-promoting and suppressing roles and different cells of origin, cancer model experiments aided
the identification of distinct, non-redundant roles of single cysteine proteases in tumor progression.
Profiling of single cysteine cathepsins demonstrated their increased activity during defined
stages of tumor progression [5]. Some of them, such as cathepsin Z (Ctsz), were found to be
upregulated in tumor-associated macrophages (TAMs) following cathepsin B (Ctsb) knockout [6,7].
Cysteine cathepsins released in the tumor microenvironment (TME) promote tumorigenesis in
several ways, e.g., by processing different growth factors, cytokines, and chemokines; by cleaving
cell-cell junction proteins; or by remodeling the extracellular matrix (ECM) [8,9]. They also play a role
in many other tumor-suppressing processes, such as cell death and autophagy, which can contribute to
worsening by the development of drug resistance [10].

Although the function of cathepsin L (Ctsl) in the complex process of tumorigenesis is not yet
fully understood, the upregulation of its mRNA and protein levels especially in breast cancer correlates
with a higher risk of relapse, poor therapy outcome, and worse overall survival [11–13]. Ctsl has
been shown to have many unique cell type-specific functions crucial for the maintenance of tissue
homeostasis, which cannot be compensated by other cathepsins or other cysteine proteases. By means
of Ctsl null mice, the roles of this protease in epidermal homeostasis, hair follicle morphogenesis and
cycling, cardiac function, and MHC-II-mediated antigen presentation of cortical thymic epithelial
cells were described previously [14–16]. Many other substrates of Ctsl lysosomal activity are arising,
together with crucial functions in the development and homeostasis of diverse tissues, e.g., as part of
vesicles, Ctsl takes part in the proteolytic processing of neurotransmitters and hormones [17–19].

Due to its tissue-specific functions, the role of Ctsl in several cancer types is versatile. Tumor promoting
effects were reported for the RIP1-Tag 2 pancreatic islet cell carcinogenesis model [20]. This report
established a reduction in tumor growth in Ctsl−/−animals, resulting from the combination of impaired
proliferation and enhanced cell death. A further Ctsl knockout study using the MycERTAM-BclxL pancreatic
neuroendocrine cancer revealed an impairment in tumor progression toward the latest stages, an increase
in tumor cell death, and elevated expression of autophagy markers, together with defective fusion of
autophagosomes and lysosomes [21]. In contrast, several other studies revealed protective functions of
Ctsl expression towards carcinogenesis. In a report of intestinal tumorigenesis using the ApcMin model,
Ctsl deficiency resulted in an increased tumor incidence as a result of the interplay between Ctsl and the
tight-junction protein claudin 1 [22]. Consistently, Ctsl knockout in two squamous cell carcinoma models
showed an earlier onset of tumors accompanied by an increase in tumor burden and invasiveness, which
was explained by hyper-responsiveness to growth factor signals and hyper-activation of the MAPK/AKT
pathways [23,24]. A previous study using the mouse mammary tumor virus (MMTV)-polyoma middle T
(PyMT) breast cancer model revealed a massively enhanced metastatic burden in the lungs following
transgenic overexpression of human Ctsl [25].

Multiple approaches have been employed to surpass the complex phenotype caused by the lack
of Ctsl in mice and, at the same time, to enable the study of the cell type-specific contribution of Ctsl to
carcinogenesis. In order to analyze to what extent Ctsl supplied by TAMs contributes to tumorigenesis,
bone marrow from Ctsl−/− donor mice was transplanted to RIP1-Tag 2 recipient mice. It could be
established that the tumor-promoting functions of Ctsl must be derived from either cancer cells or cells
other than from the bone marrow [26]. Additional studies highlighted that restoring the Ctsl catalytic
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activity in epidermal keratinocytes in a tissue-specific manner can counteract the enhanced malignant
phenotype observed in Ctsl−/− skin cancers [23].

Contrary to the aforementioned efforts, the present study reports a direct approach for exploring
cell type-specific Ctsl functions in primary cancers by targeting the protease using a Cre/loxP strategy.
Conditional Ctsl deletion in mammary epithelium and the cancer cells derived therefrom or,
alternatively, in myeloid cells capable of infiltrating breast tumors displayed distinct, tissue-specific
functions of Ctsl in the maintenance of cell homeostasis, survival, and proliferation in breast cancer.
We further provide evidence for an important intracellular function of Ctsl related to lysosomal
homeostasis and lysosome-dependent mTOR signaling.

2. Results

2.1. Generation and Characterization of Conditional Ctsl Knockout Mice

We made use of the Cre/loxP technology to address cell-specific functions of Ctsl in murine
breast cancer. Ctsl was targeted by flanking exons 3–6 with loxP sites (Figure S1A III). Cre-mediated
recombination was predicted to result in the deletion of those exons and in a frameshift-mutation
terminating Ctsl translation (Figure S1A IV).

As a proof of concept, Ctslfl/fl mice were crossed with Sox2-Cre mice, thereby giving rise to litters
bearing a ubiquitous deletion of Ctsl (Figure S1B). Accordingly, Ctsl protein was absent in the kidney
and liver of those animals. Furthermore, Ctsl mRNA levels were also undetectable by primers located
between the exons 1 and 4, confirming the accuracy of the Cre/loxP strategy for our purposes. We also
found the well-described skin phenotype of constitutive Ctsl null mice in the Sox2-Cre/Ctsl−/− animals
(Figure S1C). This phenotype is characterized by disturbed hair follicle cycling as well as epidermal
thickening due to keratinocyte hyperproliferation and hyperkeratosis, thereby contrasting with normal
skin in the Ctslfl/fl mice [15].

In the next step, we deleted Ctsl specifically in mammary epithelium and consequently in the cancer
cells originating from them, or, alternatively, in myeloid cells. This was achieved by tissue-specific
expression of the Cre recombinase directed either by the MMTV-long terminal repeat or the myeloid
cell-specific lysozyme M (LysM) promoter, respectively [27,28]. The use of these cell-specific Ctsl deletions
enabled us to overcome the defective positive selection of T helper cells at the thymic epithelium of
Ctsl null mice [14]. This was proven by flow cytometric analysis of CD4+/CD8+ T cell ratios in blood,
thymus and spleen of 10 week old MMTV-Cre/Ctsl−/−and LysM-Cre/Ctsl−/−female mice (Figure S1D,E).
The CD4+/CD8+ cell ratios of those mice were unchanged when compared to the Ctslfl/fl control mice,
whereas mice with constitutive Ctsl deficiency showed the expected decline in CD4+ T cells. This result
allowed the further analysis of Ctsl in breast cancer without the interference of a T cell imbalance.

Subsequently, we tested whether Ctsl deletion would affect the differentiation of bone
marrow-derived macrophages (Figure S3). During differentiation, Ctslfl/fl myeloid cells displayed
increasing Ctsl expression, which was not found in LysM-Cre/Ctsl−/− macrophages, further proving
an effective gene targeting (Figure S3A). In vitro differentiated LysM-Cre/Ctsl−/− macrophages were
morphologically similar to wild-type (WT) macrophages (Figure S3B). Analysis of the macrophage
markers CD11b+/F4/80+ and CD11b+/CD206+ by flow cytometry during differentiation induced
by colony stimulating factor 1 (CSF-1) showed homologous marker expression between WT and
LysM-Cre/Ctsl−/− macrophages (Figure S3C). In summary, Ctsl deficiency has no effects either on
morphology or on differentiation of bone marrow-derived cells to macrophages.

2.2. Ctsl Deletion in Mammary Epithelial Cells Delays Tumor Onset

For the analysis of Ctsl in breast cancer, MMTV-Cre/Ctsl−/−and LysM-Cre/Ctsl−/−mice were further
crossed with the transgenic MMTV-PyMT mouse model of metastasizing breast cancer in the C57BL/6
genetic background [29,30]. To determine the effects of Ctsl deletion on the development of pre-malignant
adenomas, whole mammary fat pads of eight-week-old female mice bearing the PyMT oncogene were
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examined (Figure 1A). Quantification of the pre-malignant, carmine red-stained areas showed significantly
less adenomas in MMTV-Cre/Ctsl−/−breasts than in Ctslfl/fl or LysM-Cre/Ctsl−/−glands. All MMTV-PyMT
mice developed multifocal tumors, as previously described [29]. Consistent with fewer precursor lesions,
first palpable tumors in MMTV-Cre/Ctsl−/−mice occurred at an median age of 17.5 weeks, which represents
a six week delay when compared to Ctslfl/fl and LysM-Cre/Ctsl−/−mice (Figure 1B).
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applicable. Quantification of premalignant lesions shows a significant decreased area in MMTV-
Cre/Ctsl−/− mice (p < 0.01, Mann–Whitney) (Ctslfl/fl n = 9; MMTVCre/Ctsl−/− n = 11; LysM-Cre/Ctsl−/− n = 

Figure 1. Ctsl deletion in epithelial cells of mammary tumors delay tumor onset. (A) Representative
images of mammary gland whole mounts of 8-week-old female mice bearing the PyMT+/T antigen
and their respective magnification, showing emerging locally-restricted hyperplasia in Ctslfl/fl and
LysM-Cre/Ctsl−/− mice. LN, lymph node; arrowheads indicate hyperplasia. Whole mounts were
imaged at 4x magnification in an automated manner and stitched together by software; thus, scale bars
were not applicable. Quantification of premalignant lesions shows a significant decreased area
in MMTV-Cre/Ctsl−/− mice (p < 0.01, Mann–Whitney) (Ctslfl/fl n = 9; MMTVCre/Ctsl−/− n = 11;
LysM-Cre/Ctsl−/− n = 6); mean ± S.E.M. Single images were recorded at 4×magnification, and at least
6x6 frames were stitched together to full images of whole mounts in an automated manner by the
Keyence software. (B) Tumor-free survival and end-stage determined by palpation of mammary glands
starting at 8 weeks of age. (C) Significant delay in both tumor onset and end-stage completion was
observed upon Ctsl knockout in MMTV-Cre/Ctsl−/− mice (p < 0.0001, Kaplan–Meier) (Ctslfl/fl n = 46;
MMTV-Cre/Ctsl−/− n = 17; LysM-Cre/Ctsl−/− n = 25). (D) Count of the multifocal tumors at end-stage
was documented prior to sacrifice (Ctslfl/fl n = 46; MMTV-Cre/Ctsl−/− n = 17; LysM-Cre/Ctsl−/− n = 25).
Results were not statistically significant among groups. In the box plots, the boundary of the box closest
to zero indicates the 25th percentile, the line within the box marks the median, and the boundary of the
box farthest from zero indicates the 75th percentile. Whiskers indicate the 10th and 90th percentiles.
(E) Immunoblot analysis of Ctsl expression levels in tumor lysates. Expression levels of the three
characteristic bands expected for Ctsl (proform at 37kDa; sc, single chain at 25 kDa; hc, heavy chain at
20 kDa) vary among mice and tumor (Ctslfl/fl n = 3; MMTV-Cre/Ctsl−/− n = 3; LysM-Cre/Ctsl−/− n = 3).
Minute amounts of any of the three forms of Ctsl can be detected in the MMTV-Cre/Ctsl−/− tumors due
to the specificity of the Cre-mediated recombination, which enables deletion only in breast epithelial
cancer cells, conserving the Ctsl expression in the tumor microenvironment.
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Tumors of Ctslfl/fl and LysM-Cre/Ctsl−/−mice reached end-stage size at week 21.5,
while MMTV-Cre/Ctsl−/−cancers reached end-stage size after week 27.5 (Figure 1C). MMTV-Cre/Ctsl−/−mice
showed a reduced tumor incidence per mouse, supporting our findings of impaired tumorigenesis upon
specific deletion of Ctsl in mammary epithelium (Figure 1D). As expected, tumor lysates show the presence
of Ctsl in Ctslfl/fl and LysM-Cre/Ctsl−/−samples, and a marked reduction of the protease in MMTV-Cre/Ctsl−/−

tumor lysates (Figure 1E). The faint Ctsl bands in MMTV-Cre/Ctsl−/−samples are derived from non-epithelial
cells in the mammary tumors, e.g., fibroblasts and immune cells. The strong reduction of Ctsl in those
samples also indicates an efficient deletion of Ctsl in the cancer cells excluding a mosaic gene deletion.

2.3. Distinct Effects of Cell Specific Ctsl-Deficiency on Histological Appearance and Metastasis of
MMTV-PyMT Breast Cancers

Histopathological grading of breast cancer was applied using the Elston/Ellis scoring system. Elston/Ellis
unifies nuclear pleiomorphy, mitotic rate, and tubule formation [31]. Grading hematoxylin and eosin
(HE)-stained murine tumor slides with this system revealed that MMTV-Cre/Ctsl−/−cancers appear highly
pleomorphic, bear less tubuli, and display more often a solid structure, with similar mitotic rates to Ctslfl/fl

tumors (Figure 2A,B). This resulted in the classification of most of the MMTV-Cre/Ctsl−/−tumors as grade 3,
in contrast with a lower grading in Ctslfl/fl and LysM-Cre/Ctsl−/−mammary tumors. Additional examples for
histology at higher magnification are presented in Figure S2. Notably, the mitotic index of cancer cells was
similar in all three mouse cohorts (Figure 2C).

In order to quantify visible dead cell areas in the center of MMTV-Cre/Ctsl−/−tumors, histological sections
were stained with the TdT-mediated dUTP-biotin nick end labeling (TUNEL) method and cleaved caspase 3
as markers for DNA fragmentation and apoptosis, respectively (Figure 2A). Significantly larger necrotic areas
comprising dead cells, together with an increased number of apoptotic cells within the tumor mass were
detected in MMTV-Cre/Ctsl−/−cancers (Figure 2D). These results were confirmed by quantification of TUNEL
stained areas, which also yielded an increase of dead cells in the MMTV-Cre/Ctsl−/−group (Figure 2E).

To address insufficient blood supply as a possible cause of cell death in MMTV-Cre/Ctsl−/−breast tumors
we tested their vascularization by detecting the endothelial marker PECAM1/CD31 by immunohistochemistry
(IHC). Vascularization of these tumors was not affected by the Ctsl knockout, because flow cytometry
analysis yielded similar percentages of CD31+ cells in end-stage tumors of all genotypes (Figure 2F).
In addition, microvessel density was evaluated by means of CD31+ IHC staining of tumor slides by an
experienced pathologist in a blinded manner (Figure 2G). Solid clusters, single cells, and endothelial cell
clusters with lumina were quantified in the tumor mass within 10 high power fields/400-fold magnification
by light microscopy, as reported by Weidner et al. [32]. The vessels were mainly located in the stroma, and
there were no differences in microvessel density (MVD) across tumors. Indeed, IHC detection of CD31+

cells in Ctslfl/fl and MMTV-Cre/Ctsl−/−tumor slides revealed normal blood vessels even near dead cell areas,
confirming no impairment in vessel formation upon Ctsl deletion (Figure 2H).

We further addressed whether metastasis formation could be affected by Ctsl deficiency. Representative
pictures of lungs of all three Ctsl genotypes stained for the proliferation marker Ki67 pointed to considerable
differences in metastasis (Figure 3A). Strikingly, the metastatic burden was significantly increased in
LysM-Cre/Ctsl−/−mice (Figure 3B). We identified an increased number of metastases as the cause of the
increment of the metastatic burden (Figure 3C), whereas the size of the metastases per lung and their Ki67
Proliferation index was not affected (Figure 3D,E). In spite of the undifferentiated high grade cancers of
MMTV-Cre/Ctsl−/−mice, the lung metastatic burden of those animals was identical to the control group.
The relevance of pro-inflammatory immune cell infiltration for the migratory and invasive behavior of
cancer cells has been widely proven for the PyMT model [33–35]. To address the enhanced metastatic burden
found in LysM-Cre/Ctsl−/−mice, we analyzed the numbers of neutrophils, dendritic cells, macrophages,
monocytes, T helper cells, cytotoxic T cells, and B cells of end-stage tumors and the corresponding lungs
(Figure 4). No significant changes could be found in the percentages of immune cell infiltration either in
tumors or in lungs across the three genotypes, pointing towards cell-intrinsic effects of Ctsl in tumor growth
and for the development of metastasis.
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poorly differentiated carcinoma (p < 0.05; Fischers exact test) (Ctslfl/fl n = 46; MMTV-Cre/Ctsl−/− n = 17; 
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Figure 2. Ctsl knockout in mammary epithelial tumor cells causes tumor dedifferentiation.
(A) Hematoxylin and eosin (HE) and TdT-mediated dUTP-biotin nick end labeling (TUNEL) staining,
as well as cleaved caspase 3 immunohistochemistry (IHC), on end-stage tumors. HE and TUNEL
are further quantified in panels B–C of this figure. Caspase 3 IHC is a representative image of
6 tumor specimens analyzed per genotype. Single images were recorded at 4× magnification, and at
least 6x6 frames were stitched together to images depicting whole tumors in an automated manner
by the Keyence software. (B) Blinded histopathological grading of HE stained tumor sections.
Grade I (G1), well differentiated carcinoma; grade II (G2), moderately differentiated carcinoma;
grade III (G3), poorly differentiated carcinoma (p < 0.05; Fischers exact test) (Ctslfl/fl n = 46;
MMTV-Cre/Ctsl−/− n= 17; LysM-Cre/Ctsl−/− n= 25). (C) Mitosis count in primary tumor sections
(Ctslfl/fl n = 46; MMTV-Cre/Ctsl−/− n= 17; LysM-Cre/Ctsl−/− n= 25; no significant difference by one-way
ANOVA) (D) Quantification of dead cell areas by blinded histopathological analysis of HE staining.
Large dead cell areas covering almost 50% of tumor area were observed for MMTV-Cre/Ctsl−/−

mice (p < 0.05; Fischer’s exact test; Ctslfl/fl n = 46; MMTV-Cre/Ctsl−/− n= 17; LysM-Cre/Ctsl−/− n= 25).
(E) Quantification of TUNEL staining of tumor slides (p < 0.05, one-way ANOVA, Tukey post-hoc test);
mean ± S.E.M. (Ctslfl/fl n=46; MMTV-Cre/Ctsl−/− n=17; LysM-Cre/Ctsl−/− n=25). (F) Analysis of CD31+

cells by flow cytometry in end-stage tumors indicate no differences in endothelial cell percentages across
genotypes (Ctslfl/fl n = 8; MMTV-Cre/Ctsl−/− n= 6; LysM-Cre/Ctsl−/− n= 6); mean ± S.E.M. Results were
not significantly different between groups (one-way ANOVA, Tukey post-hoc test). (G) Microvessel
density count performed by an experienced pathologist unaware of the genotype of the tumor specimen
(Ctslfl/fl n = 6; MMTV-CreCtsl−/− n= 5; LysM-Cre/Ctsl−/− n= 6); mean ± S.E.M. Results were not significantly
different between groups (one-way ANOVA, Tukey post-hoc test). (H) Representative images of CD31
immuno-histochemistry stainings of Ctslfl/fl (n = 6) and MMTV-Cre/Ctsl−/−(n = 5) end-stage tumors showing
blood vessels. Notably, blood vessels in MMTV-Cre/Ctsl−/−surround necrotic areas, ruling out defective
vascularization as a cause for extensive cell death linked to the knockout of Ctsl (Scale bar: 100 µm).
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Figure 3. Enhanced lung seeding in end-stage LysM-Cre/Ctsl−/− tumor mice. (A) Representative 
images of Ki67 IHC stainings of end-stage lungs from Ctslfl/fl, MMTV-Cre/Ctsl−/−, LysM-Cre/Ctsl−/− 
conditional knockout mice. Arrowheads highlight the lung metastases, which appear as darker spots 
within the lung parenchyma. Single images were recorded at 4× magnification and at least 6x6 frames 
were stitched together to depict whole lungs in an automated manner by the Keyence software. (B) 
Metastatic burden and (C) count across all genotypes show a significant increase in metastatic burden 
and count in the lungs of LysM-Cre/Ctsl−/− end-stage tumor mice, bearing the deletion in myeloid cells 
(p < 0.0001, Mann–Whitney). Lungs from MMTV-Cre/Ctsl−/− mice display no differences in their 
metastatic burden when compared to littermate controls. (D) Mean metastasis area remains constant, 
and thus not significantly changed across genotypes (Ctslfl/fl n = 46; MMTV-Cre/Ctsl−/− n = 17; LysM-
Cre/Ctsl−/− n = 25). (E) Ki67-posive proliferating cells in lung metastases (n = 7 per group). In the box 
plots, the boundary of the box closest to zero indicates the 25th percentile, the line within the box 
marks the median, and the boundary of the box farthest from zero indicates the 75th percentile. 
Whiskers indicate the 10th and 90th percentiles. 

Figure 3. Enhanced lung seeding in end-stage LysM-Cre/Ctsl−/− tumor mice. (A) Representative
images of Ki67 IHC stainings of end-stage lungs from Ctslfl/fl, MMTV-Cre/Ctsl−/−, LysM-Cre/Ctsl−/−

conditional knockout mice. Arrowheads highlight the lung metastases, which appear as darker spots
within the lung parenchyma. Single images were recorded at 4× magnification and at least 6x6
frames were stitched together to depict whole lungs in an automated manner by the Keyence software.
(B) Metastatic burden and (C) count across all genotypes show a significant increase in metastatic
burden and count in the lungs of LysM-Cre/Ctsl−/− end-stage tumor mice, bearing the deletion in
myeloid cells (p < 0.0001, Mann–Whitney). Lungs from MMTV-Cre/Ctsl−/− mice display no differences
in their metastatic burden when compared to littermate controls. (D) Mean metastasis area remains
constant, and thus not significantly changed across genotypes (Ctslfl/fl n = 46; MMTV-Cre/Ctsl−/− n = 17;
LysM-Cre/Ctsl−/− n = 25). (E) Ki67-posive proliferating cells in lung metastases (n = 7 per group). In the
box plots, the boundary of the box closest to zero indicates the 25th percentile, the line within the
box marks the median, and the boundary of the box farthest from zero indicates the 75th percentile.
Whiskers indicate the 10th and 90th percentiles.
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Figure 4. Generation and characterization of Ctsl−/− cells by in vitro recombination of Ctslfl/fl cells. (A) 
Confirmation of Ctsl DNA in three independent batches of Ctslfl/fl control cells and in vitro recombined 
Ctsl−/− cells by droplet digital PCR quantification. The recipient cells used for in-vitro recombination 
were a Ctsl floxed mammary epithelial cell line, isolated from an end-stage tumor originating in a 
female Ctslfl/fl (control) mouse. CD79b was used as a reference gene, in order to quantify the Ctsl-
positive droplets. (p < 0.001, Two-tailed t-test) (n = 4) mean ± S.E.M. (B) Bright field microscopy 
pictures of Ctslfl/fl and inducible Cre-transduced mammary epithelial Ctsl−/− cancer cells in 3-day 
cultures differ considerably in their morphology and proliferative potential. Cell clusters are 
observable in Ctslfl/fl. Epithelial Ctsl−/− cancer cells display white dots representing enlarged vesicles 
(Scale bar: 20×: 50 µm, 40×: 100 µm). (C) Quantification of mRNA expression of EMT markers. 
Significant differences were found in E-cadherin (p < 0.01, one-way ANOVA, Tukey post-hoc test), N-
cadherin (p < 0.001, one-way ANOVA, Tukey post-hoc test), vimentin (p < 0.01, one-way ANOVA, 
Tukey post-hoc test), supporting a phenotype other than epithelial (n = 4) mean ± S.E.M. (D) Cell 
tracking assay, monitoring cell movement, mean velocity and path length of cells plated at low 
density were tracked over 12 hours. Mean velocity and mean track measured by cell tracking showed 
no difference in the speed and the distance the cells covered during the experiment (n = 45); mean ± 
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Figure 4. Generation and characterization of Ctsl−/− cells by in vitro recombination of Ctslfl/fl cells.
(A) Confirmation of Ctsl DNA in three independent batches of Ctslfl/fl control cells and in vitro
recombined Ctsl−/− cells by droplet digital PCR quantification. The recipient cells used for in-vitro
recombination were a Ctsl floxed mammary epithelial cell line, isolated from an end-stage tumor
originating in a female Ctslfl/fl (control) mouse. CD79b was used as a reference gene, in order to quantify
the Ctsl-positive droplets. (p < 0.001, Two-tailed t-test) (n = 4) mean ± S.E.M. (B) Bright field microscopy
pictures of Ctslfl/fl and inducible Cre-transduced mammary epithelial Ctsl−/− cancer cells in 3-day
cultures differ considerably in their morphology and proliferative potential. Cell clusters are observable
in Ctslfl/fl. Epithelial Ctsl−/− cancer cells display white dots representing enlarged vesicles (Scale bar: 20×:
50 µm, 40×: 100 µm). (C) Quantification of mRNA expression of EMT markers. Significant differences
were found in E-cadherin (p < 0.01, one-way ANOVA, Tukey post-hoc test), N-cadherin (p < 0.001,
one-way ANOVA, Tukey post-hoc test), vimentin (p < 0.01, one-way ANOVA, Tukey post-hoc test),
supporting a phenotype other than epithelial (n = 4) mean ± S.E.M. (D) Cell tracking assay, monitoring
cell movement, mean velocity and path length of cells plated at low density were tracked over 12 hours.
Mean velocity and mean track measured by cell tracking showed no difference in the speed and the
distance the cells covered during the experiment (n = 45); mean ± S.E.M. (E) Quantification of mRNA
expression of EMT transcription factors Snail1, Zeb1, Lef1, and Twist1. A significant decrease in the
transcription levels of Twist1 was found in Ctsl−/− cells. (p < 0.05, one-way ANOVA, Tukey post-hoc
test) (n = 4), mean ± S.E.M. (F) mRNA levels of p63 (p < 0.001, two tailed t-test) (n = 4); mean ± S.E.M.
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In summary, Ctsl deficiency in mammary epithelium appears to have opposing phenotypic
consequences for the progression of mammary tumors. On the one hand, Ctsl deletion causes
pro-malignant loss of differentiation; on the other hand, Ctsl loss induces massive death of tumor cells,
which would restrain tumor progression. To address this, we next developed a cell culture model for
Ctsl-deletion in MMTV-PyMT breast cancer cells.

2.4. Ctsl−/− Mammary Epithelial Cancer Cells De-Differentiate In Vitro

To elucidate cell-specific functions that underlie the previous findings, a Ctsl-deficient cell line
was generated by transducing Ctslfl/fl breast tumor cells with a doxycycline-inducible Cre-recombinase
construct, causing the subsequent recombination of the targeted gene locus. The efficient and
homogenous genetic deletion was corroborated by droplet digital PCR (Figure 4A). After three days of
culture, Ctsl−/− breast epithelial cells showed an elongated mesenchymal phenotype, contrasting with
the epithelial clusters formed by the parental control cells (Figure 4B). Thus, we analyzed the mRNA
expression levels of the epithelial marker E-cadherin, as well as fibronectin, N-cadherin, and vimentin
as mesenchymal markers (Figure 4C).

We found that E-cadherin was transcriptionally downregulated, whereas mRNA of N-cadherin
and vimentin was increased in Ctsl−/− cells, with no changes in fibronectin, supporting the previous
observation of de-differentiation in MMTV-Cre/Ctsl−/− cancers. However, in terms of motility,
Ctslfl/fl and Ctsl−/− cells showed comparable speed and also analogous track length per time period
(Figure 4D). Furthermore, the expression of key transcriptional drivers of epithelial-to-mesenchymal
transition (EMT), such as Snail1, Zeb1, and Lef1 were not altered in Ctsl−/− cells, whereas a decrease in
the transcription of Twist1 could be found (Figure 4E). Therefore, the morphological changes and the
increase in mesenchymal markers at the transcriptional level in cultured Ctsl−/− cells is consistent with
the de-differentiation observed in vivo for MMTV-Cre/Ctsl−/− tumors. However, the lack of enhanced
motility and the absence of induced EMT-transcription factors largely exclude a canonical EMT process
as the cause of the morphological changes in Ctsl−/− breast tumor cells. In this context, we addressed
the transcription levels of p63 (Figure 4F), known for its role in sustaining proliferative potential and
stemness of breast epithelial cells [36]. The level of p63 was significantly reduced in four independent
batches of Ctsl−/− cells.

2.5. Ctsl−/− Mammary Epithelial Cancer Cells Are Growth Defective

The delayed development of MMTV-Cre/Ctsl−/− breast tumors, together with the decrease in
transcription of p63 in Ctsl−/− breast epithelial cancer cells lead to a detailed characterization of cell
proliferation in vitro. In initial co-culture experiments starting with a 1:1 ratio of Ctslfl/fl and Ctsl−/−

cells, quantification of the non-recombined Ctsl locus by droplet digital PCR showed that Ctslfl/fl cells
clearly outgrew Ctsl−/− cells after six days (Figure 5A). Subsequently, differences in growth of both cell
lines were verified by real-time proliferation monitoring, which revealed that Ctsl−/− cells multiplied
significantly less than Ctslfl/fl, regardless of serum concentration, i.e., 10% or 1% fetal calf serum (FCS)
(Figure 5B). In these experiments, the negative growth slopes in 1% FCS conditions suggest detachment
of eventually dying cells from the plates. Therefore the marked impairment in growth of Ctsl−/− breast
cancer cells appeared to be in large part caused by an increase in cell death, as we observed for tumors
in vivo (Figure 2). Indeed, the quantification of annexin V binding to apoptotic cells revealed an at
least a two-fold increase in apoptosis in Ctsl−/− cells after three days of culture, which was further
propagated upon FCS deprivation (Figure 5C).
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Figure 5. Ctsl−/− cells display defective proliferation and enhanced cell death. (A) Ctslfl/fl cells
outgrow Ctsl−/− cells after 6 days of mixed culturing. DNA copy numbers of Ctsl and CD79b, used as
housekeeping genes, were quantified by droplet digital PCR. (B) Real-time proliferation analysis
by measuring the impedance changes with an x-CELLigence system during 72 h. Negative slopes
correlate to detachment of the cells from the plate (n = 7) (p < 0.0001, one-way ANOVA, Tukey post-hoc
test); mean ± S.E.M. (C) Annexin V+ cells analyzed by flow cytometry at standard culture conditions
(10% fetal calf serum (FCS)) and serum reduction (1% FCS) (one-way ANOVA, Tukey post-hoc test;
n = 4 independent experiments); mean ± S.E.M. (D) Experimental metastasis assay using two mice
groups injected with Ctslfl/fl and Ctsl−/− cell-co-cultures show a significant difference in the capability of
both cells in establishing metastasis in lungs. A first mixture containing around 45% (42.6%) Ctsl−/−

and 55% Ctslfl/fl cells was injected into immunodeficient mice by tail vein injection (Experiment 1).
Quantification was performed after 28 days post-injection by droplet digital PCR in mashed lung tissue
by analyzing the ratio of Cre recombinase and PyMT to distinguish tumor cells. Minute amounts of Cre
genomic DNA, representing Ctsl−/− cells, could be found in the lungs of the injected mice (0.0136%).
Similar observations (0.032% of Ctsl−/− cells) were achieved by repeating the procedure with a higher
concentration of Ctsl−/− cells (75% to 25% Ctslfl/fl) (Experiment 2) (n = 4 per experiment) (p < 0.0001,
one sample t-test); mean± S.E.M. (E) Exemplary images of IHC for Ctsl in experimental metastasis assay
lung slides. Both experiments resulted in large metastasis composed mainly of Ctslfl/fl cells, marked with
a star (*). Ctsl−/− cells form isolated micro metastasis, as indicated by arrowheads (Scale bar: 100 µm).



Cancers 2020, 12, 2004 11 of 25

In spite of growth impairments of Ctsl−/− breast cancer cells, they were able to establish metastasis
in vivo. Thus, we investigated their migratory capacity in vitro, by means of competitive lung
colonization experiments (Figure 5D). We injected 40% or 80% Ctsl−/− tumor cells into the tail-vein
of four WT mice per experiment in two independent experiments. The lungs of the animals were
harvested on day 28 post-injection. We quantified the occurrence of the PyMT oncogene and the
recombination status of the Ctsl locus of PyMT+/T cells by droplet digital PCR on genomic DNA. In both
settings the vast majority of PyMT+/T cells in the lung proved to contain an intact homozygous Ctsl gene,
thereby further substantiating the growth advantage of Ctslfl/fl cells over the Ctsl−/− PyMT+/T cells.

Next, IHC for detection of Ctsl was performed on lung slides of these mice (Figure 5D).
Large macrometastases were positive for Ctsl, whereas micrometastases were devoid of Ctsl staining.
We conclude that Ctsl−/− as well as Ctslfl/fl cells are able to disseminate into the lungs and to establish
metastatic microlesions. Importantly, only Ctslfl/fl cancer cells were able to colonize the lungs during
the timespan of the experiment. For interpretation of these results it has to be noted that Ctslfl/fl and
MMTV-Cre/Ctsl−/− mice in the primary MMTV-PyMT model had comparable metastatic burdens
(Figure 3B). This must be interpreted in the context of Figure 3, presenting results for mice with
end-stage tumors, which occur in Ctsl−/− mice at a higher age (Figure 1C). Hence, Ctsl−/− breast cancer
cells were shown to be able to colonize the lungs only with a long timespan ahead. Comparisons in
matched time settings (as in Figure 5D,E), however, underline the compromised in vivo growth of
Ctsl−/− mammary cancer cells.

2.6. Expansion of the Lysosomal Compartment of Ctsl−/− Mammary Epithelial Cancer Cells

Enlargement and accumulation of lysosomes accompanied by defects in the termination of
autophagy have been previously observed for Ctsl−/− cancerous and noncancerous cells [21,23]. In line
with this, labeling of Ctslfl/fl and Ctsl−/− breast cancer cells by the acidophilic dye LysotrackerTM revealed
a marked accumulation of acidic organelles in Ctsl-deficient cells (Figure 6A). The microscopic aspect
was validated by flow cytometry showing a 1000-fold increase of LysotrackerTM mean fluorescence
intensity of Ctsl−/− cells as compared to Ctslfl/fl (Figure 6B). Interestingly, Ctslfl/fl cancer cells could
expand their acidic compartment upon FCS starvation, whereas Ctsl−/− cancer cells had only a minor
increase in staining in this condition. In line with this finding, Ctsl−/− cells showed an accumulation
of lysosomal acidic β-galactosidase activity (Figure 6C), as well as increased occurrence of vesicles
positive for the lysosomal membrane protein Lamp1 (Figure 6D). The increase in lysosomal Lamp1 in
Ctsl−/− was further supported by Western blots as well as by mRNA quantification (Figure 6E). In terms
of transcription, we also found a trend for increased expression of other lysosomal proteins, such as
the proteases cathepsin B and cathepsin D (Figure 6F). Lysosomal biogenesis is mostly triggered by the
transcription factors of the MiT/TFE family, especially by the transcription factor EB (TFEB), of which
mRNA expression is also augmented in Ctsl−/− breast cancer cells (Figure 6F). The upregulation
of protein transcripts involved in lysosomal biogenesis supports the enlargement of the lysosomal
compartment, enabling the cell to maximize its hydrolytic capacity to overcome the accumulation of
undegraded cargo and the consequent stress.
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Figure 6. Enlargement and accumulation of acidic vesicles in Ctsl-deficient cells. (A) Fluorescence
microscopy images of Ctslfl/fl and Ctsl−/− mammary epithelial cancer cells in 3-day cultures under
10% and 1% FCS stained with LysoTrackerTM reveal the enlargement of the lysosomal compartment
(Scale bar: 50 µm). (B) LysoTrackerTM mean fluorescence quantification by flow cytometry at standard
culture conditions (10% FCS) show a significant increase in green fluorescence consistent with microscopy
images. LysoTrackerTM positive staining increases under nutrient deprivation conditions (1% FCS)
(n = 4) (p < 0.01, ANOVA, Tukey post-hoc test); mean ± S.E.M. (C) Bright field microscopy images
of Ctslfl/fl and Ctsl−/− mammary epithelial cancer cells in 3-day cultures under 10% and 1% FCS
stained with β Galactosidase (Scale bar: 100 µm). (D) Confocal microscopy images of LAMP1
stained as a marker for lysosomes. DAPI was used as nuclear counterstaining (Scale bar: 5 µm).
(E) Western blot identification of LAMP1 showing its enrichment in Ctsl−/− cells. Tubulin A was used
as a loading control. Quantification of mRNA expression of LAMP1 relative to mRNA expression
levels in Ctslfl/fl and Ctsl−/− epithelial breast cancer cells. (F) mRNA expression quantification of
lysosome-related genes, showing increased transcription of the proteases Ctsb and Ctsd, together with
an increase of transcripts of the MiT/Tfe transcription factor family, triggers of lysosomal biogenesis,
(one-way ANOVA, Tukey post-hoc test) (n = 4); mean ± S.E.M.

2.7. Impaired mTORC1 Activity in Ctsl−/− Cancer cells

The mammalian target of rapamycin (mTOR) is a key signaling hub in homeostasis, also involved
in the coordination of cellular stress responses [37]. The mTOR complex 1 (mTORC1) requires physical
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association with adaptor proteins at the cytosolic site of the lysosomal membrane for full activity.
mTORC1 inactivation limits cell growth while triggering multiple cellular stress responses, such as
lysosomal biogenesis and macroautophagy. Because we had evidence for increased lysosome formation
in Ctsl−/− breast cancer cells (Figure 6), other aspects of mTORC1 signaling were addressed. First,
we investigated the phosphorylation state of the p70 S6 Kinase (S6K) isoform as a main mTORC1
downstream target (Figure 7A). We quantified phosphorylation of p70 S6K at threonine 389, as well
as the p85 S6K isoform upon phosphorylation at threonine 412. Indeed, quantification revealed a
significant decrease in phospho-p70 S6K, indicating reduced mTORC1 activity in Ctsl−/− cells.Cancers 2020, 12, x 16 of 28 
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Figure 7. Defective mTOR signaling in Ctsl−/− cells. (A) Representative Western blot images of
both isoform p70-S6K and its phosphorylated isoform. Phosphorylation was detected at threonine
389. Western blot quantification of endogenous S6 kinase and phospho-S6 Kinase. The ratios of
phosphorylation levels to total proteins are plotted. Phosphorylation of the p70 S6 Kinase isoform is
diminished, leading to a significant reduction of the ratio in Ctsl−/− cells. Alpha-tubulin was used for
normalization. (n = 4) (p < 0.05, one sample t-test); mean± S.E.M. (B) Protein expression levels of LC3 I/II
and p62 seem to remain unchanged upon Ctsl deletion, resulting in no defects in the autophagic process
upon Ctsl deletion. (C) Quantification of mRNA expression of the autophagy markers LC3 I/II and p62.
mRNA expression levels in Ctslfl/fl and Ctsl−/− cells relative to β-actin for both genes was unaltered,
consistent with unchanged protein expression (n = 4); mean ± S.E.M. (D) Fold change of amino acids
in Ctsl−/− breast cancer cells when compared with Ctslfl/fl cells measured by whole cell metabolomics.
Alanine, glutamic acid, and glutamine were significantly increased. Significantly reduced levels of
isoleucine, leucine, tryptophan, phenylalanine, glycine, lysine, asparagine, and aspartic acid were
recorded (n = 3, 3 independently generated batches); mean ± S.E.M. (E) Representative mTOR
and phospho-mTOR Western blot images and its quantification(n = 4, p < 0.05, one sample t-test);
mean ± S.E.M. Phospho-mTOR was detected at its serine 2448 residue. Alpha-tubulin was used
for normalization.
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We next focused on the process of macroautophagy. One of its fundamental steps is the conversion
of the microtubule-associated protein 1A/1B-light chain 3 I (LC3I) to LC3II. However, the LC3 I/II
ratio was similar in Ctslfl/fl and Ctsl−/− cells (Figure 7B). In addition, mRNA expression of LC3 and p62
was unchanged in Ctsl−/− cells, indicating no differences in the initiation of autophagy (Figure 7C).
Our results rule out an increased induction of macroautophagy in Ctsl−/− breast cancer cells. Moreover,
defective terminal degradation is very likely to contribute to the formation of large acidic vesicles in
the cells as reported in the previous section.

Therefore, we hypothesized that deficient protein degradation caused by the loss of Ctsl could result
in alterations of amino acid levels, which in turn are sensed by mTORC1, modulating its activity [38].
Interestingly, amino acid profiling showed a significant decrease in the ketogenic amino acids, as well
as of asparagine and aspartic acid in Ctsl−/− cells (Figure 7D). In contrast, the remaining glucogenic
amino acids were increased or unaffected by the Ctsl-deficiency. This result indicates a considerable
metabolic alteration in the Ctsl−/− breast cancer cells. With regard to the key amino acids critical for
mTORC1 activation, leucine concentration was significantly reduced in Ctsl−/− cells, whereas arginine
is also represented at lower levels with a greater variability between experiments. This suggests
sensing of those reduced amino acid levels by mTORC1 and hence a lower activity of this complex.
To address this, we assessed the status of mTOR phosphorylation at serine 2448 (Figure 7E). Indeed,
a significant decrease in mTOR phosphorylation could be established for Ctsl−/− breast cancer cells.

These results suggest an altered lysosomal turnover as the primary cause of the described cell
phenotypes in absence of the lysosomal endoproteinase Ctsl. This affects amino acid availability in
cells and mediates a stress response that is, at least in part, triggered by mTORC1 inactivation.

2.8. ERK 1/2 Signaling Is Crucial for Viability and Survival of Ctsl−/− Mammary Cancer Cells

In an attempt to identify intracellular signaling pathways that might help Ctsl−/− breast cancer
cells to cope with the cellular stress resulting from lysosomal dysfunction, we found a trend showing
an increase of the phosphorylated isoform of the extra cellular-signal regulated kinases (ERK) 1 and 2 in
Ctsl−/− cells (Figure 8A). In order to study the dependence of our Ctsl−/− cells on the mitogen-activated
protein kinase (MAPK) pathway, cells were treated with Trametinib, a clinically approved inhibitor of
the kinase upstream of ERK, i.e., the mitogen-activated protein kinase kinase 1 (MEK) [39]. Cell viability
of Ctsl−/− cells was reduced to 50% after six-day Trametinib treatment (Figure 8B). Apoptotic cell death
of Ctsl−/− cells was massively increased upon treatment, confirming the reliance of the cells on MAPK
signaling for survival (Figure 8C). These results point to MAPK signaling as an adaptive cell response to
lysosomal stress and suggest a therapeutic benefit for dual targeting of MAPK and lysosomal pathways.
A substantial reduction of the phosphorylation of both ERK isoforms, p44 and p42, was corroborated
by Western blot upon Trametinib treatment (Figure 8D).

3. Discussion

Making use of a newly established mouse line that enables the conditional genetic ablation of
Ctsl in the transgenic MMTV-PyMT breast cancer model, we report that Ctsl-deficiency in mammary
epithelial tumor cells resulted in a considerable delay in the emergence of tumors. Additionally,
end-stage tumors were delayed, morphologically altered and displayed large dead cell areas. In contrast,
the selective knockout of Ctsl in myeloid cells had no effects on primary tumors, affecting exclusively
the metastatic seeding of PyMT tumor cells to lungs. Hence, our data support a cancer-cell intrinsic
role of Ctsl in primary tumor growth while the development of metastasis is influenced by the
tumor microenvironment.
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Figure 8. Ctsl−/− breast cancer cells depend on enhanced phosphorylation of ERK 1 and 2 for
survival. (A) Representative Western blot images of ERK 1 (p44) and ERK 2 (p42) and respective
phospho-ERK 1 and 2, and quantification of the phosphorylation status (n = 4; two sample t-test);
mean ± S.E.M. Phosphorylation was detected at the residues threonine 202 and tyrosine 204 of
ERK 1, and the corresponding threonine 185 and tyrosine 187 of ERK 2. Alpha-tubulin was used
for normalization. (B) Cell viability analyzed upon Trametinib treatment by MTT (n = 4, p < 0.01,
two sample t-test); mean ± S.E.M. (C) Apoptotic cell death indicated by Annexin V binding upon
Trametinib treatment (n = 4, p < 0.0001, two sample t-test); mean ± S.E.M. (D) Representative Western
blot image corroborating the inhibition of ERK phosphorylation upon Trametinib treatment.

A hyperactive PI3K/AKT/mTOR pathway is a characteristic of up to 70% of breast cancers of
all molecular breast cancer subtypes, i.e., Luminal A, Luminal B, Her2 (ErbB2)-enriched, as well as
basal-like, triple-negative cancers [40]. In MMTV-PyMT mice the expression of the polyoma-virus
middle T antigen (PyMT) in mammary epithelium starts in an estrogen-dependent manner in adolescent
female mice. PyMT is anchored to the inner leaflet of the plasma membrane, where it becomes swiftly
phosphorylated by the SRC proto-oncogene product. The phospho-moieties serve as activating docking
sites for intracellular proteins including Shc and PI3K/p85 [41]. Therefore, the MMTV-PyMT mice
develop metastasizing breast cancer mainly due to hyperactive mitogen-activated-protein (MAP)-kinase
and PI3K signaling pathways, thereby modelling the oncogenic signaling present in a majority of
human breast cancers. In addition, breast cancer progression and spontaneous metastasis to the lung
of MMTV-PyMT mice strongly depend on pro-tumor polarization of myeloid cells [42]. In summary,
the MMTV-PyMT mice are an excellent and widely used model for studying PI3K-related oncogenic
signaling and myeloid cell function in breast cancer. Based on transcription profiles, MMTV-PyMT
cancers have been related to Luminal-type human breast cancers [43].

The contribution of cysteine cathepsins’ proteolytic activity in the tumor microenvironment has
been previously documented [1,44]. Studies transferring PyMT cells in Ctsb+/+ or Ctsb−/− mice revealed
fewer lung colonies, together with an enhanced expression of Ctsb in the lung-infiltrating macrophages,
demonstrating a substantial contribution of this protease in promoting lung colonization [6]. In addition,
cathepsin S (Ctss) has been shown to be a relevant factor in the promotion of breast-to-brain metastasis,
where experimental brain metastasis was only reduced by the combined depletion in macrophages
and tumor cells [45]. The deletion of cysteine cathepsins such as Ctss and Ctsz in tumor- associated
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macrophages (TAMs) contributed not only to reduced metastases but also to limit the invasiveness of
lesions in pancreatic cancer [46,47]. However, in contrast to the previous work on Ctsb, Ctss, and Ctsz,
in the present study the conditional genetic ablation of Ctsl in myeloid cells increased the metastatic
seeding of breast cancer cells to the lungs of the mice. Notably, neither in vitro differentiation of
LysM-Cre/Ctsl−/− bone marrow-derived macrophages (Figure S2), nor the number of immune cells
in primary tumors and lungs were significantly altered (Figure S4). Therefore, we hypothesize that
Ctsl-deficiency alters polarization and/or function of bone marrow-derived TAMs.

The deletion of the Ctsl in mammary epithelial cells has been shown to have considerable effects on
diverse breast cancer traits, exhibiting reduced proliferation, enhanced cell death, and morphological
changes. Noteworthy, non-tumor Ctsl−/− mice raise their litters normally, implying that the lack of Ctsl
does not impair the normal structure nor the function of mammary glands [15]. In contrast, we observed
a worse histopathological tumor grading in breast cancers lacking Ctsl, with cellular dedifferentiation
and loss of normal structural features such as tubuli. We planned to address the mentioned alteration in
cell-based approaches, but initially we failed several attempts to establish a Ctsl−/− cell line by isolating
the cells directly from MMTV-PyMT primary cancers and immortalize them in vitro. As presented
in Figure 4, we overcame this hurdle by isolating a cell line from a Ctsl-expressing PyMT/Ctslfl/fl

tumor and subsequently inducing the deletion of the protease by transduction of a Cre recombinase
expression system. This allowed to establish a Ctsl-deficient cell model, with following experiments
confirming that Ctsl−/− MMTV-PyMT+/T breast cancer cells display an increased susceptibility for cell
death and diminished cell growth. In the search for mechanisms that could explain the observed effects,
we first found an increased accumulation of enlarged acidic vesicles. An increase in the amount and
volume of vesicles has been already described for many of the spontaneous phenotypes of constitutive
Ctsl−/− mice, in diverse cell types such as keratinocytes [23,24,48], as well as cardiomyocytes [16,49].

The nutrient sensing capability of lysosomes depends on the mTORC1 protein complex [50].
The activation and function of its main effector, the serine/threonine protein kinase mTOR depends on
the correct assembly of mTORC1 on the cytosolic side of the lysosomal membrane, where it integrates
growth signals and nutrient status such as amino acid levels [37,51]. Importantly, the PyMT oncogene
that drives the cancer model used in our study is a strong inducer of the PI3K-AKT-mTOR signaling
axis [41].This is relevant because the majority of human breast cancers show a hyper-activation of this
pathway due to activating point mutations, gene amplifications, or inactivation of phosphatases
such as PTEN [52,53]. In terms of the metabolic state of Ctsl−/− epithelial breast cancer cells,
our data show reduced levels of ketogenic amino acids, suggesting considerable metabolic changes
in those cells. Furthermore, the levels of major activators of mTORC1, such as arginine and leucine,
are decreased. In line with this, we found evidence of decreased mTOR phosphorylation, as well
as of decreased phosphorylation of one of its major targets, the p70 S6 kinase. We propose that
deficiency of the lysosomal endoproteinase Ctsl in mammary cancers results in a lysosomal storage
phenotype, altered amino acid levels, and interference with mTOR signaling, causing the six-week
delay observed for MMTV-Cre/Ctsl−/− breast tumors. mTORC1 positively regulates cell growth
and survival, while negatively regulating lysosomal biogenesis and autophagy [35]. Our in vitro
data provided evidence for increased lysosomal biogenesis, rather than macroautophagy induction.
Although autophagy can be started by both Ctslfl/fl and Ctsl-deficient breast cancer cells, its termination
might be impaired in the last cell line. In addition, our findings provide evidence for a growth
disadvantage of Ctsl−/− PyMT+/T cells. This prompted us to search for mechanisms that enable Ctsl−/−

cancer cells to survive and slowly proliferate further. It has been shown for Ctsl−/− keratinocytes that
Ctsl deficiency enhanced recycling of growth factors, such as epidermal growth factor (EGF) [23,54].
PyMT also activates the Raf/ERK cascade to induce tumorigenesis [55]. Thus, we explored the
mitogen-activated protein (MAP)-kinase signaling in the Ctsl−/− PyMT+/T cells. We could find a trend
towards increased ERK phosphorylation, which resulted, however, in a significant reduction of cell
viability and a major increase in cell death upon MEK inhibition.
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4. Materials and Methods

4.1. Mice

The embryonic stem (ES) cell clone for conditional targeting of mouse Ctsl by a so-called knock-out
first strategy (Ctsltm1a(EUCOMM)) was generated by and obtained from the European Conditional Mouse
Mutagenesis Program (EUCOMM) (Figure S1A II). The ES cells (JM8.N4; background C57BL/6N)
were injected into blastocysts and chimeric mice transmitting the targeted allele were established as
founder mice. Subsequently, the neomycine selection cassette and the lacZ reporter were removed
by FLPe-mediated recombination of the Frt sites included in the construct (Figure S1A II and III).
The resulting C57BL/6 mice harboring the loxP-flanked (floxed) Ctsl gene (Ctslfl/fl) were crossed either
with the transgenic mouse strains MMTV-Cre+/T or LysM-Cre+/T, both bearing the MMTV-PyMT
(polyomavirus middle T) antigen. Mice were monitored by palpations twice a week starting at 8 weeks
of age until tumors reached end-stage. Animal work was performed in accordance with the German
law for animal protection (Tierschutzgesetz) as published on 18 May 18, 2006, with last amendment
on 20 November, 2019. Ethics approval registration number is G14/18 RP, regional council Freiburg.
Female tumor-bearing mice were monitored by palpations twice a week starting at 8 weeks of age,
and tumor onset as well as tumor progression were documented until tumors reached end-stage.

4.2. Genotyping

Mouse genotyping was accomplished by PCR. Lysates were diluted and combined with FastGene
Taq 2× Ready Mix (#LS31, Nippon Genetics, Europe). PCR reactions were run with a pre-established,
optimized protocol for genotyping and end-products were analyzed by gel electrophoresis.

4.3. Bone Marrow Isolation and Macrophage Differentiation

Long bones and hips of 8–10 week-old WT, Ctslfl/fl and LysM-Cre/Ctsl−/− mice were removed and
bones were flushed with sterile phosphate buffered saline (PBS). Primary bone marrow cells were
incubated with FITC-labeled antibodies (FITC-CD49b #130-116-367, Miltenyi (Bergisch Gladbach,
Germany), FITC-CD45R #130-110-708, Miltenyi, FITC-CD3 #130-119-758, Miltenyi, FITC-Ter119
#130-112-719, Miltenyi). Afterwards, cells were incubated with anti-FITC microbeads (#130-048-701,
Miltenyi) and sorted with an autoMACS™. The negative fraction containing purified monocytes was
further cultured with CSF-1 (#130-101-704, Miltenyi)-supplemented medium and visualized using
standard optics (20×/0.35 Ph1) equipped with an AxioCam ERc camera.

4.4. Flow Cytometry Analysis of Macrophage Differentiation Stages

To analyze the macrophagic differentiation of monocytes, cells were stained with CD11b
(#130-110-554, Miltenyi), F4/80 (#130-116-499, Miltenyi), and CD206 (#141717, Biolegend, San Diego,
CA, USA). Finally, cells were washed and fixed in 2% paraformaldehyde. Fluorescence was measured
with a MACSQuant® Analyzer.

4.5. Mammary Whole Mounts

Mammary fat pads of 8-week-old mice were removed and extended over a glass microscopy slide.
Slides were fixed and stained in carmine red-alum solution (2% carmine red, 5% aluminum potassium
sulfate). Slides were imaged in an automated manner at 4×magnification and stitched automatically
by means of the microscope software package. Slides were stored in methyl salicylate (#M 6752, Merck,
Darmstadt, Germany) after imaging [55]. Stained areas were calculated using the Image J software.

4.6. Immunohistochemistry

Isolated tumors and lungs were fixed in 4% paraformaldehyde and paraffin-embedded.
Five micrometer sections were deparaffinized and stained by different methods. Tumors were
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stained by HE (hematoxylin-eosin) solution (Merck Millipore, Darmstadt, Germany), or by TUNEL
staining using the ApopTag® Peroxidase in Situ Apoptosis Detection Kit, (#S7100, Sigma-Aldrich,
Basel, Switzerland), or by Cleaved-caspase 3 (Asp175) IHC (#9664, CST, Danvers, MA, USA). Anti-Ki67
(#ab15580, Abcam, Cambridge, UK) enabled the detection of metastasis in lung slides. Detection was
performed using the Vectastain Elite ABC kit (Vectastain ABC HRP kits, #PK-4010 (mouse)/#PK-4001
(rabbit) Vector Laboratories, Burlingame, CA, USA), followed by 3,3-diaminobenzidine (DAB) (Sigma)
incubation prior to mounting. Staining of CD 31+ cells was performed with APC Rat Anti-Mouse
CD31 Clone MEC 13.3 (#551262, BD Biosciences, Allschwil, Switzerland). TUNEL stained areas were
quantified using the Image J software.

4.7. Histological Grading of Tumors

Histopathological grading and estimation of the necrotic surface were performed on HE-stained
tumor sections in a blinded manner by an experienced pathologist using the Elston/Ellis scoring
system [31].

4.8. Quantification of Metastasis

For the quantification of metastasis, lung slides were stained for Ki67 in order to differentiate
rapidly proliferating breast tumor cells from the lung parenchyma. For a correct representation of
metastasis across the whole lung, three spatially separated planes per lung were quantified. By means
of the free software Image J, the total area of all three lung slides was calculated, together with the
areas of the metastasis. The metastatic burden was calculated by dividing the sum of the total area of
the metastasis present in each slide by the sum of the total area of the lung, with the total area of the
lung set to 100%. The mean size was calculated by dividing the area of the metastasis by the number of
metastases in each of the three slides per lung.

4.9. Flow Cytometry of Tissues and Cells

For T cell phenotyping, 10-week-old mice were anesthetized and blood was withdrawn. The spleen
and thymus were harvested and disrupted by passing through a cell strainer. Cells were seeded at a
density of 1 × 105 cells per well and stained with a mixture of PE Rat Anti-Mouse CD8a Clone 53-6.7
(#553033, BD Biosciences) and FITC Rat Anti-Mouse CD4 Clone RM4-5 (#553046, BD Biosciences).

For immune-cell phenotyping, tumors and lungs were dissected carefully from end-stage
tumor-bearing mice and disrupted by enzymatic dissociation as performed for tumor cell isolation.
Neutrophiles and monocytes were stained with Anti-Mouse Neutrophils (Clone 7/4), (#CL8993F,
Cedarlane, Port Clinton, OH, USA), APC Rat Anti-Mouse CD45 Clone 30-F11 (#559864, BD Biosciences),
and PE Rat Anti-Mouse Ly-6G and Ly-6C Clone RB6-8C5 (#553128, BD Biosciences). T and B cells were
stained with APC Rat Anti-Mouse CD45R/B220 Clone RA3-6B2 (#553092, BD Biosciences), FITC Rat
Anti-Mouse CD4, and PE Rat Anti-Mouse CD8a, mentioned before. Macrophages and dendritic cells
were stained with FITC Rat Anti-Mouse F4/80 (#MCA497FB, Bio-Rad, Hercules, CA, USA), PE Rat
Anti-CD11b Clone M1/70 (#557397, BD Biosciences), and APC Hamster Anti-Mouse CD11c Clone HL3
(#550261, BD Biosciences).

For endothelial cell quantification, tumor cells were stained with APC Rat Anti-Mouse CD31
Clone MEC 13.3 (#551262, BD Biosciences).

For Annexin V and LysoTrackerTM analysis, cells were detached after 3-day culture and
washed repeatedly in Annexin V binding buffer. Cells were subsequently stained with 1:500
FITC Annexin V (#556419, BD Biosciences) or with 1:5000 LysoTracker™ Green DND-26 (#L7526,
Thermo Fisher Scientific, Waltham, MA, USA).

All antibodies/reagents were used in 1:200 dilutions. 7-Aminoactinomycin D
(Affymetrix/eBioscience, #00-6993-50) or Propidium iodide (#P4864, Sigma-Aldrich GmbH) were
used in all experiments as viability staining in a 1:10,000 dilution. Fluorescence of samples was
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measured using a CytoFLEX S flow cytometer (Beckman Coulter, Krefeld, Germany) and data were
analyzed by the FlowJo software (BD Biosciences).

4.10. Microvessel Density (MVD) Measurement

CD31-stained endothelial cells (solid clusters, single cells and endothelial cell clusters with lumina)
were quantified within 10 high power fields (HPF)/400-fold magnification by light microscopy by
an experienced pathologist in a blinded manner in the tumor mass. The counting was performed
according to a modified score reported in Weidner et al. (1991) in tumor hot spots [32].

4.11. Generation and Culture of Breast Cancer Primary Cell Lines

End-stage tumors of Ctslfl/fl mice were carefully harvested and disrupted by enzymatic dissociation
with DNAse I (#DN25, Sigma-Aldrich), Hyaluronidase Type I-S (#H3506, Sigma-Aldrich) and
Collagenase Type IV (#C5138, Sigma-Aldrich). Cells were kept as monolayer cultures in a cell
culture incubator under sterile conditions at 37 ◦C, 5% CO2, and 91.0% rH. Once spontaneously
immortalized after 10–12 passages, mammary breast cancer cells were cultured in Dulbecco’s modified
Eagle’s medium (Gibco/Invitrogen, Paisley, UK) supplemented with 1% penicillin/streptomycin,
1% L-glutamine (both from Gibco/Invitrogen), and 10% fetal calf serum (PAN-Biotech, Aidenbach,
Germany), in humidified air containing 5% CO2. Cells were also kept under low-serum conditions (1%).
Cells were transduced with a doxycycline-inducible retroviral Cre-construct (kindly provided by
Tilman Brummer). Induction by 2 µg/mL doxycycline took place every 48 h for 6 days. In the indicated
experiments, 10 µM of the pan cysteine Cathepsin inhibitor E64d were supplemented to the full
medium of Ctslfl/fl cells every 48h for 4 days prior to lysis.

4.12. RT-Cell Proliferation Monitoring

Cells were seeded at a density of 0.5 × 105 and cultured for 3 days. Proliferation was monitored by
means of an xCELLigence DP device (OLS OMNI Life Sciences, Bremen, Germany) for 72 h, using E-16
plates (#2801032, ACEA Biosciences Inc., San Diego, CA USA) following manufacturer’s guidelines.

4.13. Droplet Digital PCR, Co-Culture- and Experimental Metastasis Assay

The Ctsl locus was analyzed in 1:10 dilutions of lysates generated from 80% confluent
cell culture dishes analyzed by droplet digital PCR. Droplet generation was prepared
according to manufacturer’s instructions. CD79b was used as house-keeping gene. Primers
and probe (all ordered from IDT) for Ctsl are as follows: probe: 5′-/56 FAM/TCTCACGCT/

ZEN/CAAGGCAATCAGG/3IABkFQ/-3′; forward primer: 5′-CTGAGTGAACAGAACCTTG-3′;
reverse primer: 5′-GTCCAGACCTCCATTTTC-3′. Primers and probe for CD79b are: probe:
5′-/5HEX/ATTGACCAG/ZEN/ACAGCCACCACCTATGAA/3IABkFQ/-3′; forward primer:
5′-GTCCGAAGAGTCACTATG-3′; reverse primer: 5′-GACCTCCAATTCATGTTTC -3′.
PCR amplification took place in a Droplet Digital Thermocycler (Bio-Rad) for PCR amplification and
data were analyzed by QuantaSoft software (Bio-Rad).

For Ctslfl/fl and Ctsl−/− co-culture experiments, cells were seeded at a ratio of 1:1 and cultured for a
period of 6 days. Lysates were generated and analyzed by droplet digital PCR, as mentioned before.

For experimental metastasis assay, co-cultures containing a different ratio of Ctslfl/fl and Ctsl−/−

were harvested at a confluence of 80%. One hundred microliter cell suspension of each of the 2
different cell mixtures containing 42% and 75% Ctsl−/− cells were injected via tail vein injection in
immunodeficient mice separately. After 28 days, mice were sacrificed and lungs were harvested.
Right lungs were fixed and embedded in paraffin for histological analysis. Left lungs were lysed
overnight and PyMT and Cre DNA were analyzed by droplet digital PCR, performed following
the aforementioned standard protocol. Primers and probe for PyMT are as follows: PyMT Probe:
5′-/5HEX/CTA CCA GTC /ZEN/GCC GCC TAA GA/3IABKFQ/-3′; PyMT forward primer: 5′-GGG
AAT GGA ATG ATT TCT TC-3‘; PyMT reverse primer 5′-GGCTCC TCA TAA CAG AAT A-3′.
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Primers and probe for Cre are following: Cre probe 5′-/56 FAM/TCC CGC AGA /ZEN/ACCTGA
AGA TGT T/3IABKFQ/-3′; Cre forward primer: 5′-CAT GGT GCA AGT TGA ATA-3′; Cre reverse
primer: 5′-CGC CTG AAG ATA TAG AAG A-3′.

4.14. Cell Movement Tracking Assay

Cells were plated at low density, 0.015 × 106 cells per well in 24 well plates until attachment was
guaranteed (6 h). Plates were imaged using a JuLITM Stage real time imaging device for a period of
12 h at standard culture conditions. Cell movement was tracked and mean velocity was calculated
using the MTrackJ FIJI/ImageJ plugin.

4.15. Immunofluorescence

Cells were grown on coverslips and incubated with primary antibodies recognizing Lamp 1
(# ab24170, Abcam), and phospho–RPS6 (#4858S, CST). Corresponding secondary antibodies anti-rat
Alexa 555 and anti-rabbit Alexa 488 were also incubated as the primary antibody. For nuclear
counterstaining, cells were stained with 4′,6-Diamidin-2-phenylindol (DAPI) diluted 1:10,000 (#D1306,
Thermo Fischer Scientific).

4.16. β-Galactosidase Assay and LysoTracker™ Stainings

Ctslfl/fl and Ctsl−/− cells were grown on coverslips and stained using the Senescenceβ-Galactosidase
Staining Kit (#9860, CST) and LysoTracker™Green DND-26 (#L7526, Thermo Fisher Scientific) following
the manufacturer’s instructions.

4.17. Preparation of Protein Lysates

Cell lysates were prepared on the cell culture plate by adding 0.5 mL of RIPA buffer (50 mM
Tris-Cl (pH 8.0), 140 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) supplemented
with protease inhibitors (Complete® inhibitor tablets, Roche, Basel, Switzerland) and phosphatase
blockers (PhosSTOP inhibitor tablets, Roche). The cell monolayer was lysed after washing with PBS.
Protein concentration was determined by a BCA Protein Assay Kit (Thermo Fisher Scientific, #23225).

4.18. SDS-Page and Western Blotting

Thirty to fifty micrograms of lysates were loaded onto 8%, 10%, or 12% SDS-polyacrylamide
gels and electrophoretically separated by SDS-PAGE, and transferred to nitrocellulose membranes
(Amersham GE Healthcare, Chalfont St Giles, UK) using a wet-blot system (Bio-Rad). They were
blocked with 4% BSA in TBS-0.1% Tween and incubated with the primary antibody at a concentration
of 1:500 overnight at room temperature. For Western blot analysis of macrophagic differentiation stages,
Cathepsin B (#SC-6493, Santa Cruz Biotechnology, Santa Cruz, CA, USA), Cathepsin L (#SC-6501,
Santa Cruz Biotechnology), and HSP60 (#12165S, CST) were used as primary antibodies, detected with
HRP-conjugated rabbit anti-goat (#P0449, Dako, Jena, Germany), HRP-conjugated rabbit anti-mouse
(#P0260, Dako), and HRP-conjugated goat anti-rabbit (#5127, CST).

For general Western blots, primary antibodies used were: Cathepsin L (#AF1515, R&D Systems),
Lamp 1 (#3243, CST), LC3B I-II (# 2775, CST), and β-actin (#691001, MP). For mTOR signaling,
mTOR (#2972, CST), Phospho-mTOR (#5536, CST), S6 Kinase (#ADI-KAP-CC035-E, Enzo Life Sciences,
Farmingdale, NY, USA), Phospho S6 Kinase (#9205, CST), ERK (#4695, CST), Phospho-ERK (#4377, CST),
RPS6 (#2217S, CST), phospho–RPS6 (#4858S, CST), and Tubulin (#T9026, Sigma) were used. Membranes
were incubated with the corresponding HRP-conjugated secondary antibody (Goat-anti-rabbit,
#111-035-003, Jackson ImmunoResearch; Goat-anti-mouse, #A0168, Sigma; rabbit-anti-goat, # A5420,
Sigma) for 2 h at room temperature, washed and developed using the Super Signal West Pico
Chemiluminescent substrate (#34080, Thermo Scientific), and captured with a Fusion SL Detection
System (Vilber Lourmat, Eberhardzell, Germany).
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4.19. RNA Isolation and RT-PCR

An RNeasy Mini Kit® (#74104, Qiagen) was used to isolate RNA from cell
lysates, which was subsequently transcribed to cDNA using the iSCRIPT® cDNA
synthesis system (#1708890, Bio-Rad). Primer sequences used for quantitative real-time
PCR were as follows: β-actin forward: 5′-ACCCAGGCATTGCTGACAGG-3′; β-actin
reverse:5′-GGACAGTGAGGCCAGGATGG-3′; Ctsl forward: 5′-GCACGGCTTTTCCATGGA-3′;
Cathepsin L reverse: 5′-CCACCTGCCTGAATTCCTCA-3′. Lamp 1 forward: 5′-GTGACAGGT
TTGGGTCTGTGGA-3′; Lamp 1 reverse: 5′-GGTCTGATAGCCGACGTGAC-3′.

To analyze EMT markers following primers were used: E cadherin forward: 5′-GTC TAC CAA
AGT GAC GCT GAA G-3′; E cadherin reverse: 5′-GTC TAC CAA AGT GAC GCT GAA G-3′.
Fibronectin forward: 5′- GTG GCT GCC TTC AAC TTC TC-3′; fibronectin reverse: 5′- ACG TAC TCC ACA
GTG GGT TG -3′. N cadherin forward: 5′-TATATGCCCAAGACAAAGAAACC-3′; N cadherin reverse:
5′-TTGGCAAGTTGTCTAGGGAATAC-3′. Vimentin forward: 5′-TCCCTTGTTGCAGTTTTTCC-3′;
vimentin reverse: 5′-GATGAGGAATAGAGGCTGCC-3′. Snail1 forward: 5′-TGG AAA GGC CTT CTC
TAG GC-3′; snail1 reverse: 5′-TTC ACA TCC GAG TGG GTT TG-3′. Zeb 1 forward: 5′-TAG CCT TAA
GGA AGC AGC CA-3′; zeb1 reverse: 5′-TTA AGG CCA AAG GGA CAC AG-3′. Lef1 forward: 5′-GAA
GAT GCT GGA GGA TCG CA-3′; lef1 reverse: 5′-CAA GCG CCG ACT TCC AAA AA-3′. Twist1 forward:
5′-GGA CAA GCT GAG CAA GAT TC-3′; twist1 reverse: 5′-AGA CGG AGA AGG CGT AGC TG-3′.
To analyze stemness, the following primers for P63 were used: forward: 5′-CTC TCC ATG CCC TCC
AC-3′; reverse: 5′-GAG CAG CCC AAC CTT GCT-3′.

To analyze autophagy markers, the following primers were used: LC3 forward: 2 5′-AGC TTC
GCC GAC CGC TGT AA-3′. LC3 reverse: 2 5′-CGG CGC CGG ATG ATC TTG AC-3′. p62 forward:
5′-GTC AGC AAA CCT GAC GGG GC -3′. p62 reverse: 5′-CCG GGG ATC AGC CTC TGT AGA T -3′.

To analyze lysosomal biogenesis, the following primers were used: Cathepsin B forward:
5′- CCT GGG CTG GGG AGT AGA GAA TGG AG -3′. Cathepsin B reverse: 5′- TGG AAA AAG CCC
CTA AGG ACT GGA CAA T -3′. Cathepsin D forward: 5′- GTG CAC ATG GAC CAG TTG GA
-3′. Cathepsin D reverse: 5′- CAA TAG CCT CAC AGC CTC CCT -3′. RagD forward: 5′-GGC TCC
ATC TCA CAG TGA CC-3′. Rag D reverse: 5′-CAT CGT TTG CCC TCT GGT GA-3′. TFEB forward:
5′-CGC CTG GAG ATG ACT AAC AAG-3′. TFEB reverse: 5′-CAC TGG GCA ACT CTT GCT TC-3′.
Tfe 3 forward: 5′-AAC AGC AAC GCT CCA AAG AC-3′. Tfe 3 reverse: 5′-CTC GTG GTT AGG GAG
AGC AG-3′. Mitf forward: 5′-GGA ACA GCA ACG AGC TAA GG-3′. Mitf reverse: 5′-TGC TTG ATG
ATC CGA TTC AC-3′.

4.20. Amino Acid Profiling by Metabolomics

Cells were cultured for 72 h under standard conditions (10% FCS) and washed three times
with 0.9% NaCl. Monolayer cultures were harvested on ice with 1 mL Metabolomics lysis buffer
(90% Methanol, 2.5 µg/mL Isoguanosine hydrate (#NI07234, Carbosynth Limited, Newbury, UK),
1 µg/mL O-Methyl-L-Tyrosine (#H63096, Alfa Aesar/Thermo Fischer Scientific, Schiltigheim, France).
Samples were homogenized and transferred to LC-MS glass vials with the injection volume set
to 5 µL. A pool of all samples containing 20 µL of each supernatant was used as quality control.
Amino acids were separated by a Waters Acquity UPLC BEH Amide column (150 mm × 2.1 mm,
1.8 µm, Waters Corporation, Milford, MA, USA) at 50 ◦C using a flow rate of 0.6 mL/min with
water + 0.1% formic acid as buffer A and acetonitrile (AE70.2, Roth) + 0.1% formic acid as buffer B.
Intensities of all 20 amino acids were measured by liquid chromatography-ESI-MS/MS on a 1290
Infinity UHPLC system coupled to a 6460 triple quadrupole mass spectrometer (Agilent Technologies,
Santa Clara, CA, USA) via an Agilent Jetstream electrospray ionization source (Agilent Technologies),
in a randomized manner. The following gradient was applied: 0.0–0.1 min at 90% B, 0.01–0.02 min to
85% B, 0.02–1 min to 75% B, 1.0–2.0 min to 40% B. Finally, the column was washed for 3 min at 50%
B and re-equilibrated for 4 min at 90% B. Total run time was set to 9 min. The applied MS settings
were: capillary voltage, 4000 V; nozzle voltage, 500 V; gas temperature, 300 ◦C; gas flow, 7 L/min;



Cancers 2020, 12, 2004 22 of 25

sheath gas temperature, 350 ◦C; sheath gas flow, 11 L/min; nebulizer pressure, 50 psi. MS/MS spectra
were acquired in dynamic multiple reaction monitoring (MRM) mode. Optimized settings and mass
spectral transitions were taken from previous reports [56].

4.21. MEK Inhibitor (Trametinib) Treatment

Ctslfl/fl and Ctsl−/− cells were seeded separately at a density of 1 × 106 and medium was
supplemented with 5 nM Trametinib (GSK1120212), every 48 h for 6 days [39].

4.22. MTT Cell Viability Assay

Cells were plated on day 5 of Trametinib treatment at a density of 1 × 104 cells per well in a 96
well transparent plate. After 24 h, 150 µL of a 1:10 dilution of the MTT reagent (#Ab146345, Abcam)
in Indicator-free full-DMEM were added. Cells were incubated with MTT reagent until DMSO was
added for detection. Absorption was measured at 570 nm and 650 nm with an Enspire Perkin Elmer
multimode plate reader.

4.23. Statistical Analysis

All quantitative data presented are reported as mean ± standard error of the mean (S.E.M.) of at
least 5 biological replicates from independent experiments. Single data points were plotted in the cases
where n < 5. n value, p value, as well as statistical test used in each analysis, are stated in the figure
legends. One or two sample Student´s t-test (two tailed) was used for comparison of the data from
experimental groups. Analysis of variance (ANOVA) followed by a post-hoc Tukey test was used for
multiple-group comparison. The two-tailed non-parametric Wilcoxon–Mann–Whitney-test was used
if data were aberrant from normal distribution. Fischer´s exact test was used to analyze categorical
data. Origin 2018R was used to plot the data as well as for its statistical analysis.

5. Conclusions

Ctsl deficiency in mammary epithelium strongly impairs lysosomal function, resulting in altered
mTOR signaling. To bypass the effects of Ctsl deficiency, Ctsl−/− cancer cells make use of alternative
growth pathways such as the MAP-kinase pathway. Taken together, our findings suggest clinically
relevant effects of a combined inhibition of Ctsl and the PI3K/MAP-kinase pathways in breast cancer
cells. Furthermore, our study indicates a cancer-cell autonomous role of Ctsl in primary tumor growth,
whereas metastasis is also dependent on Ctsl in bone marrow-derived cells.
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