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Abstract

The ‘histone code’ is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to his-
tones act like a molecular ‘code’ recognized and used by non-histone proteins to regulate specific chromatin functions. One modifica-
tion, which has received significant attention, is that of histone acetylation. The enzymes that regulate this modification are described
as lysine acetyltransferases or KATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been
actively targeted as a therapeutic target. The pro-inflammatory environment is increasingly being recognized as a critical element for
both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential and cur-
rent development of histone deacetylases for the treatment of diseases for which a pro-inflammatory environment plays important roles,
and the molecular mechanisms by which such inhibitors may play important functions in modulating the pro-inflammatory environment.
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Introduction

The ‘histone code’ is a well-established hypothesis describing the
idea that specific patterns of post-translational modifications to
histones act like a molecular ‘code’ recognized and used by non-

histone proteins to regulate specific chromatin functions [1–3]. 
One modification that has received significant attention is that of
histone acetylation. The enzymes that regulate this modification are
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described as lysine acetyltransferases or KATs [4, 5], and histone
deacetylases or HDACs (Table 1) [6]. Although originally the activ-
ities of these enzymes were thought to only occur on histones, it is
now well established that these enzymes can also alter non-histone
proteins [7, 8]. Due to their conserved catalytic domain HDACs
have been actively targeted as a therapeutic target [9, 10].

In the following sections we will describe the evidence emerg-
ing from in vitro (cell culture) and in vivo (animal models) studies
which indicate the usefulness of agents targeting HDACs in the
treatment of disease using models of cancer, diabetes and neu-
rodegenerative disease, and finish by describing the current
emerging data from human clinical trials supporting the use of
these drugs in the treatment of these diseases.

HATs/HDACs and the pro-inflammatory
environment
Inflammation is a critical component that is increasingly being
associated with cancer [11, 12], diabetes [13] and neurodegener-
ative disease [14].

Histone modifying enzymes such as histone deacetylases have
been identified as critical regulators of pro-inflammatory 

cascades. One of the best-established mechanisms identified 
concerns the roles of these enzymes in the regulation of nuclear
factor �B (NF-�B) activation, as summarized in Fig. 1. The NF-�B-
Rel family consists of five subunits, but NF-�B typically consists
of a heterodimeric protein comprising a p50 and a p65 (RelA) sub-
unit. Early studies identified the lysine acetyltransferases KAT3B
and KAT3A as key coactivators in regulating NF-�B driven gene
expression [15–17]. These interactions were found to involve the
RelA/p65 subunit. Another lysine acetyltransferase KAT13A was
found to also potentiate NF-�B transactivation through interac-
tions with the other subunit p50 [18]. Following the identification
of interactions between NF-�B and lysine acetyltransferases it was
subsequently shown that the RelA/p65 subunit could associate
with HDAC1 and HDAC2 to repress expression of NF-�B regulated
genes as well as to control the induced level of expression of these
genes [19].

It has since been shown that the histone deacetylase Sirtuin 1
(SIRT1) regulates NF-�B transactivation by physically interacting
with the RelA/p65 subunit of NF-�B and inhibiting transcription by
deacetylating a critical lysine at position 310 [20]. Both in vitro
and in vivo exposure to cigarette smoke causes dose- and time-
dependent decrease in SIRT1 protein and deacetylase activity
resulting in increased NF-�B dependent pro-inflammatory media-
tor release [21].

One of the critical regulators of NF-�B activation is I�B kinase-
� (IKK-�), where NF-�B transcription requires IKK-� to phospho-
rylate silencing mediator for retinoic acid and thyroid hormone
receptor, which stimulates the exchange of corepressor for coac-
tivator complexes. In the initial stage of NF-�B activation, follow-
ing this phosphorylation event HDAC3 is displaced, and this
allows KAT3B to acetylate RelA/p65 [22, 23].

Daxx is another protein that has been shown to regulate NF-�B
activation by binding to a region that includes the major sites of
acetylation mediated by KAT3B/KAT3A [24]. However, it must be
noted that Daxx has also been shown to directly associate with

Fig. 1 Interplay of KATs and HDACs
in the regulation of NF-�B.

Class HDAC members associated with References

I HDAC1, HDAC2, HDAC3, HDAC8 [6]

IIA HDAC4, HDAC5, HDAC7, HDAC9 [359]

IIB HDAC6, HDAC10 [360]

III SIRT 1–7 [6]

IV HDAC11 [360]

Table 1 Current classes of HDACs
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HDAC2 [25], and so may represent a mechanism by which KATs
and HDACs compete for critical lysines on NF-�B subunits. In this
regard, small ubiquitin-like modifier modification of KAT3A nega-
tively modulates its transcriptional activity by recruiting a Daxx
complex that contains HDAC2 [26].

Pro-inflammatory genes associated with NF-�B are inter-
leukins (IL)-6 and IL-8 [27–29]. NF-�B has also been shown to
utilize the lysine acetyltransferase activity of KAT3A/KAT3B to
stimulate the transcription of these genes [30]. Recently, breast
cancer metastasis suppressor 1 (BRMS1) has been shown to
decrease the transactivation potential of RelA/p65 by promoting
binding of HDAC1 to RelA/p65, where it deacetylates lysine K310
on RelA/p65, suppressing transcriptional activity [31].

For a full comprehensive review of the role of HATs and HDACs
in the regulation of NF-�B the reader is directed to the recent
review by Carine Van Lint and colleagues [32].

HATs/HDACs and 
endoplasmic reticulum (ER) stress

The ability of a cell to sense, respond to and circumvent stress is
essential for maintaining homeostasis. There are many ways in
which stress, either endogenous or exogenous, can be manifested
in a cell; these include pathogenic infection, chemical insult,
genetic mutation, nutrient deprivation and even normal differenti-
ation. The process of mutant protein folding is particularly sensi-
tive to such insults. As such for the cellular compartments in
which mutant proteins are processed and folded, there are adap-
tive programs that enable both their detection and correction for
more efficient processing [33].

The ER is a large cellular organelle comprising a network 
of interconnected, closed membrane-bound vesicles. It is the site
of synthesis, folding and modification of secretory and cell-sur-
face proteins and serves many essential functions, including the
production of the components of cellular membranes, proteins,
lipids and sterols [34]. Only correctly folded proteins are trans-
ported out of the ER while incompletely folded proteins are
retained in the organelle to complete the folding process or to be
targeted for destruction [35]. Due to the important roles of this
organelle, its proper functioning is essential to cellular homeosta-
sis. However, various conditions can interfere with the ER function
leading to ER stress. Stress is the response of any system to per-
turbations of its normal state. Thus, ER stress can arise from a
disturbance in protein folding which results in an accumulation of
unfolded or misfolded proteins within the organelle [36]. During
such disturbances, in order to carry out the correct folding of pro-
teins, the ER has evolved as a specialized protein-folding machine
with cellular mechanisms that promote proper folding of aberrant
protein, thus preventing its aggregation. Therefore, when ER
homeostasis is altered by misfolded proteins, the ER responds by
inducing the expression of specific genes in an attempt to restore
normal ER function to and maintain stability [37]. The principle

mechanisms of conformational disorders contained within the
four pillars of ER stress: (i) protein degradation, (ii) endoplasmic
overload response (EOR), (iii) unfolded protein response (UPR)
and (iv) cellular death pathway. This four-stage model of ER stress
toxicity helps explain its role in the onset of clinical manifesta-
tions. Two ER stress-induced signal transduction pathways have
been described: the UPR [38] and the EOR [39]. The function of
these pathways is to adapt to the disturbance and attempt to re-
establish normal ER function [40]. However, excessive or pro-
longed ER stress may overwhelm the cell and elicit the cell death
programme or apoptosis [41].

ER stress has been implicated as a critical component in 
diabetes [42], neurodegeneration [43, 44] and cancer [45].

The evidence linking HATs/HDACs to ER Stress is not as well
established as that for inflammation, with most studies utilising
histone deacetylase inhibitors (HDi). However, in a recent study in
hepatocytes on Mallory body (cytokeratin aggresomes) formation,
decreased lysine acetyltransferase and increased histone deacety-
lase activity was observed [46]. In a similar model of oxidative
stress induced inclusion formation, treatment of cells with 4-
phenylbutyrate was found to alleviate formation of these inclu-
sions [47].

Direct physical evidence for the association of HATs and
HDACs with critical regulatory elements within the ER stress path-
way is emerging. CHOP (C/EBP homologous protein) an ER
stress-inducible protein which plays a critical role in regulating
programmed cell death in stressed cells has recently been shown
to directly associate with the lysine acetyltransferase KAT3B, and
inhibition of HDACs prevents the degradation of CHOP [48].

Using chromatin immunoprecipitation strategies, KAT3B has
been shown to bind to the promoter for the GRP78/BiP a prosur-
vival ER chaperone gene under conditions of ER stress [49]. In
similar studies examining the promoters of ER-stress responsive
genes, histone H4 acetylation was observed to show a promoter-
specific increase following induction of stress [50].

B lymphocyte-induced maturation protein-1 (BLIMP-1) has
been shown to be associated with cellular stress and is rapidly up-
regulated during the UPR in some cellular models [51]. Of inter-
est though is that fact that this repressor protein has also been
shown to directly associate with histone deacetylases to repress
transcription [52], indicating that histone deacetylases may utilize
BLIMP-1 to down-regulate important genes during ER stress.

Initial in vitro data emerged demonstrating the efficacy of the
HDi 4-phenylbutyrate in relieving ER stress in cell line models of
cystic fibrosis [53], and also the liver disease mutant �1-
anti-trypsin Z (�1-ATZ) [54]. Since these initial observations several
studies have shown that 4-phenylbutyrate may act as a chemical
chaperone to relieve ER stress induced in models of ischaemia
[55, 56]. Similar data have emerged for models of cataract forma-
tion [57], Parkinson’s disease [58], retinitis pigmentosa [59],
glaucoma [60] and confirmation of its effects in cystic fibrosis
[61]. 4-Phenybutyrate has also been shown to relieve the ER
stress observed in diabetes, where it has been shown to reduce
ER stress and restore glucose homeostasis in a mouse model of
type 2 diabetes, by the restoration of systemic insulin sensitivity,
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resolution of fatty liver disease, and enhancement of insulin action
in liver, muscle and adipose tissues [62]. In hepatocytes, ER
stress in liver induced ischaemia is ameliorated by treatments with
4-phenylbutyrate [56]. This compound has also been shown to
have profound effects in alleviating ER tress induced by oxidative
stress in cultured hepatocytes and hepatoma cells [47], and pre-
venting ER stress mediated aggregate formation in a model of
hereditary haemochromatosis [63].

Another HDi, valproate/valproic acid (VPA), has also been
shown to have potential in the treatment of ER stress. The first
indications that this drug may be of use in the treatment of ER
stress came from studies which showed that treatment of cells
with valproate caused the up-regulation of the expression of
GRP78/BiP, a key ER-mediated chaperone [64]. Follow-up studies
subsequently confirmed that valproate could increase the expres-
sion of additional important ER stress proteins, GRP94 and cal-
reticulin [65–67]. In the same model system it was subsequently
shown that valproate protected against oxidative stress induced
protein damage and had neuroprotective capability [68–70].

The potential role of histone deacetylase
inhibitors in the treatment of cancer

Non-small cell cancer (NSCLC)

Aberrant epigenetic modifications are a frequent hallmark of can-
cer and include both DNA CpG methylation [71], and histone post-
translational modifications [72]. In NSCLC, altered patterns of
DNA CpG methylation [73] and histone modifications [74] are
found. In one study, no direct association between polymor-
phisms in histone deacetylase genes and risk of developing 
lung cancer was found [75]. Strong evidence is emerging, how-
ever, linking HDACs and their activities to NSCLC pathogenesis
and prognosis.

Chronic obstructive pulmonary disease (COPD) is a systemic
inflammatory condition of the lung frequently associated with a
higher risk of developing lung cancer [76]. A link between histone
deacetylase activities and COPD was identified when studies
revealed that in lung tissue of patients with increasing clinical
stages of COPD, graded reductions in HDAC activity, reduced lev-
els of HDAC2 protein and lower mRNA levels for HDACs 2, 5 and 8
were observed [77]. The decreased levels of HDAC2 have also been
observed in separate studies of the effects of cigarette smoking in
patients with COPD [78, 79]. Of note, in contrast, elevated levels of
HDAC1 have been observed in higher stage (stage III or IV) NSCLC
[80]. A more recent study has also observed high expression of all
class I HDACs in lung [81]. Using antibody arrays, HDAC3 protein
was found to be elevated HDAC3 in 92% of squamous cell carcino-
mas of the lung [82]. It has, however, also been observed that
decreased levels of class II HDACs have poor prognosis in NSCLC
[83]. Another histone deacetylase SIRT1 has also recently been

shown to be down-regulated in patients with COPD [84]. Most
recently aberrant histone post-translational modifications have
been shown to have prognostic value in NSCLC [74].

Decreased expression of mSin3A, a member of a multiple com-
ponent corepressor complex that contains histone deacetylases,
has also been observed in NSCLC [85]. Metastasis-associated
protein 1 (MTA-1) has recently been shown to be significantly ele-
vated in NSCLC and is strongly associated with both invasiveness
and metastasis [86]. As MTA-1 is known to associate with histone
deacetylases [87–92], this would suggest that HDAC activity asso-
ciated with MTA-1 is involved with NSCLC invasiveness and
metastasis.

Mutations within the lysine acetyltransferase KAT3A have also
been identified in a small subset of NSCLC [93]. The importance
of lysine acetyltransferase activity in lung development has been
shown in mouse studies, where HATs were shown to be highly
expressed in the developing lung [94–96], and confirmation of
their importance in lung development came from KAT3B knockout
studies [97]. Evidence is also emerging that histone deacetylases
play important roles in the developing lung. Recently a home-
odomain protein (HOP), which in the cardiac system associates
with HDAC2 to repress cardiac-specific genes, was observed to be
present in airway epithelium along with HDAC2. HOP was shown
to represses lung-specific gene expression in an HDAC-dependent
manner, and loss of HOP expression in vivo resulted in defective
type 2 pneumocyte development [98].

The data emerging clearly show that HDACs and their activities
play important roles in lung, and may also be important in the
development of lung disease. As such they may also prove to be
important therapeutic targets.

In vitro evidence for targeting HDACs in NSCLC
The potential for therapeutic targeting of HDACs in NSCLC has
been extensively studied in vitro using HDi. Some of the earliest
reports examining the effects of sodium butyrate on lung cell lines
demonstrated both cell growth effects and altered DNA hyperme-
thylation [99, 100]. In a Lewis lung carcinoma cells study, sodium
butyrate was found to enhance the lung-colonizing ability of these
cells [101]. Despite having adverse effects on growth and lung
colonization, a subsequent study found that sodium butyrate
potentiated DNA radiation sensitivity.

In contrast to the data obtained in 1986, a later study on trans-
formed human lung fibroblasts found a dose-dependent induction
of apoptosis and reduction in cell numbers after exposure to
sodium butyrate [102]. Sodium butyrate was also shown to
greatly enhance the antiproliferative effect in vitro and in vivo of
interferon-� (IFN-�) on several human lung adenocarcinoma cell
lines [103].

With the development of more sophisticated HDi, multiple stud-
ies have set out to examine the potential of HDi either alone or as
combinatorial agents for the treatment of NCSLC. One of the first
such studies, examined the effect of trapoxin on lung cancer cells,
and found significant cell cycle arrest and apoptosis following
treatment [104]. Further evidence for the potential of HDi in the



830 © 2009 The Authors
Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

treatment of lung cancer came from studies using suberoylanilide
hydroxamic acid, SAHA (vorinostat), which was found to have
chemopreventative efficacy against a tobacco-specific carcinogen
model of lung tumourigenesis [105], and has also been shown to
have growth inhibitory activity against NSCLC cell lines [106].

Trichostatin A (TSA) is another HDi that has been extensively
studied as a potential therapeutic agent in the treatment on
NSCLC. When the response of this drug against four NSCLC cell
lines was compared against a normal lung fibroblast tenfold
greater growth inhibition was found in the cancer cells, along
with significant up-regulation of p21 [107]. TSA was shown to
increase the expression of RECK and attenuate matrix metallopro-
teinase expression in lung cancer cells indicating HDi may help to
prevent lung cancer cell invasion [108]. Death-associated protein
kinase (DAPK) is a pro-apoptotic serine/threonine kinase involved
in apoptosis, which is frequently down-regulated in NSCLC, and
TSA has been shown to restore expression of DAPK in several
NSCLC cell lines [109]. Loss of E-cadherin expression in NSCLC
is also associated with de-differentiation, invasion and metasta-
sis. WNT7a has been shown to regulate E-cadherin expression
via a �-catenin specific mechanism or via a positive feedback
loop, and loss of expression of WNT7a is a frequent event in
NSCLC. In NSCLC cells E-cadherin and WNT7a expression was
restored following treatment of cells with TSA [110]. RhoB is a
small GTPase that is frequently down-regulated in NSCLC, and
trapoxin was shown to significantly up-regulate the expression of
RhoB in NSCLC cells [111], a finding subsequently confirmed
using TSA [112]. Apoptosis induced by TSA in NSCLC cells has
been shown to be associated with inhibition of cyclooxygenase 2
[113]. At the same time HDAC inhibitors such as sodium
butyrate, scriptaid, apicidin and oxamflatin have also been shown
to up-regulate the expression of 15-hydroxyprostaglandin dehy-
drogenase (15-PGDH), a potential cyclooxygenase-2 (COX-2)
antagonist in a time and concentration dependent manner in
NSCLC cells [114].

A study testing the HDi (SAHA, TSA and sodium butyrate)
demonstrated that the apoptotic response seen in NSCLC cells in
response to HDi occurs via induction of caspase-3 activity [115,
116]. Critically, activation of the NF-�B pathway via tumour necro-
sis factor-� (TNF-�) has been shown to be abrogated in NSCLC
cell lines by TSA by down-regulating the mRNA and protein of its
cognate receptor [117].

Another HDi romidepsin (FK228, FR901228, depsipeptide) was
shown to affect NSCLC cell line tumour growth [118], and affect
matrix metalloproteinase (MMP) expression in a manner similar to
that observed for TSA. When administered to NSCLC cell lines
romidepsin significantly decreased the expression of MMP-2 and
MMP-9 in cells [119]. Treatment of NSCLC cells with romidepsin
has also been shown to result in increased p21 and phosphory-
lated retinoblastoma protein (pRb) [120]. NVP-LAQ824 is another
histone deacetylase that has been shown to inhibit cellular prolif-
eration in lung cancer cells [121]. The oral histone deacetylase
compound CI-994 (N-acetyldinaline) has also been studied in
NSCLC cell lines, and found to have cytostatic properties [122].
Another synthetic HDi (SK-7041) has now been shown to have cell

growth inhibitory properties greater than SAHA (vorinostat) in
human lung cancer cell lines with lesser effects on normal human
bronchial epithelial cells [123].

Combinatorial therapies involving HDi in NSCLC
Synergy between inhibitors of DNA methyltransferases and histone
deacetylases in the re-expression of genes silenced in colorectal
cancer cell lines was established in 1989 [124]. Similar studies
demonstrated the same synergies between Hdi and DNA methyl-
transferase inhibitors in NSCLC cell lines [125–127], and also have
been found to suppress tumorigenicity in NSCLC xenograft models
but only when the tumours were small, and did not affect large
well-established tumours. This may have important consequences
for the use of HDi within the clinical setting [128]. Combined treat-
ment using the HDi 4-phenylbutyrate and the DNA methyltrans-
ferase inhibitor 5-aza-2�-deoxycytidine, was shown to prevent
tobacco carcinogen-induced lung cancer in wild-type mice [129].

A retinoid compound with the properties of retinoic acid (RA)
and sodium butyrate (HDi) called (4-BPRE) was found to have
greater cytotoxicity in A549 lung adenocarcinoma cells that RA
alone indicating that this might be a good dual therapy for the
treatment of NSCLC [130]. A further combinatorial treatment,
which appears to have efficacy in NSCLC lung cancer cell lines, is
a combination of a proteasome inhibitor (bortezomib) and an HDi.
Initial studies using sodium butyrate as the HDi found that this
combination could increase apoptosis 3- to 4- fold in NSCLC cell
lines [131]. A follow up study using SAHA/vorinostat as the HDi,
demonstrated that the increased efficacy of this combination
(botezomib/SAHA) was due to a synergistic increase in reactive
oxygen species [132].

Using a compound that targets the activation of the NF-�B
pathway has also been examined in combination with the HDi
SAHA. In this study it was found that the combination of these two
compounds significantly induced more apoptosis and cell death
than either drug alone [133], while a combination of a protein
kinase C inhibitor (calphostin C) and a HDI (TSA) found that
approximately 90% to 96% of NSCLC cells under-went apoptosis
after exposure to this combination [134].

Tumour necrosis factor-related apoptosis-inducing ligand
(TRAIL) is another compound that initially showed promise as a
potential treatment for cancer. However, it has proven ineffective
at inducing cell death when applied as a single agent. In one study,
A549 lung carcinoma cells co-exposed to TRAIL and SAHA,
sodium butyrate or TSA underwent substantial apoptosis [135].
VPA is another compound which also has HDi activity and a com-
bination of this and TRAIL resulted in increased sensitization of
cultured NSCLC cells to Apo2L/TRAIL, resulting in a 4- to �20-
fold reduction of Apo2L/TRAIL IC50 values in combination-treated
cells. As stand alone agents, VPA or Apo2L/TRAIL induced less
than 20% cell death, whereas in combination they caused 60% to
90% apoptosis of NSCLC cells.

Using a combination of SAHA and gemcitabine in NSCLC cell
lines sequential treatment offered no improvement over concur-
rent treatment, whereas combined treatment showed enhanced
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apoptosis [136]. Similar results have also been observed for a
combination utilising phenylbutyrate [137].

The efficacy of a combination of HDi (sodium butyrate) and a
phosphatidylinositol 3-kinase/Akt inhibitor (LY294002) in NSCLC
has also been demonstrated both in vitro and in vivo, where it was
found that this combination was tumoristatic [138]. Similar results
were observed when using a combination of a multiple receptor
tyrosine kinase inhibitor AEE788 and HDi. When NSCLC cells were
treated with AEE788 and HDAC inhibitors (LBH589, NVP-LAQ824
and TSA) in combination synergistic induction of apoptosis was
observed which correlated with increased reactive oxygen species
accumulation [139]. Similar studies using Romidepsin in combina-
tion with the kinase inhibitors AG1478, AG825, PD98059 and
LY294002 found markedly enhanced FK228-induced apoptosis in
NSCLC cells [140]. Romidepsin was also found to enhance the
antitumour effects of an adenoviral telomerase-specific replication-
selective agent (OBP-301) on NSCLC cell lines [141].

The bombesin/gastrin-releasing peptide receptor antagonist
PD176252 was found to have enhanced inhibitory activity in lung
cancer cell lines when combined with the HDi MS-275 [142].

Increased radiation sensitivity has been observed for a novel
HDi (LBH589) targeting the classes I and II HDACs. Clonogenic
survival showed that there was a greater than additive effect when
LBH589 was administered prior to irradiation compared with irra-
diation alone. Subsequent in vivo tumour volume studies showed
a growth delay of 20 days with combined treatment compared
with 4 (radiation) and 2 days (LBH589) [143]. A similar increase
in radiation sensitivity has also been observed in lung cancer cells
treated with the HDi (NVP-LAQ824) [144].

Activating mutations of the epidermal growth factor receptor
(EGFR) play critical roles in NSCLC survival, and have led to the
development of targeted therapies [145]. A study examining a com-
bination of the EGFR tyrosine kinase inhibitor erlotinib in combina-
tion with the HDi LBH589 found synergistic effects on lung cancer
cells dependent on EGFR for growth and/or survival, and triggered
apoptosis only in lung cancer cells which harboured EGFR muta-
tions indicating that HDi treatments in NSCLC may prove to be of
benefit to those patients which harbour EGFR mutations [146].

Another combinatorial treatment which shows efficacy in
NSCLC cell lines involves TSA and etoposide, where co-treatment
with these drugs induced apoptotic cell death in drug-resistant
NSCLC cells, extending the notion that HDAC inhibitors in combi-
nation with conventional chemotherapeutic drugs could be a valu-
able therapeutic option in the treatment of NSCLC cancer [147].

Finally, a combination of an anti-inflammatory drug Sulindac,
and SAHA has been shown to significantly enhance growth sup-
pression and apoptosis in a NSCLC cell line, primarily through an
enhancement of mitochondrial membrane potential collapse,
release of cytochrome c and caspase activation [148].

Hepatocellular carcinoma (HCC)

Another cancer for which strong evidence exists linking the activ-
ities of lysine acetyltransferases and histone deacetylases to dis-

ease is HCC. In agreement with NSCLC, altered patterns of both
DNA CpG methylation [149], and histone modifications [150] have
also been observed in HCC.

We initially described the overexpression of histone deacety-
lases in the paediatric liver tumour hepatoblastoma [151]. Recent
studies have shown that in patients with HCC high expression of
HDAC1 was correlated with a higher incidence of cancer cell inva-
sion into the portal vein, a poorer histological differentiation, a
more advanced tumour node metastasis stage and had poorer
prognosis [152]. In a gene microarray analysis of HCCs poor
prognosis was observed for a subset of patients, which had ele-
vated levels of various histone, modifying enzymes including
HDAC2 [153]. Further evidence for the importance of histone
deacetylases in the liver comes from transgenic mice overex-
pressing HDAC1. These mice exhibit a high incidence of hepatic
steatosis [154]. As non-alcoholic steatohepatitis frequently
develop HCC [155], this would indicate that overexpression of
HDAC expression may play a critical role in HCC pathogenesis.
Other histone modifying complexes have been shown to be
strongly associated with HCC including histone methyltrans-
ferases (SMYD3) [156, 157], while a subunit of the TFTC/STAGA
histone acetyltransferase complex has also been shown to be
deregulated in HCC [158]. Finally, metastatic tumour antigen 1
MTA1 is another gene frequently overexpressed in HCC
[159–161]. This protein has been shown to associate with vari-
ous histone deacetylase complexes and further links aberrant
chromatin remodelling activities to HCC [88, 91, 92].

In vitro evidence for the use of HDi in liver cancer
We initially indicated that TSA might have use as a therapeutic
modality in the treatment of HCC. Treatment of HCC cell lines
with TSA was found to dramatically increase the expression of
cyclin dependent kinase inhibitors, insulin-like growth factor
binding protein-3 and transforming growth factor � (TGF-�),
the overexpression of which are commonly associated with cell
cycle arrest and/or apoptosis [162, 163]. TSA and sodium
butyrate were subsequently shown to decrease telomerase
activity in hepatoma cell lines in addition to decreasing cellular
proliferation [164]. TSA was shown to increase the activation of
caspase-3 and promote apoptosis in hepatoma cells [165, 166].
Using gene microarray profiling, we and others have examined
the global gene expression changes for several HDi in hepatoma
cells and identified many genes functionally altered following
treatments of HDi [167–170]. Proteomic analysis of hepatoma
cells treated with SAHA identified 55 differentially expressed
proteins of which 34 were subsequently identified using mass
spectrometry analysis [171]. We also demonstrated the efficacy
of 4-phenylbutyrate in inducing apoptosis and tumour remis-
sion in hepatoma tumour xenografts [172]. Similar results were
obtained for the HDi HA-But. This is a butyric acid coupled to
hyaluronic acid via an esterification, and which has strong affin-
ity for the CD44 membrane receptor. Most importantly, this
compound had strong uptake into liver and was able to prevent
hepatic metastases in a xenograft model in vivo [173]. Recently
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a new phenylbutyrate-derived HDi has been developed which
shows strong antitumour activity in hepatoma models both in
vitro (cell line) and in vivo (xenograft) even in xenografts with
high tumour burden (�500 mm3) [174].

Treating hepatoma cells with sodium butyrate researchers
demonstrated that MMP-1 was being down-regulated, which
correlated with a decreased ability to invade a matrigel assay
[175]. Other HDi have also been shown to induce apoptosis in
hepatoma cells including VPA and ITF2357 [176], while in onco-
genically Ras-transformed rat liver epithelial (WB-Ras) cells,
treatment of the cells with sodium butyrate caused the cells to
undergo apoptosis and correlated with down-regulation of Ras-
specific proteins [177]. Hepatoma cells pre-treated with VPA
induce the expression of ligands that activate NK cell receptors
and consequently mediate natural killer cell-mediated lysis of
hepatoma cells [178].

Combinatorial treatments involving HDi in hepatoma
Similarly to NSCLC, epigenetic targeting using a combination of
HDi and demethylating agents have shown promise in an in vivo
xenograft hepatoma model [179]. For instance, a triple combina-
tion of SAHA, irinotecan and 5-flurouracil (5-FU) led to a signifi-
cant induction of apoptosis and cell death in hepatoma cells (92%
after 72 hrs). Significantly, the double combination of irinotecan
and 5-FU only led to a moderate increase in apoptosis and prolif-
eration inhibition [180].

VPA has also been used to sensitize hepatoma cells to apopto-
sis in combination with the chemotherapy drug epirubicin [181].
Another study using VPA or another HDi (ITF2357) found that a
combination of TRAIL and VPA or ITF2357 was able to selectively
overcome the resistance of HCC cells toward TRAIL-mediated
apoptosis [182]. Similarly to the effects seen for NSCLC cell lines,
combinations of SAHA and bortezomib synergistically enhance
apoptosis and cell death in hepatoma cells [183].

Potential role of histone deacetylase
inhibitors in the treatment of diabetes

Within diabetes pathogenesis, HATs and HDACs can be envi-
sioned as affecting the expression of critical subsets of genes
via three central mechanisms. At a basic level, the activities of
these enzymes can affect chromatin at target genes themselves,
and any alterations or disruptions of their activities could con-
sequently lead to aberrant transcription of such genes.
Alternatively, several proteins, which have been identified as the
causative factors in monogenic autosomal dominant forms of
type two diabetes (MODY, maturity onset diabetes of the
young), have also been shown to associate with HATs/HDACs
[184]. Indeed some of the mutations identified in these proteins
result in loss of association with HATs/HDACs, or lead to a loss

in HAT enzymatic activity [184]. There is an intimate network of
associations between MODY proteins and consequently these
mutant autosomal dominant conditions have aberrant regula-
tion of critical downstream genes, which ultimately leads to the
development of diabetes. Finally, the activities of HATs and
HDACs are not limited to histones as they often directly modify
transcription factors and regulatory proteins [7]. Alterations to
the activities of HATs/HDACs may functionally result in the aber-
rant regulation of transcription of sets of target genes in dia-
betes pathogenesis.

Disease models, knockouts and assays

Currently, no direct models exist to test the hypothesis that his-
tone deacetylases are directly involved in diabetes pathogene-
sis. Some evidence has emerged for a role of HATs/HDACs in
this disease comes from a mutant mouse model of a lysine
acetyltransferase KAT3A. In this model, mice heterozygous for
mutated KAT3A demonstrate increased insulin sensitivity and
glucose tolerance even while demonstrating marked lipodystro-
phy of white adipose tissue [185]. Other indications that
HATs/HDACs may be important therapeutic targets for diabetes
come from studies on their roles in the TGF-� signalling path-
way [184]. The TGF-� signalling pathway has well-established
associations with HATs/HDACs and many of its downstream sig-
nalling processes including the signal transducer and activator
of transcription (STAT) proteins have been linked to diabetes
and links between TGF-�, STATs, HATs and HDACs well estab-
lished [184].

Additional important evidence for the role of HATs and HDACs
in diabetes comes from studies in both adipocyte and pancreas
development, and due to space constraints the reader is directed
to the following review on this topic [184]. Finally, a recent patent
filed by Biovitrum AB has shown that in mouse models of insulin
resistance, an interaction between insulin receptor substrate
(IRS)-1 and HDAC2 occurs, which is absent in mouse models that
have insulin sensitivity [186].

Pancreatic islet protection using histone 
deacetylase inhibitors

Several recent publications have demonstrated the ability of Hdi to
protect pancreatic � cell apoptosis. In various diabetes models,
nicotinamide has frequently been observed to both ameliorate
and/or, accelerate the reversal of diabetes and prevent irreversible
B-cell damage [187–190]. However, the European Nicotinamide
Diabetes Intervention Trial (ENDIT) clinical trial assessing whether
the pre-treatment with nicotinamide of non-diabetic individuals
predisposed to the development of diabetes could prevent or delay
clinical onset of diabetes was ineffective at the dose used [191],
but did however reduce high secretion of IFN-gamma in high-risk
individuals [192]. Insulin-secreting cells exposed long-term to
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either nicotinamide or sodium butyrate were found to have
reduced viability and insulin sensitivity, yet enhanced insulin
secretory responsiveness to a wide range of � cell stimulators
[193]. Most recently, both TSA and SAHA were shown to prevent
cytokine-induced toxicity in pancreatic � cells [194].

Additional in vitro evidence

Cell culture experimental systems are generating further evidence
that Hdi may play important roles in targeting diabetes pathogen-
esis. A recent European patent has demonstrated that HDAC2
functionally associates with IRS-1, and that insulin sensitivity
could be restored to a cell culture model of insulin resistance
through the use of TSA [186]. Another example involves the
restoration of mutant low-density lipoprotein receptor functional-
ity using 4-phenylbutyrate [195]. As previously discussed the HDi
4-phenylbutyrate has been shown to have profound effects on
relieving ER stress in a mouse model of diabetes, which resulted
in improved glucose homeostasis [62].

Stem cells, HDACs and histone deacetylase
inhibitors

A currently hotly pursued therapeutic avenue for diabetes centres
on embryonic stem (ES) cell technology [196]. Evidence is emerg-
ing indicating that histone deacetylases may be an important con-
sideration in the development of this technology. Indeed histone
deacetylase activity has been shown to be required for ES cell dif-
ferentiation [197]. The importance of HDAC inhibitors in differen-
tiating ES cells in general has been reviewed recently elsewhere
and the reader is directed to the following reviews [198, 199].

Nicotinamide, a SIRT-specific inhibitor, was also used to differ-
entiate ES cells into structures resembling pancreatic islets and
which secreted insulin [200]. More recently, under appropriate
culture conditions, Bone marrow stem cells (BMSC) cultured in
the presence of the HDi TSA differentiated into islet-like clusters
similar to the cells of the islets of the pancreas and capable of
secreting insulin [201]. Using BMSCs derived from diabetic
patients, similar results were obtained using Nicotinamide as one
of the final steps in the differentiation process [202].

Two recent articles have utilized the HDi sodium butyrate to (i)
stimulate early pancreatic development in ES cells [203] and (ii)
generate Islet-like clusters from human ES cells grown under
feeder-free conditions [204]. Finally, Scharfmann and colleagues
have used various HDi to demonstrate that these enzymes are
responsible for the timing and determination of pancreatic cell
fate, by promoting the NGN3 pro-endocrine lineage leading to an
increased pool of endocrine progenitors and modified endocrine
sub-type lineage choices. Treatment of cells with TSA or sodium
butyrate also enhanced the pool of � cells [205]. These results
clearly demonstrate the potential of HDi in expanding pancreatic �
cells from a stem cell population.

The potential role of histone 
deacetylase inhibitors in the treatment
of neurodegenerative conditions

Neuronal traits are modulated by HDAC/REST
complexes

A study carried out in 1975 examined the acetylation status of his-
tones in neuronal fractions [206]. Most recently it has now been
demonstrated that HDACs play important roles in both neuron dif-
ferentiation [207], expression of neuron-specific genes [208], and
indeed regulate diverse cues such as maternal grooming [209],
and addiction [210].

One of the best-established mechanisms in neurons involving
HDACs concerns genes that are controlled by a specific protein
repressor, neuron restrictive silencing transcription factor (NRSF,
also known as REST) [211]. REST contains two distinct repressor
domains, one located at the N-terminus and the other at the 
C-terminus of the protein and several distinct neuronal repressor
complexes have now been isolated containing both REST and
HDACs [211]. REST also associates with a novel protein called
CoREST that interacts with HDACs to actively repress genes essen-
tial for neuronal phenotype [212]. The ATP-dependent remodelling
complex SWI/SNF also plays a role in REST-mediated neuronal
gene regulation, as it has recently emerged that CoREST recruits
several SWI/SNF members, indicating that active chromatin
remodelling is an element in REST-mediated repression [213, 214].
CoREST complexes have also been shown to contain lysine
methyltransferases, and recently an LSD1-CoREST-CtBP corepres-
sor complex was shown to be required for late cell-lineage deter-
mination and differentiation during pituitary organogenesis [215].

Class II and Class III histone deacetylases also play pivotal
roles in the proliferation and differentiation of neurons. SIRT1 has
also been shown to protect primary cultures of cerebral granule
neurons from FOXO induced cell death, while inactivation of a
MEF2D/HDAC5 complex by depolarization-mediated calcium
influx protects cerebellar granule neuron survival [211].

E2F, HDACs and neuronal survival mechanisms

An essential feature for neuronal survival has also been linked to
constitutive repression of E2F1 transcriptional activity through
HDAC proteins. Elevated levels of E2f1 lead to neuronal apoptosis
and enhanced immune cell proliferation, factors that could be
deleterious in MS [211]. Using microarray analysis enhanced E2F
pathway transcription was observed in the peripheral blood
mononuclear cells from multiple sclerosis (MS) patients [216].
Subsequently, we demonstrated that HDAC inhibitors reduce lev-
els of E2f class I proteins in vivo [217]. These observations may
therefore help to explain why HDAC inhibitors, block immune cell
proliferation [218] and enhance neuronal survival [219].
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HDACs play important roles in stem cell neuronal
differentiation

HDACs have also been shown to play important roles in neuronal
stem cell (NSC) differentiation. Using ‘dominant negative’ stem cell
lines expressing mutant, Flag-tagged HDACs with reduced enzymatic
activity, Howard and colleagues found that mutant HDAC1 reduced
differentiation to neurons by 50% [220]. The importance of HDACs
in neuronal differentiation has also been demonstrated using HDAC
inhibitors. In an in vitro study on the effects of the HDAC inhibitor
TSA on the differentiation pattern of embryonic mouse NSCs during
culture in a minimal, serum-free medium, it was found that under
these conditions TSA treatment increased neuronal differentiation of
the NSCs and decreased astrocyte differentiation [221]. In lineage-
committed oligodendrocyte precursor cells inhibition of HDAC activ-
ity in these cells acted as a priming event in the induction of devel-
opmental plasticity [222]. A similar study examining the ability of
oligodendrocyte progenitors to acquire the identity of myelin-
expressing cells or choose alternative fates found that the activity of
histone deacetylases was critical to these processes [223].
Emphasizing this finding, the transcription factor Yin Yang 1 (YY1)
was shown to be a critical regulator of oligodendrocyte progenitor
differentiation, acting as a lineage-specific repressor of transcrip-
tional inhibitors of myelin gene expression (Tcf4 and Id4), through
the recruitment of histone deacetylase-1 to their promoters during
oligodendrocyte differentiation [224]. These studies underline the
importance of HDACs in neuronal differentiation.

A direct role for histone deacetylases in the regulation of neural
stem cell proliferation has been shown where the orphan nuclear
receptor TLX, a critical regulator of stem cell proliferation was found
to associate with HDAC3 and HDAC5. Inhibition of HDAC activity or
knockdown of HDAC expression led to marked induction of TLX tar-
get gene expression and dramatically reduced neural stem cell pro-
liferation [225]. REST is also critically involved with neural stem cell
differentiation. Activation of REST is sufficient to cause neuronal dif-
ferentiation [226]. REST complexes are able to both silence and
repress neuronal genes in embryonic neural stem cells through the
creation of chromatin environments that contain both repressive
and active local epigenetic signatures [212, 227, 228].

It is now well established that several neuronal conditions can
be linked to aberrant activities of lysine acetyltransferases and
deacetylases including Huntington’s disease, Rubinstein-Taybi
syndrome, spinocerebellar ataxia type 1, spinocerebellar ataxia
type 3, Alzheimer’s, Parkinson’s, spinal muscular atrophy, and
amyotrophic lateral sclerosis [211, 229–239].

Histone deacetylase inhibitors

SAHA has been the first directed HDi which has been FDA
approved for the treatment of advanced primary cutaneous T-cell
lymphoma [240]. In the following sections we will discuss the
pharmacological and clinical data emerging from clinical trials

using HDi (Table 2). Furthermore we will also discuss one of the
issues emerging within the literature on whether the therapeutic
efficiency of HDi is via transcriptional mechanisms, or through
their ability to enhance chaperone activity.

• Initial pharmacological and clinical data
Several studies have attempted to examine the pharmacologi-

cal clearance of HDi. Initial studies on TSA showed that it under-
goes intensive phase I biotransformation in rat hepatocytes, which
has important consequences for its potential development as a
drug, as this will lead to poor in vivo bioavailability of this drug
[241]. These results were subsequently confirmed in a mouse
model using intraperitoneal administration of TSA [242].

In human liver microsomes, the metabolism of FK228
(romidepsin) has also been investigated. This compound gets
metabolized rapidly into at least 10 metabolites at a Vmax 561.9
pmol/min./mg protein [243]. Hepatic clearance of apicidin has
also been examined and an intrinsic Vmax of 927.0 ng/min/mg
determined for human hepatic microsomes. In contrast another
HDi MS-275 shows markedly little metabolism indicating that this
is a minor of elimination for this drug [244].

• Current trials
Several HDi have undergone both phase I/II clinical trials as

anticancer agents [245], and as previously mentioned SAHA
(vorinostat) has been FDA approved for the treatment of cutaneous
T-cell lymphoma. As these trials proceed, greater understanding of
the potential side effects and dose-limiting toxicities (DLTs) of
these drugs begins to emerge. For the most part these first gener-
ation inhibitors have shown well-tolerated safety profiles.

SAHA (vorinostat)

Several phase I clinical trials of vorinostat in solid and haemato-
logical tumours have been completed. In initial trials this drug was
introduced intravenously and the most significant DLTs observed
were leukopenia and thrombocytopenia [246]. An oral version of
vorinostat was subsequently developed and phase I trials were
found to have linear pharmacokinetics from 200 to 600 mg, with
an apparent half-life ranging from 91 to 127 min. and 43% oral
bioavailability [247]. Following the development of this oral form,
a phase I trial was conducted in patients with mesothelioma.
Similar toxicities to the original phase I trials were observed pri-
marily fatigue, dehydration, nausea, and vomiting. Of four patients
who completed greater than six cycles of therapy, two showed
partial responses, which have led to a placebo-controlled, ran-
domized phase III study of oral vorinostat for mesothelioma
patients for whom treatment with pemetrexed has failed [248]. A
phase II trial of vorinostat for refractory cutaneous T-cell lym-
phoma (CTCL) demonstrated both partial responses and ruritus
relief, with limited toxicities of fatigue, thrombocytopenia, diar-
rhoea and nausea [249], and went on for further development.
Following the completion of a single-arm, open-label, multi-centre
pivotal trial and 11 other trials, clinical efficacy was assessed.
Vorinostat showed activity in CTCL, and skin responses were a
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clinical benefit, and vorinostat was subsequently approved for
treatment of cutaneous manifestations of CTCL [250]. A phase II
trial of vorinostat has also been completed in patients with recur-
rent and/or metastatic head and neck cancer. In this trial, 12
patients received 400 mg once daily. Three patients had stable dis-
ease ranging from 9 to 26 weeks. Nine patients discontinued due
to progressive disease, two withdrew consent, and one discontin-
ued therapy for grade 3 anorexia. Overall, vorinostat was generally
well tolerated but did not demonstrate efficacy as defined by
tumour response [251]. In an open centre early phase II trial of
oral vorinostat, patients with measurable, relapsed or refractory
breast or non-small cell lung cancer who had received �/� 1
prior therapy or colorectal cancer who had received �/� 2 prior
therapies were enrolled. Oral vorinostat (200, 300 or 400 mg) was
taken twice daily for 14 days,  followed by a 7-day rest until disease
progression or intolerable toxicity was conducted, and the
response rate, safety and tolerability were evaluated. Of the 16
patients recruited no DLTs were observed at 200 mg. Disease sta-

bilization was observed in eight patients, but there were no con-
firmed responses [252].

Phenylbutyrate

Phenylbutyrate is another HDi for which several clinical trials have
been carried out. When taken orally, the most common toxicities
observed are grade 1–2 dyspepsia and fatigue [253]. Two phase I
studies found that the DLTs included reversible neurocortical toxicity
characterized by somnolence and confusion [254–256]. In a phase I
study of sodium phenylbutyrate on patients with Huntington’s dis-
ease, toxicities observed at the higher doses included vomiting, light-
headedness, confusion and gait instability, but with no significant
laboratory or electrocardiographic abnormalities [257].

Several trials testing phenylbutyrate on spinal muscular atro-
phy (SMA) have been carried out. The results of these studies

Drug HDACs targeted Phase Method of delivery Dosage range Adverse reactions

Panobinostat
(LBH589)

Class I, II I Oral 20 mg/m2 Grade 3 diarrhoea

MGCD0103 Class I I Oral 60 mg/m2 Fatigue, nausea, vomiting and 
diarrhoea

Vorinostat Class I, II FDA approved Oral 200–600 mg/m2 Fatigue, dehydration, nausea and 
vomiting

MS-275 Class I II Oral 2–6 mg/m2 Hypophosphatemia, hyponatremia and
hypoalbuminemia

VPA Class I II Oral 60 mg/kg/day Grade 3, 4 neurocognitive impairment

Phenylbutyrate Class I,II I/II
Oral and intravenous
(i.v.) infusion

60–360 mg/kg/day

Reversible neurocortical toxicity char-
acterized by somnolence and confu-
sion, short-term memory loss, seda-
tion, confusion, nausea and vomiting

Pivanex (AN-9) II i.v. infusion 2.34 g/m2/day

Nausea, vomiting, hyperglycaemia,
fatigue, diarrhoea and visual com-
plaints

CI-994 Class I I/II Oral 4–6 mg/m2/day

Thrombocytopenia, fatigue, nausea,
vomiting, diarrhoea, constipation and
mucositis

Belinostat (PXD101) Class I, II I/II i.v. infusion 1000 mg/m2/day
Nausea, vomiting, fatigue and flushing
atrial fibrillation

Two cases of grade 4 renal failure

Romidepsin Class I I/II i.v. infusion 10–26 mg/m2
Reversible cardiac dysrhythmias 
and non-specific ECG abnormalities
thromocytopenia

Table 2 Clinical parameters from clinical trials using HDi as single agents
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found that the major side effect was a temporary stomach ache
[258, 259]. Unfortunately, in a randomized, double-blind, placebo-
controlled trial of phenylbutyrate in spinal muscular atrophy no
significant improvements were observed [260]. However, it must
be noted that in this trial, SMA patients were treated for only 13
weeks, and this may be too short a treatment period to identify any
clinical benefit from PB. However, other trials continue to show
further evidence that phenylbutyrate may have efficacy in the treat-
ment of disease. In a phase I dose-escalation study in cystic fibro-
sis, a statistically significant induction of chloride transport was
observed, with minimal adverse reactions [261].

Phenylbutyrate has also been used in phase I clinical trials for
solid tumours. In this trial common adverse effects included grade
1 nausea/vomiting, fatigue and light-headedness, and the DLTs
observed were short-term memory loss, sedation, confusion, nau-
sea and vomiting. The maximum tolerated dose (MTD) was 300
mg/kg/day, and three of the twenty-one patients enrolled achieved
stable disease [262]. A dose escalation study of oral phenylbu-
tyrate has also been carried out in patients with recurrent malignant
glioma. In agreement with the trials presented above, fatigue and
somnolence were the worst toxicities observed. Of the twenty-
three patients enrolled one patient had a complete response for 5
years [263].

Valproic acid

VPA has also entered clinical trials as a stand-alone agent in
patients with advanced refractory cancer. Dose escalation was car-
ried out in three-patient cohorts on twenty-six pre-treated
patients. The MTD of infused drug was found to be 60 mg/kg/day,
and the DLT was found to be grade 3 or 4 neurological side effects
occurring in 8 out of 26 patients [264]. A phase II trial of VPA has
also been completed in patients with castration-resistant prostate
cancer. However, VPA was not found to be well tolerated by this
cohort, and could not be administered reliably in order to achieve
consistent levels or duration, and it was concluded that oral VPA
is not recommended for prostate cancer [265].

In a phase I trial of continuous oral VPA for maintenance treat-
ment in heavily pre-treated paediatric glioma patients, moderate
tumour efficacy was observed [266]. VPA also shows potential in
the treatment of neurodegenerative conditions. In a phase I trial of
VPA on patients with human T-lymphotropic virus type 1 (HTLV-1),
which is responsible for HTLV-associated myelopathy/tropical
spastic paraparesis, clinical efficacy was observed. 16 patients
were recruited and VPA was administrated orally at a maximal
dose of 20 mg/kg/day. There was a significant drop in patient viral
load from month 0 to month 3, and for the first time provides evi-
dence that VPA leads to depletion of HTLV-1-infected cells in vivo
[267]. The Project Cure SMA team has just completed the phase
II CARNI-VAL clinical trial examining the effects of a combinator-
ial treatment of VPA and carnitine on SMA (http://www.fsma.org),
but the results of this trial have yet to be disseminated to the
greater scientific community.

AN-9

The drug Pivanex (AN-9) has completed both phase I and II clini-
cal trials for advanced solid malignancies. No significant DLTs
were observed in the phase I study and mild to moderate reactions
included nausea, vomiting, hyperglycaemia, fatigue, diarrhoea and
visual complaints [268, 269]. During the phase II trial, similar tol-
erance was observed, with the worst effects including fatigue and
hypokalemia [269].

CI-994

For the inhibitor CI-994 several phase I studies have been com-
pleted. The principal DLT observed for all trials was thrombocy-
topenia, but other side effects observed included nausea, vomiting
diarrhoea and mucositis [270–273].

Romidepsin

The HDi romidepsin has completed several phase I clinical trials
on cancer and has also entered/completed phase II trials. In the
phase I trials the major DLTs for this drug was again thromocy-
topenia. However, for this drug a significant increase in reversible
cardiac dysrhythmias and non-specific ECG abnormalities were
observed [274–276]. In a phase I dose-escalation trial of
romidepsin in paediatric solid tumours romidepsin was adminis-
tered as a 4-hr infusion weekly for three consecutive weeks every
28 days at dose levels of 10, 13, 17 and 22 mg/m2. Of the 24
patients enrolled, 18 could be assessed for toxicity. In agreement
with the other phase I trials non-specific reversible ECG abnormal-
ities were observed. Of the 18 patients three achieved long-term
stable disease. For phase II trails the recommended dose was
determined to be the recommended phase II dose in children with
solid tumours is 17 mg/m2 [277].

A second phase I trial in patients with acute myelogenous
leukaemia or advanced myelodysplastic syndromes used 18
mg/m2 intravenous on days 1 and 5 every 3 weeks. The most
common grade 3/4 toxicities were febrile neutropenia/infection,
neutropenia/thrombocytopenia, nausea and asymptomatic
hypophosphatemia, with no clinically significant cardiac toxicity.
The best responses of 11 assessed patients was one complete
remission (CR) in a patient with acute myeloid leukaemia (AML),
stable disease in six patients. Notably however, histone H3 and H4
acetylation levels evaluated in five patients showed no consistent
changes [278].

Two phase II trials of romidepsin have been completed. In a
trial on twenty-nine patients with refractory metastatic renal cell
cancer, the most common serious toxicities were fatigue, nausea,
vomiting and anaemia. However, one patient developed a grade 3
atrial fibrillation, one patient developed tachycardia, and there was
1 sudden death. Within the study group itself two patients
achieved an objective response, which was insufficient to bring
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this agent forward for further study in the treatment of renal cell
cancer [279]. In a phase II trial on T-cell lymphoma, cardiac mon-
itoring of 42 patients was carried out. The data obtained as part of
this study indicate that the administration of romidepsin is not
associated with myocardial damage or impaired cardiac function
[280]. However, in a phase II study of romidepsin in neuroen-
docrine tumours, the study was terminated prematurely due to an
unexpected high number of serious cardiac adverse events [281].

MS-275

MS-275 has just completed two phase I trials in solid tumours. The
MTD of this drug was found to be 6 mg/m2, with a mean terminal
half-life of 33.9 � 26.2 and a T(max) ranging from 0.5 to 24 hrs.
Dose-limiting grade 3 toxicities were found to be reversible and
included hypophosphatemia, hypoasthenia, hyponatremia and
hypoalbuminemia [282, 283] . In an earlier phase I study, the MTD
was found to be 10 mg/m2 and DLTs were nausea, vomiting,
anorexia and fatigue. In addition the half-life was found to be within
the range 39–80 hrs [284]. In a phase I trial of MS-275 in patients
with advanced acute leukaemias, the MTD was found to be 8 mg/m2

weekly for 4 weeks every 6 weeks. DLTs included infections and
neurological toxicity manifesting as unsteady gait and somnolence.
Other frequent toxicities observed were fatigue, anorexia, nausea,
vomiting, hypoalbuminemia and hypocalcaemia [285]. In a trial to
determine pharmacokinetic data for oral MS-275 in 64 adult
patients receiving MS-275 orally (dose range, 2 to 12 mg/m2), no
metabolites could be detected after incubation of MS-275 in human
liver microsomes, suggesting that hepatic metabolism is a minor
pathway of elimination, while the mean (�S.D.) apparent oral
clearance of MS-275 was 38.5 � 18.7 l/hr [244].

Most recently a phase II trial of MS-275 has been completed in
patients with metastatic melanoma. The primary study end-point
was objective tumour response, but among 28 patients enrolled,
no objective response was detected. Seven patients in showed
disease stabilizations [286].

LBH589 (panobinostat)

LBH5985 is currently undergoing an ongoing phase I, open-
label, dose-escalation study in patients with solid tumours and
non-Hodgkin’s lymphoma. From this study, 10 patients with
CTCLs were treated with oral panobinostat on a 28-day cycle.
From this initial cohort of 10 patients complete responses were
observed in 2 patients and partial responses in a further 4 indi-
viduals. The major DLT observed was a grade 3 diarrhoea at a
dose of 30 mg [287].

MGC D0103

This orally administered HDi has recently completed a phase I clin-
ical trial in patients with leukaemia or myelodysplastic syndromes

[288]. This was administered orally three times weekly without
interruption, in a dose-escalation study of 20, 40 and 
80 mg/m2. The MTD was determined to be 60 mg/m2, with DLTs
of fatigue, nausea, vomiting, and diarrhoea observed at the higher
doses. Of 29 patients enrolled, 3 achieved a complete bone marrow
response (blasts 	 or � 5%). Pharmacokinetic analyses indicated
absorption of MGCD0103 within 1 hr and an elimination half-life in
plasma of 9 (�2) hrs [288].
• PXD101 (Belinostat): Two phase I trial of belinostat have been

completed, and several phase II clinical trials are in progress.
In the first, a DLT study was carried out in 46 patients with
confirmed advanced malignancy refractory to standard ther-
apy or for whom no standard therapy existed. The MTD for
Belinostat was determined to be 1000 mg/m2/days 1–5 in a
21-d cycle, and of the treated patients, 50% achieved stable
disease [289]. The second trial was carried out in patients
with advanced haematological neoplasia using the previously
determined MTD. No complete or partial remissions were
noted in these heavily pre-treated (median of four prior regi-
mens) patients. However, five patients achieved some degree
of disease stabilization [290].

• Combinatorial trials using Hdi.
The poor overall response of solid tumours to HDi as single

agent therapies has resulted in several trials examining their
potential as adjuvant therapies in combination with other drugs.

One HDi valproate, has completed a phase II trial examining its
use as a combined epigenetic therapy with hydralazine to over-
come chemotherapy resistance in refractory solid tumours. In this
trial 17 patients were evaluable for toxicity and 15 for response.
Twelve patients were found to respond with four showing a partial
response and eight demonstrating stable disease (defined as nei-
ther sufficient tumour reduction to qualify for partial response nor
sufficient increase to qualify for progressive disease) [291]. A
phase I trial using a similar combination (hydralazine/valproate)
plus neoadjuvant Doxorubicin Cyclophosphamide was carried out
in patients with locally advanced breast cancer. 16 patients were
included and received treatment. All were evaluated for clinical
response and toxicity and 15 for pathological response. Treatment
was well tolerated and the most common toxicity observed was
patient drowsiness grades 1–2. Five (31%) patients had clinical
response and eight (50%) had a partial response to give an over-
all response rate of 81%. There was a statistically significant
decrease in both global 5-methylcytosine content and HDAC activity.
The results obtained in this trial have resulted in the initiation of an
ongoing randomized phase III study [292].

A pilot clinical trial involving phenylbutyrate and 5-azacytidine
in patients with acute myeloid leukaemia or myelodysplastic syn-
drome has also been carried out. This combination regimen was
well tolerated with common toxicities of injection site skin reaction
(90% of the patients) from 5-azacytidine, and somnolence/fatigue
from the sodium PB infusion (80% of the patients). Of the 10
patients in this trial, 5 patients (50%) were able to achieve a par-
tial remission or stable disease, and 1 patient was able to proceed
to allogeneic stem cell transplantation and was alive without evi-
dence of disease 39 months later [293].
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A phase I/II study of the combination of 5-aza-2�-deoxycytidine
with VPA in patients with leukaemia was completed. In this study a
group of 54 patients was recruited and treated with a fixed dose of
decitabine (15 mg/m2 i.v. daily for 10 days) administered concomi-
tantly with escalating doses of VPA orally for 10 days. The MTD of
VPA was determined to be 50 mg/kg daily. Twelve (22%) patients
had objective response, including 10 (19%) CRs and 2 (3%) CRs
with incomplete platelet recovery (CRp). Remission duration was
7.2 months (range, 1.3–12.6
 months), while overall survival was
15.3 months (range, 4.6–20.2
 months) in responders [294].

Several trials involving VPA in combination with all-trans
retinoic acid (ATRA) have been carried out. In one study on 26
patients with poor-risk AML VPA (5–10 mg/kg starting dose) and
ATRA (45 mg/m2) were administered orally. Of 26 patients
recruited, 19 completed at least 4 weeks of VPA/ATRA treatment.
Seven patients were withdrawn prematurely because of rapidly
progressive disease (n � 3) or unacceptable neurological and
cardiovascular toxicity (n � 4). Three patients had partial
responses [295]. A larger trial was carried out on 58 patients
with advanced AML who were unfit for standard intensive
chemotherapy. VPA was administered to reach serum concentra-
tions between 50 and 100 g/ml, the therapeutic range used for
VPA in anti-epileptic treatment. There were two different treat-
ment schedules for ATRA, either 80 mg/m2 each day was given
in two divided doses, days 1–7, every other week, or 15 mg/m2

was given daily, starting on day 4. Both drugs were administered
orally. Treatment was continued as long as neither significant
side effects nor disease progression occurred. Overall, treatment
was well tolerated, but it was concluded that VPA had beneficial
effects but was not sufficiently active to be useful as single-agent
therapy for AML [296]. A larger phase II trial involving 75 patients
with myelodysplastic syndrome and relapsed or refractory acute
myeloid leukaemia, found that VPA was only clinically useful in
low-risk myelodysplastic syndrome [297]. This was subse-
quently followed with a phase I/II study combining 5-azacitidine
(5-AZA), VPA, and ATRA in patients with acute myeloid
leukaemia or high-risk myelodysplastic syndrome. In this trial 
53 patients were treated. 5-AZA was administered subcutaneously
at a fixed dose of 75 mg/m2 daily for 7 days. VPA was dose-
escalated and given orally daily for 7 days concomitantly with 
5-AZA. ATRA was given at 45 mg/m2 orally daily for 5 days,
starting on day 3. The MTD of VPA in this combination was found
to be 50 mg/kg daily for 7 days, and reversible neurotoxicity was
the DLT. Overall response rate to this treatment was 42%. The
median remission duration was 26 weeks, and at the time of
publication median survival had not yet been reached [298].

VPA has also undergone a phase I dose-escalation trial in com-
bination with the topoisomerase II inhibitor epirubicin in advanced
solid tumours. In this trial forty-eight patients were enrolled, and
44 received at least one cycle of therapy (increasing doses of VPA
(days 1 through 3) followed by epirubicin (day 3) in 3-week
cycles). DLTs observed were somnolence, confusion, and febrile
neutropenia. The maximum-tolerated dose and recommended
phase II dose identified was VPA 140 mg/kg/day for 48 hrs fol-
lowed by epirubicin 100 mg/m2. In the treated patients partial

responses were seen across different tumour types in nine
patients (22%), and stable disease/minor responses were seen in
16 patients (39%), indicating that this combination may have
potential in the treatment of solid tumours [299].

SAHA (vorinostat) has also completed a phase I trial in com-
bination with Carboplatin and Paclitaxel for the treatment of
advanced solid malignancies. Twenty-eight patients were
enrolled into the study and separated into two arms for vorinos-
tat treatment which was either administered orally once daily for
two weeks or given twice daily for 1 week, every 3 weeks. Within
each arm, the doses of vorinostat and paclitaxel were dose esca-
lated in sequential cohorts of three patients. The DLT was deter-
mined to be 400 mg of vorinostat given once daily. Other non-
DLTs included nausea, fatigue, diarrhoea and neuropathy. When
patient response was evaluated, 10 of 19 (53%) of patients who
had advanced chemo-naive non-small cell lung cancer (NSCLC)
experienced a partial response and 4 had stable disease. In com-
parison, chemo-naive NSCLC patients just receiving carbo-
platin–paclitaxel generally achieve response rates of approxi-
mately (20–30%). These results indicate that vorinostat may
enhance this therapy in NSCLC, and a phase II study randomiz-
ing advanced NSCLC patients to carboplatin-paclitaxel with
either vorinostat or placebo is currently ongoing [300].

A phase I study combining cytotoxic-differentiation therapy
with 5-fluorouracil and phenylbutyrate in patients with advanced
colorectal cancer has been completed. In this study 5-flurouracil
(FUra) was dose escalated (24-hr continuous intravenous infusion
(2–2.3 g/m2), in combination with PB (120-hr continuous intra-
venous infusion at a fixed dose of 410 mg/kg/day � 5), and
repeated weekly, in patients with advanced colorectal cancer. Nine
patients were recruited and treated of which 8 could be assessed
for toxicity. Weekly infusions of FUra followed by PB were fairly
well tolerated with dose-dependent, reversible toxicities including
somnolence, fatigue, confusion, hearing loss, triglyceridemia and
hyperuricaema. Four patients completed eight weeks of treatment.
Of these three achieved stable disease [301].

In a phase II randomized, double-blind, placebo-controlled,
multi-centre study examining a combination of CI-994 and gemc-
itabine in patients with advanced pancreatic cancer. A total of 174
patients were recruited and received either a combination of 
CI-994/gemcitabine (CI-994 6 mg/m2/day days 1–21 plus gemc-
itabine 1000 mg/m2 days 1, 8 and 15 each 28-day cycle) or
placebo/gemcitabine (placebo plus gemcitabine 1000 mg/m2 days
1, 8 and 15 of each 28-day cycle days 1–21). When the results
were assessed, CI-994 offered no advantage over gemcitabine
alone in the treatment of these patients, and indeed lowered their
quality of life [302].

Caveats

Intriguingly, HDi have been shown to be ineffective in causing
apoptosis in non-small cell lung cancer cell line models. This was
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shown to be due to the transcriptional activation of NF-�B
through the Akt pathway, with up-regulation of IL-8, Bcl-XL and
MMP-9 transcripts [303]. A follow-up study using vorinostat
(SAHA) has shown that this drug stimulates NF-�B transcription
through a signalling cascade that involves activation of both the
serine/threonine kinase Akt and the KAT3B acetyltransferase
[304]. As such these studies provide evidence that HDi, such as
SAHA, not only inhibit deacetylase activity but also stimulate
active NF-�B transcription and cell survival through signalling
pathways involving Akt and increased KAT3B acetyltransferase
activity. This may have important implications in the use of his-
tone deacetylases in the treatment of cancer as they may promote
cancer cell survival, in contrast they may have important thera-
peutic implications in both diabetes and neurodegenerative dis-
ease as the may promote the survival of pancreatic � cells or pro-
tect neuronal cells.

Despite the evidence strongly suggesting that HDi may have an
important therapeutic role in the treatment of obesity and diabetes
nevertheless there are some caveats that temper this notion. One
of the caveats concerns the use of VPA in the treatment of diabetes
in that known side effects of this drug in patients are in fact, obe-
sity and insulin resistance [305–311]. However, it must also be
noted that in a study on the effects of HDAC inhibitors in
adipocytes which included TSA and VPA it was found that VPA
reduced leptin mRNA levels while TSA did not, suggesting that
VPA therapy may be associated with altered leptin homeostasis
contributing to weight gain in vivo, and therefore other HDAC
inhibitors may not cause similar effects in relation to obesity and
insulin resistance [312].

HDAC inhibitors have also been shown to up-regulate NF-�B
driven pro-inflammatory cascades [313, 314], albeit within a neu-
ral setting. Nevertheless this may also be true for multiple tissue
types. In addition, HDi have also been shown to activate NF-�B,
and to sustain the activation of NF-�B by delaying I�B� mRNA
resynthesis [315, 316].

Within the clinical setting, other studies have shown the inef-
fectiveness of phenylbutyrate on relieving ER Stress in patients
with �-1-antitrypsin deficiency [317].

Do HDAC inhibitors target genes or help 
chaperone activity as their primary response?

A plethora of studies have clearly shown that HDi can reactivate
or alter gene expression. However, several studies now indicate
that histone deacetylases and HDi may play important roles in
regulating chaperone expression and function. This has impor-
tant implications in conditions such as diabetes and obesity
where aberrant misfolding of proteins can result in ER Stress.
Indeed HDAC6 has been recognized as a leading regulator of cel-
lular efforts to counteract the deleterious effects of misfolded
protein accumulation [318–321]. Inhibition or depletion of
HDAC6 leads to an induction of Hsp90 acetylation inhibiting its
chaperone activity and eliciting cellular responses [146,

322–326]. It must also be noted that HDAC6 is very resistant to
various HDi including VPA and apicidin. The class I HDACs
(HDACs 1–3) have been shown to associate with the ATP depend-
ent chaperone Hsp70, and this association enhances deacetylase
catalytic activity [327].

Emerging data clearly link the use of HDi in the relief of ER
Stress in cell line models. Many of these studies have utilized
the chemical 4-phenylbutyrate (PB). In a hepatocyte cell line
model of oxidative stress induced ER Stress, treatment of cells
with PB was found to alleviate the ER Stress in these cells [47].
General examples of the benefits of PB as a chemical chaperone
have been described for relieving apoptosis and/or ER Stress in
models of eye disease [59, 60], rescue of defective trafficking of
nephrin in kidney [328], rescue of protein trafficking in the lyso-
somal storage disorder Fabry disease [329], correction of
autodominant hypoparathyroidism induced apoptosis [330] and
relief of ER stress mediated programmed cell death in
arabadopsis [331].

Other evidence for the potential of HDi influencing chaperone-
like activities to relieve ER Stress have come from studies in neu-
roprotection lung, and liver disease. Within the neuronal setting,
initial studies on mood stabilizing drugs such as VPA demon-
strated increased expression of ER stress proteins in cerebral cor-
tex, hippocampus, neuronal and glial cells [64–67, 332, 333].
Neuroprotective effects of these HDi have been observed to pro-
tect against ischaemia [55, 334, 335], malonate toxicity [336],
rotenone [337, 338], thapsigargin [339] and relieved ER Stress
marker induction in a model of autosomal recessive juvenile
Parkinsonism [58].

Studies on cystic fibrosis have shown that phenylbutyrate can
restore CFTR trafficking and function [53, 236, 261, 340–345],
through the induction of Hsp90 [345]. Other lung conditions for
which beneficial responses have been observed using HDi as
chemical chaperones include respiratory distress syndrome
[346], and emphysema [54].

Benefits accruing to the use of HDi as chemical chaperones in
the liver have also been described. In one instance PB was used to
protect liver cells from ER stress mediated apoptosis induced by
liver ischaemia [56], enhances the cell surface expression and
transport capacity of mutated bile salt export pumps [347], and
reduces ER Stress induced formation of Mallory bodies in
 hepatocytes [47].

Increasing evidence is linking the activities of HDi to ER Stress
in obesity. For instance, in a cell line model, phenylbutyrate has
been shown to restore functionality to misfolded low-density
lipoprotein receptors, and shuttle them to the cell surface. The
authors concluded that their results indicate that phenylbutyrate
did not just solely mediate this response by its ability to induce
gene expression of proteins involved in intracellular transport, but
could also mediate this effect via a direct chemical chaperone
activity [195]. VPA was also shown to protect cells from ER
stress-induced lipid accumulation and apoptosis by inhibiting
glycogen synthase kinase-3 [348]. In a mouse model of type 2
diabetes, phenylbutyrate was found to reduce ER Stress and
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restore glucose homeostasis in the mutant mice [62]. This critical
result underlines the potential importance of HDi as both regula-
tors of gene expression and as chemical chaperones to dampen
down inflammation and relieve ER Stress.

Final comments

One critical element that needs to be addressed in future stud-
ies examining the efficacy of HDi in combinatorial trials should
include studies to study the importance of timing for the sched-
uling of HDi within the protocol. In vitro studies using a combi-
nation of HDi and camptothecin, have shown that in NSCLC, the
time of HDi addition is a critical determinant which can either
cause cell protection or sensitization to camptothecin [349].
The development of tests that can predict the efficacy of HDi as
an antitumour agent will also be an avenue that should be more
thoroughly examined. It is interesting to note that a predictive
model for HDi antitumour activity in non-small cell lung cancer

has recently been developed through gene expression profiling,
where a nine-gene classifier set has been found to have predic-
tive value for determining drug sensitivity to HDi [350]. This
exciting development raises the possibility of achieving individ-
ualized therapy for NSCLC patients, and potentially this could be
expanded to individualized patient therapy for any disease.

Another area of critical importance will require the development
of isoform-specific HDi, and area currently being actively pursued.
The development of such inhibitors will allow better selectivity as
tools for probing the biological functions of the isoforms, but also
may function as better candidate therapeutic agents with fewer side
effects [351, 352]. For instance, a HDAC8-specific HDi PCI-3405 has
been developed which has �200-fold selectivity over the other
HDAC isoforms, and induces caspase-dependent apoptosis in cell
lines derived from T-cell lymphomas or leukaemias, but not in other
haematopoietic or solid tumour lines [353].

Finally, one avenue which has only recently begun to emerge
concerns the effects of HDi on non-coding RNAs. This is espe-
cially important for miRNAs, which have been shown to be regu-
lated via epigenetic mechanisms including histone acetylation and
DNA CpG methylation [354–358]. 
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