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Abstract

Interactions between small molecules and proteins play critical roles in regulating and facili-
tating diverse biological functions, yet our ability to accurately re-engineer the specificity of
these interactions using computational approaches has been limited. One main difficulty, in
addition to inaccuracies in energy functions, is the exquisite sensitivity of protein—ligand
interactions to subtle conformational changes, coupled with the computational problem of
sampling the large conformational search space of degrees of freedom of ligands, amino
acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluat-
ing the accuracy of computational approaches for re-engineering protein-ligand interac-
tions: (i) prediction of enzyme specificity altering mutations and (ii) prediction of sequence
tolerance in ligand binding sites. After finding that current state-of-the-art “fixed backbone”
design methods perform poorly on these tests, we develop a new “coupled moves” design
method in the program Rosetta that couples changes to protein sequence with alterations in
both protein side-chain and protein backbone conformations, and allows for changes in
ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy
in both predicting ligand specificity altering mutations and binding site sequences. These
methodological improvements should be useful for many applications of protein — ligand
design. The approach also provides insights into the role of subtle conformational adjust-
ments that enable functional changes not only in engineering applications but also in natural
protein evolution.

Author Summary

Designing new protein-ligand interactions has tremendous potential for engineering sen-
sitive biosensors for diagnostics or new enzymes useful in biotechnology, but these appli-
cations are extremely challenging, both because of inaccuracies of the energy functions
used in modeling and design, and because protein active and binding sites are highly
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sensitive to subtle changes in structure. Here we describe a new method that addresses the
second problem and couples changes in the structure of the protein backbone and of the
amino acid side chains, the amino acid sequence, and the conformation of the ligand and
its orientation in the binding site. We show that our method improvements significantly
increase the accuracy of designing protein-ligand interactions compared to current state-
of-the-art design methods. We assess these improvements in two important tests: the first
predicts mutations that change ligand-binding preferences in enzymes, and the second
predicts protein sequences that bind a given ligand. In these tests, subtle conformational
changes made in our model are essential to recapitulate both the results from engineering
experiments and the sequence diversity occurring in natural protein families. These results
therefore shed light on the mechanisms of how new protein functions might have emerged
and can be engineered in the laboratory.

Introduction

Interactions between small molecules and proteins play critical roles in essentially all biological
processes. Naturally occurring proteins have evolved to function as sensitive small-molecule
sensors that detect and respond to changes in the extra- and intracellular environment, or as
catalysts that enhance the speed of chemical reactions by orders of magnitude. To harness
these capabilities, both industry and medicine take advantage not only of existing proteins, but
increasingly utilize strategies to reengineer proteins to function with altered ligands, cofactors
and substrates. These approaches have tremendous potential for expanding the range of acces-
sible biological functions to produce industrially or therapeutically valuable compounds,
develop new biosensors as research tools or for medical diagnostics, or detect and respond to
harmful compounds. Metabolic pathway engineering requires fine-tuning enzyme activity and
specificity to optimize the production of small molecule products such as drugs or biofuels [1].
Enzyme specificity is also important in therapeutic strategies such as suicide gene therapy, in
which a therapeutic enzyme must convert a specific pro-drug into a cytotoxic compound in
order to selectively kill cancer cells [2,3], in food manufacturing to achieve the desired taste
and appearance of food products [4], and in bioremediation to specifically degrade target toxic
pollutants [5].

Despite the growing number of potential applications for reengineering protein-ligand spec-
ificity, our ability to accurately predict the required amino acid sequence changes has been lim-
ited [6]. Most approaches to enzyme engineering have used screening strategies based on
structural and chemical intuition, or employed the power of directed evolution [7,8]. Accurate
computational design methods would not only complement these strategies but could also
enable applications that are otherwise limited by experimental throughput or lack of a starting
activity for a desired new substrate. Moreover, the ability to predict specificity changes would
be a stringent test of the accuracy of computational methods, and, if successful, would provide
insights into the mechanistic basis and the evolution of protein specificity.

Previous work on applying computational methods to design specificity has focused largely
on interactions between proteins, although there are examples of applications to enzymes [9-
11]. Computational methods to re-engineer protein—protein specificity have typically
employed a “second-site suppressor” strategy, in which a mutation is made on one protein to
destabilize its interaction with a binding partner, and a second compensating mutation is made
on the binding partner to re-stabilize the interaction [12]. This approach has been successfully
applied to re-design the specificity of a number of proteins, including interactions between
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PDZ domains and their binding peptides [13], a DNase-inhibitor pair [12,14], a small GTPase
and its guanine exchange factor [15], and the interaction between a ubiquitin ligase and a ubi-
quitin-conjugating enzyme [16]. In the majority of these studies, protein-protein interactions
are modeled as rigid complexes and are not allowed to re-orient relative to each other during
the sequence design, although these approaches have been explored in a few cases [14,17].

Modeling interactions between proteins and small molecules requires in addition sam-
pling of ligand degrees of freedom, including ligand rotation and translation as well as the
conformational flexibility of the small molecule. These degrees of freedom need to be sam-
pled accurately because enzymes are highly sensitive to subtle changes in the conformations
of their active sites [18], making the design of enzyme specificity a particularly challenging
problem. Previous work has demonstrated the importance of high-resolution sampling of
both amino acid side-chain and small molecule conformational flexibility to achieve accurate
placement of small molecules in enzyme active sites [19]. Similar high-resolution sampling
has enabled computational protein design methods to recapitulate the native sequences of
ligand binding and enzyme active sites [20-22] and to predict the effect of mutations on
ligand binding [23].

A common feature of the previous work in this area is the assumption that the protein back-
bone remains fixed in conformation during the sequence design step, although there are some
exceptions [9,24]. The fixed backbone approximation is mainly made for computational effi-
ciency. However, changes in the protein backbones to accommodate changes in amino acid
sequence [25] are the rule rather than the exception, and a key reason for failed designs is that
they do not adopt the required precise geometry of an engineered functional site [6,18]. In sup-
port of these ideas, sampling protein backbone flexibility has been shown to improve the accu-
racy of computational approaches to model and design proteins as well as protein—protein
interactions [25-29].

Given these observations, we reasoned that incorporating backbone flexibility might also
improve the accuracy of designing interactions between proteins and small molecules. To test
this idea, we first created a computational benchmark to evaluate the ability of protein design
methods to re-design enzyme substrate specificity. We then used this benchmark to show that
a new method that couples backbone flexibility with changes in amino acid side-chain confor-
mations, allowing subtle rearrangements of the active site, resulted in a 5.75-fold increase in
the percent of correct predictions over a state-of-the-art protein design method that assumes a
fixed backbone. The fixed backbone method and the new approach, which we refer to as “cou-
pled moves”, are both implemented in the protein modeling and design software Rosetta [30]
and use an identical energy function, thereby evaluating the influence of improved conforma-
tional sampling. Next, we created a second benchmark that tests how well a given design
method can recapitulate the set of naturally occurring ligand binding site sequences in eight
families of co-factor binding domains. We found a significant increase in the recapitulation of
natural ligand binding site sequences using the coupled moves method relative to fixed back-
bone design, suggesting that the coupled moves method increases the accuracy of the design of
sequence libraries for protein-ligand binding sites. Taken together, these results highlight the
importance of allowing subtle conformational changes in protein backbones and provide new
algorithms and benchmarks for improving the accuracy of modeling and designing protein-
ligand interactions. Moreover, our results provide insights into how subtle coupled side-chain
and backbone conformational changes enable sequence changes that either change or maintain
an existing function.
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Results

Evaluating the accuracy of computational re-design of enzyme
specificity

To evaluate how accurately a given computational protein design method could predict muta-
tions that change enzyme specificity, we required a set of known specificity altering mutations
that have been experimentally characterized both structurally and biochemically. We sought
mutations and enzymes that satisfied the following criteria: 1) there exists a co-crystal structure
of the wild-type enzyme bound to the native substrate (using an inactive enzyme version or a
substrate-analog) and a co-crystal structure of the mutant enzyme bound to the non-native
substrate/substrate analog, 2) the native and non-native ligands share a common substructure
that can be used for superimposition, 3) the mutations are located in the active site within 6A
of the ligand and do not occur at positions that are critical for the chemical step of the reaction
the enzyme catalyzes.

To identify examples that satisfied the above criteria, we used the PDBe database [31] to
find all cases of enzymes with solved crystal structures in which the enzyme was bound to its
native substrate/substrate analog. We then filtered this set of enzymes to only include examples
for which there was at least one structure of the same enzyme bound to a non-native substrate/
substrate analog with one or two active site mutations. Finally, we examined the papers associ-
ated with the mutant enzyme structures to identify the cases where the specificity of the wild-
type and mutant enzymes were experimentally characterized and it had been shown that the
mutation(s) alter the specificity of the enzyme to prefer the non-native substrate. This resulted
in 10 enzymes with a total of 17 specificity altering mutations (Table 1). Structures of the
mutant and wild-type substrate binding sites are shown in Fig 1. Experimental data on the
effect of the mutations on enzyme specificity are shown in S1 Table.

To quantify the extent to which a given design method could recapitulate the known speci-
ficity altering mutations, we first predicted the set of “tolerated sequences” for the native ligand
and for the non-native ligand. To predict tolerated sequences, we ran design simulations in
which a Monte Carlo simulated annealing protocol in Rosetta was used to optimize amino acid
sequences and side-chain conformations in a region around the active site, as described in the
Methods. For each predicted mutation, we determined whether or not the mutation had a
higher percent occurrence in the non-native ligand sequences than in the native ligand
sequences. If a known specificity altering mutation had a higher percent occurrence in the
non-native ligand sequences, we considered this to be a “correct prediction.” For each muta-
tion, we also computed a “percent enrichment”, which is simply the percent occurrence in the
non-native ligand sequences subtracted by the percent occurrence in the native ligand
sequences. For each correctly predicted known mutation, we determined how this mutation
ranked relative to all other mutations at the positions that were allowed to mutate by sorting all
mutations in descending order of their percent enrichment. Finally, we repeated this bench-
mark in the opposite direction by predicting mutations that would revert the mutant enzyme
back to the wild-type enzyme. In these “Mutant to WI” cases, we considered the specificity
altering mutation to be a correct prediction if it was enriched in the sequences designed for the
native ligand relative to the sequences designed for the non-native ligand.

We first used this benchmark to test the standard fixed backbone protein design method in
the modeling and design program Rosetta [30] on its ability to predict the 17 known specificity
altering mutations (Methods). We found that this “fixed backbone” approach could only pre-
dict 2 out of the 17 known specificity altering mutations correctly (Table 1, Fig 2A). Previous
work in modeling peptide-binding specificity found that up-weighting intermolecular interac-
tions relative to intra-molecular interactions improved performance [28]. We therefore
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Table 1. Comparison of fixed backbone and coupled moves methods on predicting specificity altering mutations.

Mutant  Wild-type Mutant Mutation # of Designed Fixed Backbone Fixed Backbone Coupled Moves Coupled
# PDB ID PDB ID Positions Percentile Rank Percentile Moves Rank
1 2FZN 3E2Q Y5408 2 — — 95.8 2

2 1FCB 1SZE L230A 5 — — 63.0 28

3 3KZO 3L02 E92A 5 78.9 5 100 1

4 3KZO 3L04 E92S 5 - - 86.5 8

5 3KZO 3L05 E92P 5 — — — —

6 3KzO 3L06 E92V 5 - - 63.5 20

7 207B 2078 H89F 4 - - 90.9 3

8 1ZK4 1ZK1 G37D 7 93.8 2 90.2 6

9 1A80 1M9OH K232G 5 - - 71.4 19

10 1A80 1M9H R238H 5 = = = -

11 1PK7 10UM M64V 3 = = 69.2 13

12 1K70 1RAO D314S 4 = = 63.6 9

13 1K70 1RA5 D314G 4 = = 90.9 3

14 1K70 1RAK D314A 4 = = 72.7 7

15 2H6F 2H6G we02T 9 — — 61.3 37

16 3HG5 3LX9 E203S 7 — — 93.5 7

17 3HG5 3LX9 L206A 7 - - 87.1 13

Dashes denote cases where the known mutation was not enriched in the predicted sequences using non-native substrate/substrate analogs and therefore
not predicted to be a specificity altering mutation. “# of Designed Positions” refers to the number positions that were allowed to mutate in the simulation.
“Percentile” refers to the percentile of the known mutation relative to all other predicted mutations when sorted in descending order of their percent
enrichment. “Rank” refers to the index of the known mutation in this sorted list. The number of correctly predicted mutations is significantly greater with the
coupled moves method than with fixed backbone design (p < 0.0001).

doi:10.1371/journal.pcbi.1004335.t001

repeated the benchmark using a modified score function that up-weighted protein-ligand
interactions by a factor of two. While this resulted in different mutations in the benchmark
being predicted correctly, it did not change the overall percent of correct predictions (Fig 2A).
To determine if additional optimization of side-chain conformations could improve the perfor-
mance of fixed backbone design, we used an algorithm called “min packing”, where side-chain
torsions are minimized for each rotamer during every move in the simulation. However, this
did not significantly change the percent of correct predictions (S1 Fig).

A coupled moves method to model and design protein—ligand
interactions

Fixed backbone and “min packing” simulations showed a surprisingly poor performance on
the enzyme specificity design set. To investigate whether a method that allows protein back-
bone flexibility could improve the accuracy of these predictions, we developed a protein design
method that combines backbone, side-chain and ligand flexibility. Our previous approaches to
representing protein backbone flexibility first generated an ensemble of backbone conforma-
tions and then used fixed backbone design on each member of the ensemble [29]. While this
approach improved prediction accuracy in a variety of applications including molecular recog-
nition specificity [29] and amino acid covariation [27], it might not accurately capture how
protein backbones respond to sequence mutations as the original backbone ensembles are cre-
ated with the wild-type sequence. Here, we instead coupled “backrub” moves [32], which
locally alter the protein backbone, with changes in amino acid side-chain conformation
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Fig 1. Structures of wild-type and mutant binding sites for known specificity altering mutations. Close-up images of the substrate binding sites for the
ten enzymes in our benchmark with known specificity altering mutations are shown in stick representation. The PDB IDs of the wild-type (green) and mutant

(orange) structures are displayed in each panel.

doi:10.1371/journal.pcbi.1004335.9001

(repack) and/or amino acid identity (design). We used a similar strategy to model ligand flexi-
bility, where we coupled ligand rotations and translations, which alter the orientation of the
ligand relative to the protein, with changes in the ligand internal degrees of freedom. To com-
bine these protein and ligand coupled moves into a single protocol, which we refer to as the
“coupled moves” method, we used a Monte Carlo sampling approach illustrated in Fig 3.

The coupled moves method is different from previous design methods using “backrub”
moves because it enables amino acid mutations and changes in side-chain conformations to
occur simultaneously with changes in the protein backbone conformation (previous methods
applied backbone and side-chain moves separately [25]). To do this, the new protocol uses a
different strategy to decide how to select a mutation or change in side-chain conformation in
the context of a given change in backbone conformation. Following a change in backbone con-
formation, the change in energy of each potential mutation or side-chain conformation on the
moved backbone segment is calculated and these energies are used to compute the probability
of each potential mutation or side-chain conformation based on a Boltzmann distribution.
These probabilities are used to select a mutation or side-chain conformation to couple with the
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Fig 2. Performance of computational protein design methods on predicting specificity altering mutations. Percent of mutations predicted correctly for
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moves protocol (blue) are shown where protein—ligand interactions are up-weighted (ligand weight = 2.0) or not up-weighted (ligand weight = 1.0).

doi:10.1371/journal.pcbi.1004335.9002

new backbone conformation and the Metropolis criterion [33] is applied to decide whether to
accept or reject the coupled move. While “backrub” moves were used to generate new back-
bone conformations in this study, the coupled moves method is generalizable and other types
of backbone movements could be used as well. For example, coupled moves that involve the
ligand use a rigid-body rotation and translation in place of a “backrub” move.

The input to the coupled moves method is a structure of a protein-ligand complex and a file
that specifies which amino acid positions are allowed to mutate and which positions are
allowed to change conformation. For each accepted coupled move that involves a change in
amino acid identity, the resulting amino acid sequence of the design residues is saved in a list
that is outputted upon completion of the simulation. These sequences can then be further ana-
lyzed to choose appropriate mutations for the given design application. Optionally, the lowest
energy structure of each unique mutant sequence encountered during the simulation can be
saved for structural analysis.

The coupled moves method improves prediction of enzyme specificity
altering mutations compared to fixed backbone design

We implemented the coupled moves method in the Rosetta software suite [30] to enable direct
comparison with fixed backbone design using exactly the same energy function. We found that
the coupled moves method increased the percent of correct predictions for the known specific-
ity altering mutations 4.5-fold from 12% to 53% compared to fixed backbone design (Fig 2A).
We also observed a 3.5-fold increase (from 12% to 41%) in the percent of correct predictions
when starting from the mutant and trying to predict the wild-type sequence (Fig 2B). When
we up-weighted the protein-ligand interactions in coupled moves simulations by a factor of
two, we observed a further improvement in the percent of correct predictions, from 53% to
88% for specificity altering mutations and from 41% to 47% for wild-type reversion mutations.
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Fig 3. Flowchart outlining the coupled moves method. The protocol starts with an input structure of a protein-ligand interaction, and performs
either coupled protein or ligand moves. Each protein move involves a backrub move coupled to side-chain repacking or design and each ligand move
involves a rigid-body rotation and translation coupled to ligand repacking. A move is either accepted or rejected depending on the change in energy, and a
total of N moves are performed, where N can be set by the user.

doi:10.1371/journal.pcbi.1004335.9003

When combined, the results of these two sets of mutations show that the coupled moves
method increased prediction accuracy by 5.75-fold, from 12% to 68%, over fixed backbone
design (p < 107°). Up-weighting protein-ligand interactions further did not improve the
results (S2 Fig).

To understand the basis underlying the improvement in the coupled moves method at pre-
dicting specificity altering mutations, we examined structural models of each of the known
mutations using the coupled moves method and using fixed backbone design. We first com-
pared these models based on the RMSDs of the mutated residues to the known crystal struc-
tures as well as the RMSDs of the neighboring residues, but we did not find a significant
difference between the fixed backbone and coupled moves methods for either set of residues
(S3 Fig). The lack of difference in RMSDs for these methods could be due to the fact that these
values are in the range of deviations observed within the ensembles underlying typical X-ray
crystal structures [34]. Next, we compared the energetic contribution of the mutations using
the coupled moves method and fixed backbone design. We found that using the coupled
moves method, the mutations generally obtained lower one-body (intra-residue) and two-body
(inter-residue) interaction energies compared to fixed backbone design (Fig 4).
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Fig 4. Comparison of the predicted energetic effects of the specificity altering mutations between the
fixed backbone and coupled moves methods. Predicted energies (in Rosetta energy units) for each of the
specificity altering mutations for A) one-body interactions and B) two-body interactions of the residue at the
mutated position. Scatterplots show a comparison of energies from fixed backbone and coupled moves
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scatterplots show close-ups of the plot area within the red boxes in the top scatterplots.

doi:10.1371/journal.pchi.1004335.9004

Comparing specificity altering mutations modeled using - fixed backbone design or using
the coupled moves method revealed that the mutations often produce steric clashes in fixed
backbone design models while adopting favorable conformations in the coupled moves method
models (Fig 5). One reason that this occurs is because backbone flexibility allows neighboring
positions to move slightly and make room for the specificity altering mutation, as in the top
two rows of Fig 5. Sampling ligand rigid-body rotation and translation can also result in more
favorable conformations, as in the bottom row of Fig 5, where ligand movements are necessary
in order to achieve an optimal hydrogen bonding geometry. The findings that structural
changes are subtle and often distributed across the environment of the mutated residue are
consistent with our observation above that there are no significant differences in the RMSDs to
the crystal structure of the mutant when only considering the mutated residues (S3 Fig). Over-
all our results suggest that fixed backbone design is unable to correctly predict many of the
specificity altering mutations because it cannot sample low-energy conformations that require
backbone movements. In fact, min packing, which minimizes side-chain conformations on a
fixed backbone, still fails to identify many of the correct mutations (S1 Fig). In contrast, the
coupled moves method makes subtle changes in backbone and ligand conformations that allow
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Fig 5. Comparison of models for specificity altering mutations from fixed backbone and coupled moves methods, and crystal structures. Each row
displays an example specificity altering mutation from fixed backbone (magenta) or coupled moves (cyan) models, as well as the crystal structure (yellow)
and the superimposition of all three (far right column). Red disks denote steric clashes and dashed black lines denote hydrogen-bonding interactions.

doi:10.1371/journal.pcbi.1004335.9005

better optimization of steric packing and other interactions that are sensitive to precise geome-
tries, such as hydrogen bonding.

Predicting sequence tolerance in ligand binding sites

In most cases, the known specificity altering mutation was not the highest-ranking mutation
predicted to change enzyme specificity (Table 1). This is likely due to inaccuracies in the design
method, such as errors in the energy function used for ranking. However, an alternative expla-
nation is that some of the higher-ranked mutations could be functional but were simply not
tested experimentally. This observation raises the following question: how accurate is the over-
all set of ligand binding site sequences predicted by the coupled moves method, or more gener-
ally, by any given protein design approach? To address this question, we needed a set of known
ligand binding site sequences to use as a gold standard by which to compare sequences pre-
dicted by a given design method. To obtain these sequences, we sought protein families that
satisfied the following criteria: 1) the protein family has at least one representative crystal struc-
ture bound to the cognate ligand to use as input for design, 2) the protein family has a large
number of diverse sequences such that the binding site is not completely conserved, 3) all
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Table 2. Comparison of fixed backbone and coupled moves methods on predicting co-factor binding site sequences.

Protein Domain PFAM Co-factor # of unique PDB Number of Fixed Backbone Coupled Moves

ID ligand binding site ID designed Mean Profile Mean Profile
sequences positions Similarity Similarity

Cytochrome P450 PF00067 Heme 8296 21J2 30 0.233 0.312

Methyltransferase PF08241 S-adenosyl 7042 3DLC 19 0.443 0.568

domain methionine

Acetyltransferase PF00583 Coenzyme A 4084 3S6F 14 0.541 0.639

(GNAT) family

Gilutathione S- PF13417 Glutathione 2948 3R2Q 11 0.540 0.637

transferase

Short chain PF00106 NAD 21085 1ZK4 21 0.541 0.659

dehydrogenase

Aminotransferase PF00155 Pyridoxal 5'- 3149 2XBN 14 0.401 0.544

class | and Il phosphate

FAD dependent PF01266 FAD 3053 3DK9 30 0.608 0.683

oxidoreductase

Flavodoxin PF00258 FMN 947 1F4P 19 0.438 0.637

Sequence alignments of naturally occurring co-factor binding domains were taken from Pfam and filtered for redundancy. Positions were included in
design if they had a side-chain heavy-atom within 6A of the co-factor ligand and no gaps in the multiple sequence alignment.

doi:10.1371/journal.pcbi.1004335.t002

members of the protein family are capable of binding the cognate ligand using the same ligand
binding site.

We took advantage of two existing resources to find protein families that satisfied the above
criteria: the Protein Data Bank (PDB) [35], which provides thousands of examples of specific
proteins bound to small molecule ligands, and Pfam [36], which groups all known proteins
into families based on their sequences and assigns each family a unique ID. We used these
resources to create a mapping between protein families and the small molecule ligands that the
family members are known to bind. Using this protein family to ligand mapping, we found
that the protein families with the greatest number of unique proteins bound to the same ligand
tended to be protein domains of enzymes that are responsible for binding small molecule co-
factors. We reasoned from these results that co-factor binding domains would be ideal systems
for our benchmark, given that enzymes containing these domains require binding to a specific
small molecule co-factor in order to function and this requirement is likely to be conserved
throughout the domain family. This benchmark is thus conceptually different from previous
sets [22] that included complexes between proteins and small-molecule inhibitors. In these
cases it is not guaranteed that other protein family members would bind the same inhibitor
and could thus be used to evaluate not just a single “native” but also the set of “tolerated”
sequences.

We selected a set of co-factor binding protein families that had the greatest number of avail-
able sequences and non-redundant co-factors, resulting in the 8 families shown in Table 2. For
each protein family, we used the highest resolution crystal structure bound to the cognate co-
factor to identify ligand binding site positions used as input for design. Ligand binding sites
were defined as any amino acid position with a side-chain heavy atom within 6A of any heavy
atom of the co-factor ligand. Natural sequences of these binding sites were obtained using the
protein family alignment from Pfam and filtered to remove all redundant sequences. Ligand
binding site positions were allowed to mutate to any amino acid during design and neighboring
positions were allowed to repack. The resulting predicted design sequences were compared to
the natural sequences by calculating the Jensen-Shannon divergence at each position and
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subtracting this value from one, which we refer to as “profile similarity” (see Methods). This
value represents the similarity in the amino acid distributions between the natural and pre-
dicted sequences at a given position.

The coupled moves method improves prediction of sequence tolerance
in ligand binding sites compared to fixed backbone design

We applied the coupled moves method to predict the set of tolerated sequences in ligand bind-
ing sites for each of the 8 co-factor binding protein families and calculated profile similarity
with the natural sequences at each position. For comparison, we also used fixed backbone
design to generate the same number of total sequences as obtained from the coupled moves
simulations. The resulting profile similarity distributions for coupled moves and fixed back-
bone design across the 158 ligand binding site positions in 8 protein families are shown as box-
plots in Fig 6A. The coupled moves method increased the median profile similarity relative to
fixed backbone design from 0.40 to 0.59 (p < 10~'"). To understand how the fixed backbone
and coupled moves methods affect the profile similarity score for each position individually,
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Fig 6. Performance of computational protein design methods on predicting ligand binding site sequences. A) Boxplot of distributions of profile
similarity values between natural and designed sequences for each of the 158 positions in 8 co-factor binding sites. Whiskers denote minimum and
maximum, top and bottom of the box indicate 75th and 25th percentile, respectively, and the bold line shows the median. B) Scatterplot comparing profile
similarity for each position in sequences designed with fixed backbone and coupled moves methods. y = x is shown as a dashed red line. Data points above
the diagonal indicate improved predictions using the coupled moves method.

doi:10.1371/journal.pcbi.1004335.9006
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Fig 7. Sequence logos for predicted and naturally occurring binding site sequences. Two representative examples showing the largest (left) and the
smallest (right) improvement of coupled moves (middle row) over fixed backbone design (bottom row) with respect to profile similarity with natural sequences
(top row). The height of the letter representing each amino acid corresponds to its frequency and the height of each column is inversely proportional to the
sequence variation at that position.

doi:10.1371/journal.pcbi.1004335.9007

we compared the values for the 158 positions for each method, as shown in Fig 6B. Data points
above the diagonal indicate the cases where the coupled moves method performs better.
Sequence logos for predicted and naturally occurring co-factor binding site sequences are
shown in Fig 7 for the domains where the coupled moves method had the greatest and smallest
improvements over fixed backbone design. The remaining sequence logos are shown in $4-59
Figs. From the results on this benchmark it is clear that the coupled moves method improved
the prediction of sequence tolerance in ligand binding sites relative to fixed backbone design.

To further understand the basis of this improvement, we divided the 158 positions into three
groups based on the sequence entropy of each position in the natural families: high entropy (top
third), medium entropy (middle third) and low entropy (bottom third). For each of these groups,
we compared the profile similarity values for the coupled moves sequences and the fixed back-
bone sequences (Fig 8A). While the coupled moves sequences displayed higher median profile
similarities for all groups relative to the fixed backbone sequences, the high entropy group yielded
the greatest improvement, suggesting that the coupled moves method is better than fixed back-
bone design at accommodating multiple different amino acid residues at these positions. To
determine whether or not the improvement in sequence profile prediction is simply due to
increased sequence diversity, we calculated sequence profile similarity based on a null model that
assumes a uniform amino acid distribution. While this also results in an improvement over fixed
backbone design, it is still significantly lower in sequence profile similarity than sequences pre-
dicted using the coupled moves protocol (p < 1074, S10 Fig).

To understand which components of the coupled moves method allowed it to achieve
higher profile similarity to the natural ligand binding site sequences, we created several
variants of the method based on how they select mutations and side-chain conformations and
whether or not they allow backbone flexibility. Each variant was labeled “Boltz SC” or “Uni
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flexibility (“Flex BB”) or using a fixed backbone (“Fix BB”).

doi:10.1371/journal.pcbi.1004335.9008

SC”, depending on whether it used a Boltzmann distribution or a uniform distribution to select
mutations and side-chain conformations (see Methods), and “Flex BB” or “Fix BB”, depending
on whether or not it allowed backbone flexibility. The profile similarity distribution for each
variant is shown in Fig 8B compared to the standard coupled moves method (Flex BB, Boltz
SC). Biasing the selection of mutations and side-chain conformations based on energy (Boltz
SC) improved performance independently of whether or not backbone flexibility was allowed.
However, backbone flexibility (Flex BB) only improved performance if a Boltzmann distribu-
tion was used for selecting mutations and side-chain conformations.

A possible explanation is that uniform selection in coupled flexible backbone design either
leads to artificially collapsed structures (because smaller amino acids are more likely to be
accepted in buried positions, which is then followed by backbone rearrangements around these
smaller residues) or gives lower acceptance ratios. To examine these possibilities, we computed
the percent glycine residues in sequences designed with each method variation as well as the
acceptance ratio of all moves. We observed both a higher percentage of mutations to glycine
and lower acceptance ratios using uniform selection of mutations and side-chain conforma-
tions (S11 Fig). These results highlight the advantage of biasing the selection of mutations and
side-chain conformations based on energy distributions when performing flexible backbone
protein design.

Finally, given the observation that up-weighting protein-ligand interactions improved the
performance of the coupled moves method to predict specificity altering mutations, we pre-
dicted ligand binding site sequences by up-weighting protein-ligand interactions by a factor of
2 and 3. We found that up-weighting protein-ligand interactions resulted in lower profile
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similarity to naturally occurring binding site sequences (S12 Fig). These results may suggest
that evolutionary selection pressures have constrained interactions between amino acid resi-
dues in these co-factor binding sites to a similar extent as interactions between amino acid resi-
dues and the small molecule co-factor.

Discussion

In this study, we describe computational benchmarks to evaluate the accuracy of computa-
tional protein design for two important applications of protein engineering: 1) re-designing
enzyme substrate specificity and 2) designing sequence libraries for protein-ligand interac-
tions. We introduce a new computational protein design method that enables simultaneous
sampling of protein backbone, amino acid side-chain and small molecule conformational flexi-
bility, and we demonstrate that this method significantly improves both the accuracy of re-
designing enzyme specificity and predicting sequence tolerance in ligand binding sites relative
to fixed backbone design. These results show that subtle conformational changes in the protein
backbone are important for accommodating mutations in ligand binding sites and that model-
ing these changes can improve the ability to design interactions between proteins and small
molecules.

Despite the methodological advances described in this work, there exist a number of impor-
tant limitations in the current methods that remain to be addressed. For example, it is highly
unlikely that the presented approach can be used to predict the effect of mutations that are dis-
tant from the active site, given that allowed backbone flexibility is limited to small, local “back-
rub” moves. Allosteric mutations have recently been shown to be capable of altering the
geometry between multiple subunits in protein-protein interactions [37] and may use a similar
mechanism to modify interactions between proteins and small molecules. Modeling the effect
of these mutations would require moving larger regions of the protein backbone, which could
be accomplished by treating secondary structural elements as moveable rigid bodies connected
by flexible linker regions. Such moves would need to be performed in a constrained manner
such that they do not perturb important interactions in the active site that are required for
catalysis. Moreover, our method does not model the chemical steps of an enzymatic reaction
and how these steps might be affected by changes in the substrate. Processes involving bond
breakage and formation could be addressed by quantum mechanical calculations.

Another limitation is the assumption that the protein remains fixed in length during the
sequence design. Naturally occurring enzymes are not confined to a fixed sequence length and
can acquire insertions and deletions in their active site loops to achieve altered specificities or
even catalytic activities. This observation has previously been exploited to introduce new cata-
lytic activities into an existing enzyme scaffold [38] and could potentially be a useful mecha-
nism by which to design altered enzyme specificity. Active site loops whose lengths could be
changed without disrupting protein stability could be identified prior to design, and moves
that add or remove residues in these loops could be made using robotics-inspired loop model-
ing techniques such as kinematic closure [39].

Larger moves, such as insertions or deletions in active site loops or the re-arrangements
between secondary structural elements described above, may be required to solve enzyme spec-
ificity re-design problems where the desired non-native substrate is significantly different in
chemical structure from the native substrate. In the benchmark described in this study, we
used example systems for which the native and non-native substrates shared a common sub-
structure, allowing us to superimpose the non-native substrate onto the native substrate to cre-
ate a starting model to use as input for design. If the substrates did not share a common
substructure, more extensive remodeling of the active site may be necessary and ligand-protein
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docking may be required to obtain a model of the non-native substrate bound to the enzyme.
Additionally, the implicit solvation model used in this study ignores the discrete size and asym-
metry of water molecules and therefore cannot model water-mediated hydrogen bonding inter-
actions. In subsequent work, the presented method could be used in combination with an
explicit solvation model to more accurately capture water-mediated interactions between the
ligand binding site residues and the small molecule.

The results of this study suggest that subtle changes to the protein backbone may be neces-
sary for proteins to accommodate mutations that enable new functions, and that these muta-
tions can successfully be accommodated via coupling “backrub” moves to changes in side-
chain conformation. We find it notable that the same mechanisms of backbone movements
commonly observed in protein structural heterogeneity [32] can be exploited to achieve altered
functions. Our results thus support the idea that there are common mechanisms underlying
protein dynamics and protein evolution [40], which has broad implications to the field of pro-
tein engineering and provides a promising route towards the development of computational
models to predict how mutations affect protein function. We expect that future work on char-
acterizing protein structural heterogeneity, for example by using room temperature X-ray crys-
tallography [41], will provide valuable information on the types of motions that proteins
undergo and enable us to take advantage of these motions when modeling and designing novel
protein functions.

This study provides many examples where considerable changes in specificity can be made
with one or two mutations while maintaining the catalytic activity of an enzyme. Altering spec-
ificity with a single mutation has recently been observed in interactions between PDZ domains
and peptide ligands [13] and may provide an evolutionary mechanism by which proteins can
obtain new functions without having to pass through an intermediate sequence with unfavor-
able fitness. Our study illustrates that these change of function mutations can be modeled and
designed using computational protein design methods when subtle conformational changes of
the protein backbone are allowed at the same time as sequence design. While this method has
been specifically applied to interactions between proteins and small molecules in this study, the
approach should be generally useful for any computational protein design problem. Finally,
the benchmarks described in this study should enable further development and improvement
in computational methods for re-designing enzyme specificity and designing sequence libraries
for protein-ligand interactions.

Methods
Coupling backbone and side-chain flexibility

Backbone flexibility was modeled using three-residue “backrub” moves, which define a rota-
tional axis between two Cow backbone atoms and rotate everything in between by an angle 6
[25,32]. To determine a biophysically realistic distribution from which to sample 0, we created
a dataset of 842 non-redundant high resolution (< 1.5A) structures with a total of 2114 three-
residue segments with alternate coordinates differing by greater than 0.2A at Co; and less than
0.2A at Co;_; and Coy;, ;. We measured 2114 values of 6 from this set of experimentally
observed backrub motions and fit a Gaussian to this distribution, resulting in a standard devia-
tion of 4.57° that we used as a default for the coupled moves method. Following each three-resi-
due backrub move, we perform rotations of the two peptide bonds such that the displacement
of the backbone C-O and N-H groups is minimized.

After the backbone move is completed, we iterate over each rotamer at position i and calcu-
late its energy in the context of the new backbone conformation. Rotamers are generated using
the Dunbrack backbone-dependent rotamer library [42]. A Boltzmann probability is calculated
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for each rotamer as follows:
1 ;
P(E)=—— et
e

where E; is the difference in energy between rotamer i and the current rotamer. A rotamer is

then selected using these probabilities. S13 Fig shows an example distribution of rotamer ener-
gies and their corresponding probabilities. If a position is a design position, one rotamer is
selected for each amino acid, probabilities are computed for each amino acid based on the
selected rotamers, and an amino acid is selected using these probabilities. A value of 0.6 was
used for KT to calculate the probabilities. For the “Uni SC” protocol variant, rotamers and
amino acids were selected using a uniform distribution. For the “Fix BB” protocol variant, the
backbone moves were not performed.

Coupling ligand rotation / translation and flexibility

Ligand rigid-body rotations and translations were sampled using two Gaussian distributions
with a 1° standard deviation for rotations and a 0.1A standard deviation for translations. After
a rigid-body rotation and translation is completed, a rotamer is selected for the ligand using
the same Boltzmann selection approach as for amino acid side chains described above. Ligand
rotamers were generated using OpenEye OMEGA [43] with default parameters.

Monte Carlo simulation

Coupled backbone / side-chain moves and coupled ligand rotation / translation and flexibility
were combined in a Monte Carlo simulation using a constant temperature (kT = 0.6). Each
move had a 90% probability of being a backbone / side-chain move and a 10% probability of
being a ligand move. Each simulation was run for 1,000 moves and 20 simulations were run for
each protein-ligand complex. All unique amino acid sequences accepted during each simula-
tion were output into a FASTA file, and the resulting 20 FASTA files were filtered for redun-
dancy and pooled into a single file for analysis. Command line arguments for running the
coupled moves method in Rosetta are provided in S1 Text.

Benchmark 1: Enzyme Specificity Altering Mutations

The command lines used to generate the results for benchmark 1 are shown in S1 Text. All
positions with a side-chain heavy atom within 4.5A of any atoms belonging to a substructure
that differs between the native and non-native substrate were allowed to design to any amino
acid. Neighboring positions were defined as any residue with a side-chain conformation that
clashes (>5 Rosetta energy units) with a potential rotamer of a design position. All such neigh-
boring positions were allowed to repack. Fixed backbone design was run to obtain the same
number of total sequences as the coupled moves method.

The percent enrichment (PE) for each mutation was calculated as follows:

PE(WT — MUT) = % — %

non—native native

PE(MUT — WT) = %,,,,, — %

native non—native

where %41, is the percent occurrence of the mutation in sequences designed for the native
substrate/substrate analog and %;,o,_narive is the percent occurrence of the mutation in
sequences designed for the non-native substrate/substrate analog. PE(WT — MUT) was used
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for predictions that start with the wild-type structure and PE(MUT — WT) was used for pre-
dictions that start with the mutant structure.

A prediction was considered to be correct if it obtained a positive percent enrichment value.
The “rank” of each mutation was determined by sorting all possible mutations at the given
position in descending order of their percent enrichment values. We also used this sorted list to
compute the percentile for each mutation. S14 Fig shows an example distribution of percent
enrichment values for all mutations predicted for a given specificity switch.

Benchmark 2: Ligand Binding Site Sequence Tolerance

The command lines used to generate the results for benchmark 2 are shown in S1 Text. All
positions with a side-chain heavy atom within 6A of any heavy atom on the ligand were
allowed to design to any amino acid. Neighboring positions were defined as any residue with a
side-chain conformation that clashes (>5 Rosetta energy units) with a potential rotamer of a
design position. All such neighboring positions were allowed to repack. Fixed backbone design
was run to obtain the same number of total sequences as the coupled moves method.

The profile similarity for each position was calculated as follows:

1- Dls(piqu‘)

where p; and q; are the probability distributions over the 20 amino acids for the natural and
designed sequences, respectively, at position i and D**(x,y) is the Jensen-Shannon divergence
between two distributions x and y, as described in [44].

The sequence entropy for each position was calculated as follows:

Hi = - prlogZOPx
X
where P, is the percent of sequences with amino acid x at position i.

Calculation of p-values

P-values for comparing the percent of correctly predicted specificity altering mutations in
benchmark 1 were calculated using Fisher’s exact test. P-values for comparing the accuracy of
predicting ligand binding site sequence profiles in benchmark 2 were calculated using a paired,
two-tailed Student’s t-test assuming unequal variance.

Supporting Information

S1 Fig. Performance of predicting specificity altering mutations using the min packing
method that minimizes torsions on side-chain rotamers during design.
(TIF)

S2 Fig. Performance of predicting specificity altering mutations using different weights for
protein-ligand interactions.
(TIF)

S3 Fig. Comparison of fixed backbone and coupled moves methods based on RMSD from
crystal structure of the residue mutated to change specificity as well as the surrounding
neighboring residues.

(TIF)

S4 Fig. Sequence logos for the Short chain dehydrogenase binding site.
(TTF)
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S5 Fig. Sequence logos for the Aminotransferase class I and II binding site.
(TIF)

S6 Fig. Sequence logos for the Methyltransferase domain binding site.
(TIF)

S7 Fig. Sequence logos for the Glutathione S-transferase binding site.
(TTF)

S8 Fig. Sequence logos for the Acetyltransferase (GNAT) binding site.
(TIF)

S9 Fig. Sequence logos for the Cytochrome P450 binding site.
(TIF)

$10 Fig. Comparison of the profile similarity distributions for fixed backbone design, the
coupled moves method and a null model that assumes a uniform amino acid distribution.
(TIF)

S11 Fig. Comparison of the percent of glycine residues and acceptance ratios in sequences
designed with fixed backbone design and variations of the coupled moves method.
(TIF)

$12 Fig. Performance of predicting ligand binding site sequences when up-weighting pro-
tein-ligand interactions.
(TIF)

$13 Fig. Example of the calculation of rotamer Boltzmann probabilities based on the distri-
bution of rotamer energies.
(TIF)

$14 Fig. Example of the calculation of the percent enrichment in non-native sequences for
predicted specificity altering mutations. Arrows indicate experimentally determined specific-
ity altering mutations.

(TIF)

S1 Table. Experimental data on enzyme substrate specificity altering mutations. For several
of the enzymes in this table, the wild-type enzyme does not have detectable binding affinity for
the non-native substrate. These cases are denoted by “Wild-type K,,, nd”. Cases where the
mutant enzyme did not have detectable binding affinity to the native substrate are denoted by
“Mutant K, nd.” Enzymes where binding affinities were not reported are labeled as “K;,, nr”.
(DOCX)

$2 Table. Comparison of fixed backbone and coupled moves methods on predicting speci-
ficity altering mutations starting from the wild-type enzyme (“WT to Mutant”). Dashes
denote cases where the known mutation was not enriched in the predicted non-native sub-
strate/substrate analog sequences and therefore not predicted to be a specificity altering muta-
tion.

(DOCX)

$3 Table. Comparison of fixed backbone and coupled moves methods on predicting speci-
ficity altering mutations starting from the mutant enzyme (“Mutant to WT”). Dashes
denote cases where the known mutation was not enriched in the predicted native substrate/
substrate analog sequences and therefore not predicted to be a specificity altering mutation.
(DOCX)
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S1 Text. Command line arguments for running the coupled moves method in Rosetta.
(DOCX)

Acknowledgments

We thank Dr. Nir London for testing the described protocols, and the Kortemme lab for
insightful discussion. We also thank Dr. Jan-Metske van der Laan and Dr. Jan van Leeuwen for
helpful feedback and discussions.

Author Contributions

Conceived and designed the experiments: NO RMd]J TK. Performed the experiments: NO.
Analyzed the data: NO RMd] TK. Contributed reagents/materials/analysis tools: NO. Wrote
the paper: NO RMdJ TK.

References

1. Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330: 1355—
1358. doi: 10.1126/science.1193990 PMID: 21127247

2. Mahan SD, Ireton GC, Knoeber C, Stoddard BL, Black ME (2004) Random mutagenesis and selection
of Escherichia coli cytosine deaminase for cancer gene therapy. Protein Engineering Design and
Selection 17: 625-633. doi: 10.1093/protein/gzh074

3. Bennett EM, Anand R, Allan PW, Hassan AEA, Hong JS, et al. (2003) Designer Gene Therapy Using
an Escherichia coli Purine Nucleoside Phosphorylase/Prodrug System. Chemistry & Biology 10:
1173-1181. doi: 10.1016/j.chembiol.2003.11.008

4. Poutanen K (1997) Enzymes: An important tool in the improvement of the quality of cereal foods.
Trends in Food Science & Technology 8: 300-306. doi: 10.1016/S0924-2244(97)01063-7

5. AngEL, Zhao H, Obbard JP (2005) Recent advances in the bioremediation of persistent organic pollut-
ants via biomolecular engineering. Enzyme and Microbial Technology 37:487—496. doi: 10.1016/].
enzmictec.2004.07.024

6. BakerD (2010) An exciting but challenging road ahead for computational enzyme design. Protein Sci-
ence 19:1817-1819. doi: 10.1002/pro.481 PMID: 20717908

7. Brustad EM, Arnold FH (2011) Optimizing non-natural protein function with directed evolution. Current
Opinion in Chemical Biology 15:201-210. doi: 10.1016/j.cbpa.2010.11.020 PMID: 21185770

8. Goldsmith M, Tawfik DS (2012) Directed enzyme evolution: beyond the low-hanging fruit. Current Opin-
ion in Structural Biology 22: 406—412. doi: 10.1016/.sbi.2012.03.010 PMID: 22579412

9. Lilien RH, Stevens BW, Anderson AC, Donald BR (2005) A Novel Ensemble-Based Scoring and
Search Algorithm for Protein Redesign and Its Application to Modify the Substrate Specificity of the
Gramicidin Synthetase A Phenylalanine Adenylation Enzyme. Journal of Computational Biology 12:
740-761. doi: 10.1089/cmb.2005.12.740 PMID: 16108714

10. Murphy PM, Bolduc JM, Gallaher JL, Stoddard BL, Baker D (2009) Alteration of enzyme specificity by
computational loop remodeling and design. Proc Natl Acad Sci USA 106: 9215-9220. doi: 10.1073/
pnas.0811070106 PMID: 19470646

11. Borgo B, Havranek JJ (2014) Motif-directed redesign of enzyme specificity. Protein Science 23: 312—
320. doi: 10.1002/pro.2417 PMID: 24407908

12. Kortemme T, Joachimiak LA, Bullock AN, Schuler AD, Stoddard BL, et al. (2004) Computational rede-
sign of protein-protein interaction specificity. Nat Struct Mol Biol 11: 371-379. doi: 10.1038/nsmb749
PMID: 15034550

13. Melero C, Ollikainen N, Harwood |, Karpiak J, Kortemme T (2014) Quantification of the transferability of
a designed protein specificity switch reveals extensive epistasis in molecular recognition. Proc Natl
Acad Sci USA 111:15426—-15431. doi: 10.1073/pnas.1410624111 PMID: 25313039

14. Joachimiak LA, Kortemme T, Stoddard BL, Baker D (2006) Computational Design of a New Hydrogen
Bond Network and at Least a 300-fold Specificity Switch at a Protein—Protein Interface. Journal of
Molecular Biology 361: 195-208. doi: 10.1016/j.jmb.2006.05.022 PMID: 16831445

15. Kapp GT, Liu S, Stein A, Wong DT, Reményi A, et al. (2012) Control of protein signaling using a
computationally designed GTPase/GEF orthogonal pair. Proc Natl Acad Sci USA 109: 5277-5282.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004335 September 23, 2015 20/22


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004335.s018
http://dx.doi.org/10.1126/science.1193990
http://www.ncbi.nlm.nih.gov/pubmed/21127247
http://dx.doi.org/10.1093/protein/gzh074
http://dx.doi.org/10.1016/j.chembiol.2003.11.008
http://dx.doi.org/10.1016/S0924-2244(97)01063-7
http://dx.doi.org/10.1016/j.enzmictec.2004.07.024
http://dx.doi.org/10.1016/j.enzmictec.2004.07.024
http://dx.doi.org/10.1002/pro.481
http://www.ncbi.nlm.nih.gov/pubmed/20717908
http://dx.doi.org/10.1016/j.cbpa.2010.11.020
http://www.ncbi.nlm.nih.gov/pubmed/21185770
http://dx.doi.org/10.1016/j.sbi.2012.03.010
http://www.ncbi.nlm.nih.gov/pubmed/22579412
http://dx.doi.org/10.1089/cmb.2005.12.740
http://www.ncbi.nlm.nih.gov/pubmed/16108714
http://dx.doi.org/10.1073/pnas.0811070106
http://dx.doi.org/10.1073/pnas.0811070106
http://www.ncbi.nlm.nih.gov/pubmed/19470646
http://dx.doi.org/10.1002/pro.2417
http://www.ncbi.nlm.nih.gov/pubmed/24407908
http://dx.doi.org/10.1038/nsmb749
http://www.ncbi.nlm.nih.gov/pubmed/15034550
http://dx.doi.org/10.1073/pnas.1410624111
http://www.ncbi.nlm.nih.gov/pubmed/25313039
http://dx.doi.org/10.1016/j.jmb.2006.05.022
http://www.ncbi.nlm.nih.gov/pubmed/16831445

B PLOS | Suryanonat

Computational Re-design of Protein-Ligand Specificity

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

doi: 10.1073/pnas.1114487109 PMID: 22403064. Available: http://www.pnas.org/cgi/doi/10.1073/
pnas.1114487109

Sammond DW, Eletr ZM, Purbeck C, Kuhiman B (2010) Computational design of second-site suppres-
sor mutations at protein-protein interfaces. Proteins 78: 1055-1065. doi: 10.1002/prot.22631 PMID:
19899154. Available: http://onlinelibrary.wiley.com/doi/10.1002/prot.22631/full

Sammond DW, Eletr ZM, Purbeck C, Kimple RJ, Siderovski DP, et al. (2007) Structure-based protocol
for identifying mutations that enhance protein-protein binding affinities. Journal of Molecular Biology
371: 1392—-1404. doi: 10.1016/j.jmb.2007.05.096 PMID: 17603074

Blomberg R, Kries H, Pinkas DM, Mittl PRE, Gritter MG, et al. (2013) Precision is essential for efficient
catalysis in an evolved Kemp eliminase. 503: 418—421. doi: 10.1038/nature12623

Lassila JK, Privett HK, Allen BD, Mayo SL (2006) Combinatorial methods for small-molecule placement
in computational enzyme design. Proc Natl Acad Sci USA 103: 16710-16715. doi: 10.1073/pnas.
0607691103 PMID: 17075051

Chakrabarti R, Klibanov AM, Friesner RA (2005) Computational prediction of native protein ligand-bind-
ing and enzyme active site sequences. Proc Natl Acad Sci USA 102: 10153-10158. doi: 10.1073/
pnas.0504023102 PMID: 15998733

Chakrabarti R, Klibanov AM, Friesner RA (2005) Sequence optimization and designability of enzyme
active sites. Proc Natl Acad Sci USA 102: 12035-12040. doi: 10.1073/pnas.0505397102 PMID:
16103370

Allison B, Combs S, DelLuca S, Lemmon G, Mizoue L, et al. (2014) Computational design of protein-
small molecule interfaces. Journal of Structural Biology 185: 193—202. doi: 10.1016/.jsb.2013.08.003
PMID: 23962892

Malisi C, Schumann M, Toussaint NC, Kageyama J, Kohlbacher O, et al. (2012) Binding Pocket Optimi-
zation by Computational Protein Design. PLoS ONE 7: €52505. doi: 10.1371/journal.pone.0052505
PMID: 23300688

Chen C-Y, Georgiev |, Anderson AC, Donald BR (2009) Computational structure-based redesign of
enzyme activity. Proc Natl Acad Sci USA 106: 3764—-3769. doi: 10.1073/pnas.0900266106 PMID:
19228942

Smith CA, Kortemme T (2008) Backrub-Like Backbone Simulation Recapitulates Natural Protein Con-
formational Variability and Improves Mutant Side-Chain Prediction. Journal of Molecular Biology 380:
742-756. doi: 10.1016/j.jmb.2008.05.023 PMID: 18547585

Ollikainen N, Smith CA, Fraser JS, Kortemme T (2013) Flexible Backbone Sampling Methods to Model
and Design Protein Alternative Conformations. Methods in Protein Design. Methods in Enzymology.
Elsevier, Vol. 523. pp. 61-85. doi: 10.1016/B978-0-12-394292-0.00004—7 PMID: 23422426

Ollikainen N, Kortemme T (2013) Computational Protein Design Quantifies Structural Constraints on
Amino Acid Covariation. PLoS Computational Biology 9: €1003313. doi: 10.1371/journal.pcbi.1003313
PMID: 24244128

Smith CA, Kortemme T (2011) Predicting the Tolerated Sequences for Proteins and Protein Interfaces
Using RosettaBackrub Flexible Backbone Design. PLoS ONE 6: e20451. doi: 10.1371/journal.pone.
0020451 PMID: 21789164

Smith CA, Kortemme T (2010) Structure-based prediction of the peptide sequence space recognized
by natural and synthetic PDZ domains. Journal of Molecular Biology 402: 460—474. doi: 10.1016/j.jmb.
2010.07.032 PMID: 20654621

Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, et al. (2011) ROSETTAS: an object-oriented
software suite for the simulation and design of macromolecules. Meth Enzymol 487: 545-574. doi: 10.
1016/B978-0-12-381270-4.00019-6 PMID: 21187238

Gutmanas A, Alhroub Y, Battle GM, Berrisford JM, Bochet E, et al. (2014) PDBe: Protein Data Bank in
Europe. Nucleic Acids Res 42: D285-D291. doi: 10.1093/nar/gkt1180 PMID: 24288376

Davis IW, Arendall WB III, Richardson DC, Richardson JS (2006) The Backrub Motion: How Protein
Backbone Shrugs When a Sidechain Dances. Structure 14: 265-274. doi: 10.1016/j.str.2005.10.007
PMID: 16472746

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of State Calcula-
tions by Fast Computing Machines. The Journal of Chemical Physics 21: 1087—-1092. doi: 10.1063/1.
1699114

Kuzmanic A, Zagrovic B (2010) Determination of ensemble-average pairwise root mean-square devia-
tion from experimental B-factors. Biophys J 98: 861-871. doi: 10.1016/].bpj.2009.11.011 PMID:
20197040

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The Protein Data Bank. Nucleic
Acids Res 28:235-242. doi: 10.1093/nar/28.1.235 PMID: 10592235

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004335 September 23, 2015 21/22


http://dx.doi.org/10.1073/pnas.1114487109
http://www.ncbi.nlm.nih.gov/pubmed/22403064
http://www.pnas.org/cgi/doi/10.1073/pnas.1114487109
http://www.pnas.org/cgi/doi/10.1073/pnas.1114487109
http://dx.doi.org/10.1002/prot.22631
http://www.ncbi.nlm.nih.gov/pubmed/19899154
http://onlinelibrary.wiley.com/doi/10.1002/prot.22631/full
http://dx.doi.org/10.1016/j.jmb.2007.05.096
http://www.ncbi.nlm.nih.gov/pubmed/17603074
http://dx.doi.org/10.1038/nature12623
http://dx.doi.org/10.1073/pnas.0607691103
http://dx.doi.org/10.1073/pnas.0607691103
http://www.ncbi.nlm.nih.gov/pubmed/17075051
http://dx.doi.org/10.1073/pnas.0504023102
http://dx.doi.org/10.1073/pnas.0504023102
http://www.ncbi.nlm.nih.gov/pubmed/15998733
http://dx.doi.org/10.1073/pnas.0505397102
http://www.ncbi.nlm.nih.gov/pubmed/16103370
http://dx.doi.org/10.1016/j.jsb.2013.08.003
http://www.ncbi.nlm.nih.gov/pubmed/23962892
http://dx.doi.org/10.1371/journal.pone.0052505
http://www.ncbi.nlm.nih.gov/pubmed/23300688
http://dx.doi.org/10.1073/pnas.0900266106
http://www.ncbi.nlm.nih.gov/pubmed/19228942
http://dx.doi.org/10.1016/j.jmb.2008.05.023
http://www.ncbi.nlm.nih.gov/pubmed/18547585
http://dx.doi.org/10.1016/B978-0-12-394292-0.00004&ndash;7
http://www.ncbi.nlm.nih.gov/pubmed/23422426
http://dx.doi.org/10.1371/journal.pcbi.1003313
http://www.ncbi.nlm.nih.gov/pubmed/24244128
http://dx.doi.org/10.1371/journal.pone.0020451
http://dx.doi.org/10.1371/journal.pone.0020451
http://www.ncbi.nlm.nih.gov/pubmed/21789164
http://dx.doi.org/10.1016/j.jmb.2010.07.032
http://dx.doi.org/10.1016/j.jmb.2010.07.032
http://www.ncbi.nlm.nih.gov/pubmed/20654621
http://dx.doi.org/10.1016/B978-0-12-381270-4.00019&ndash;6
http://dx.doi.org/10.1016/B978-0-12-381270-4.00019&ndash;6
http://www.ncbi.nlm.nih.gov/pubmed/21187238
http://dx.doi.org/10.1093/nar/gkt1180
http://www.ncbi.nlm.nih.gov/pubmed/24288376
http://dx.doi.org/10.1016/j.str.2005.10.007
http://www.ncbi.nlm.nih.gov/pubmed/16472746
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1016/j.bpj.2009.11.011
http://www.ncbi.nlm.nih.gov/pubmed/20197040
http://dx.doi.org/10.1093/nar/28.1.235
http://www.ncbi.nlm.nih.gov/pubmed/10592235

B PLOS | Suryanonat

Computational Re-design of Protein-Ligand Specificity

36.

37.

38.

39.

40.

41.

42,

43.

44.

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, et al. (2014) Pfam: the protein families data-
base. Nucleic Acids Res 42: D222-D230. doi: 10.1093/nar/gkt1223 PMID: 24288371

Perica T, Kondo Y, Tiwari SP, McLaughlin SH, Kemplen KR, et al. (2014) Evolution of oligomeric state
through allosteric pathways that mimic ligand binding. Science 346: 1254346—-1254346. doi: 10.1126/
science.1254346 PMID: 25525255

Park H-S, Nam S-H, Lee JK, Yoon CN, Mannervik B, et al. (2006) Design and evolution of new catalytic
activity with an existing protein scaffold. Science 311:535-538. doi: 10.1126/science.1118953 PMID:
16439663

Mandell DJ, Coutsias EA, Kortemme T (2009) Sub-angstrom accuracy in protein loop reconstruction by
robotics-inspired conformational sampling. Nature Methods 6: 551-552. doi: 10.1038/nmeth0809-551
PMID: 19644455

Keedy DA, Georgiev |, Triplett EB, Donald BR, Richardson DC, et al. (2012) The role of local backrub
motions in evolved and designed mutations. PLoS Computational Biology 8: €1002629. doi: 10.1371/
journal.pcbi.1002629 PMID: 22876172

Fraser JS, van den Bedem H, Samelson AJ, Lang PT, Holton JM, et al. (2011) Accessing protein con-
formational ensembles using room-temperature X-ray crystallography. Proc Natl Acad Sci USA 108:
16247-16252. doi: 10.1073/pnas.1111325108 PMID: 21918110

Shapovalov MV, Dunbrack RL Jr. (2011) A Smoothed Backbone-Dependent Rotamer Library for Pro-
teins Derived from Adaptive Kernel Density Estimates and Regressions. Structure 19: 844-858. doi:
10.1016/j.str.2011.03.019 PMID: 21645855

Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer Generation with
OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cam-
bridge Structural Database. J Chem Inf Model 50: 572-584. doi: 10.1021/ci100031x PMID: 20235588

Yona G, Levitt M (2002) Within the twilight zone: a sensitive profile-profile comparison tool based on
information theory. Journal of Molecular Biology 315: 1257—1275. doi: 10.1006/jmbi.2001.5293 PMID:
11827492

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004335 September 23, 2015 22/22


http://dx.doi.org/10.1093/nar/gkt1223
http://www.ncbi.nlm.nih.gov/pubmed/24288371
http://dx.doi.org/10.1126/science.1254346
http://dx.doi.org/10.1126/science.1254346
http://www.ncbi.nlm.nih.gov/pubmed/25525255
http://dx.doi.org/10.1126/science.1118953
http://www.ncbi.nlm.nih.gov/pubmed/16439663
http://dx.doi.org/10.1038/nmeth0809-551
http://www.ncbi.nlm.nih.gov/pubmed/19644455
http://dx.doi.org/10.1371/journal.pcbi.1002629
http://dx.doi.org/10.1371/journal.pcbi.1002629
http://www.ncbi.nlm.nih.gov/pubmed/22876172
http://dx.doi.org/10.1073/pnas.1111325108
http://www.ncbi.nlm.nih.gov/pubmed/21918110
http://dx.doi.org/10.1016/j.str.2011.03.019
http://www.ncbi.nlm.nih.gov/pubmed/21645855
http://dx.doi.org/10.1021/ci100031x
http://www.ncbi.nlm.nih.gov/pubmed/20235588
http://dx.doi.org/10.1006/jmbi.2001.5293
http://www.ncbi.nlm.nih.gov/pubmed/11827492

