
RESEARCH Open Access

Augmentation of arginase 1 expression by
exposure to air pollution exacerbates the airways
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Abstract

Background: Arginase overexpression contributes to airways hyperresponsiveness (AHR) in asthma. Arginase
expression is further augmented in cigarette smoking asthmatics, suggesting that it may be upregulated by
environmental pollution. Thus, we hypothesize that arginase contributes to the exacerbation of respiratory
symptoms following exposure to air pollution, and that pharmacologic inhibition of arginase would abrogate the
pollution-induced AHR.

Methods: To investigate the role of arginase in the air pollution-induced exacerbation of airways responsiveness,
we employed two murine models of allergic airways inflammation. Mice were sensitized to ovalbumin (OVA) and
challenged with nebulized PBS (OVA/PBS) or OVA (OVA/OVA) for three consecutive days (sub-acute model) or
12 weeks (chronic model), which exhibit inflammatory cell influx and remodeling/AHR, respectively. Twenty-four
hours after the final challenge, mice were exposed to concentrated ambient fine particles plus ozone (CAP+O3), or
HEPA-filtered air (FA), for 4 hours. After the CAP+O3 exposures, mice underwent tracheal cannulation and were
treated with an aerosolized arginase inhibitor (S-boronoethyl-L-cysteine; BEC) or vehicle, immediately before
determination of respiratory function and methacholine-responsiveness using the flexiVent®. Lungs were then
collected for comparison of arginase activity, protein expression, and immunohistochemical localization.

Results: Compared to FA, arginase activity was significantly augmented in the lungs of CAP+O3-exposed OVA/OVA
mice in both the sub-acute and chronic models. Western blotting and immunohistochemical staining revealed that
the increased activity was due to arginase 1 expression in the area surrounding the airways in both models.
Arginase inhibition significantly reduced the CAP+O3-induced increase in AHR in both models.

Conclusions: This study demonstrates that arginase is upregulated following environmental exposures in murine
models of asthma, and contributes to the pollution-induced exacerbation of airways responsiveness. Thus arginase
may be a therapeutic target to protect susceptible populations against the adverse health effects of air pollution,
such as fine particles and ozone, which are two of the major contributors to smog.

Background
Epidemiological studies have described a relationship
between ambient levels of air pollution, and respiratory
admissions to hospitals [1,2]. It has become increasingly
imperative to determine the biological effects of urban
air pollutants, as they pose a serious risk to public

health and continue to present an enormous and
increasing health and economic burden [3,4]. Investiga-
tions of the health impact of air pollution using con-
trolled human exposures have demonstrated acute
cardiopulmonary effects in both healthy subjects and
asthmatics [5-7]. Fine particulate matter, with an aero-
dynamic diameter of less than 2.5 μm, has been specifi-
cally associated with increased mortality, pulmonary
inflammation and oxidative stress [8-10]. Ozone (O3)
exposure has also been associated with asthma-related

* Correspondence: jeremy.scott@utoronto.ca
1Institute of Medical Science, Faculty of Medicine, University of Toronto,
Toronto, ON, Canada
Full list of author information is available at the end of the article

North et al. Respiratory Research 2011, 12:19
http://respiratory-research.com/content/12/1/19

© 2011 North et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:jeremy.scott@utoronto.ca
http://creativecommons.org/licenses/by/2.0


hospital visits [11]. Fine particulate matter and O3 typi-
cally occur together in urban settings [7]. Therefore, it
is important to understand the combined effects of
these criteria air pollutants on cardiopulmonary disease.
In particular, the role of these pollutants in asthma
exacerbations remains to be fully understood.
Studies of gene-environment interactions have focused

on the role of oxidative stress-responsive genes and air
pollution exposures in asthma [12,13]. However, the
mechanism(s) linking exposure to air pollution and
asthma exacerbation remains unclear. The metabolism
of L-arginine plays an important homeostatic role in the
airways, through synthesis of the bronchodilating mole-
cule, nitric oxide (NO), from L-arginine, by the nitric
oxide synthase (NOS) isozymes [14]. The arginase iso-
zymes (arginases 1 and 2), convert L-arginine into
L-ornithine and urea, and thus compete with the NOS
isozymes for substrate [15]. We and others have shown
that arginase expression is upregulated in human
asthma [16-18] and that the arginase isozymes play a
functional role in the airways hyperresponsiveness
(AHR) in animal models of asthma, using ovalbumin
(OVA) [16,17,19,20], Aspergillus fumigatus [17], trimelli-
tic anhydride exposure [21], and more recently house
dust mite [22]. We have previously demonstrated that
the AHR in a chronic murine model of allergic airways
inflammation to OVA is due to arginase 1 overexpres-
sion [16]. Furthermore, single nucleotide polymorphisms
of arginase 1 have been specifically associated with
responsiveness to bronchodilators, and L-arginine bioa-
vailability can impact airflow in asthma [23,24].
The arginase pathway has not previously been exam-

ined as a potential mechanism underlying the air pollu-
tion-induced exacerbation of asthma symptoms.
However, arginase has been shown to be further upregu-
lated in smoking asthmatics who are regularly and
voluntarily exposed to high levels of particulate matter
[25]. Furthermore, there is evidence to support uncou-
pling of the endothelial NOS in the vasculature follow-
ing exposure to diesel exhaust [26], and dysfunction of
endothelial-dependent vasorelaxation following exposure
to second-hand tobacco smoke [27], likely as a conse-
quence of a reduction in the bioavailability of L-arginine
or tetrahydrobiopterin for the NOS pathway. Thus, it is
plausible that dysregulation of L-arginine metabolism as
a consequence of air pollution-induced upregulation of
pulmonary arginase could contribute to the exacerbation
of respiratory symptoms in susceptible asthmatics. We
tested the hypothesis that arginase expression is aug-
mented in response to exposures to environmental air
pollutants, using two independent murine models of
allergic airways inflammation; sub-acute and chronic
models that mimic the inflammatory response and
airways remodeling/AHR, respectively [28-31]. We

demonstrate further upregulation of arginase following
exposure to air pollution and attenuation of the pollu-
tion-induced AHR following treatment with an arginase
inhibitor in both murine models of allergic airways
inflammation.

Methods
Sub-acute and chronic models of allergic airways
inflammation
All protocols were approved by the University of
Toronto Faculty Advisory Committee on Animal Services,
and were conducted in accordance with the guidelines of
the Canadian Council on Animal Care, ensuring that the
animals were treated humanely. To investigate the role
of arginase in the exacerbation of airways responsiveness
induced by air pollution exposure, we utilized two mur-
ine models of allergic airways inflammation: the sub-
acute (16-day) and chronic (12-week) OVA-sensitization
and -challenge models, which represent short-term aller-
gic inflammatory changes and remodeling/hyperrespon-
siveness of the airways, respectively [30,31]. In both
models, female BALB/c mice (6-8 weeks of age; Charles
River Laboratories, Saint-Constant, PQ) were sensitized
to OVA (25 μg i.p. in 0.2 ml PBS with 1 mg Al(OH)3;
Sigma Aldrich, Mississauga ON) one week apart (days 0
and 7), as described previously [16]. In the sub-acute
model, the sensitized mice were randomized into two
inhalation challenge groups (nebulized 6% OVA (OVA/
OVA) or PBS (OVA/PBS)) for 25 minutes/day from
days 14-16 (Figure 1A). In the chronic model, OVA-
sensitized mice were challenged with nebulized 2.5%
OVA, on two consecutive days followed by a 12-day
rest period (i.e., 2-week intervals), for up to 12 weeks
(Figure 1A). For both models, 24 hours after the final
OVA or PBS challenge, mice were exposed to concen-
trated ambient particles plus ozone (CAP+O3) or
HEPA-filtered lab air (FA), as described below, and
depicted in Figure 1B.

Air Pollution Exposures
Combined exposures to CAP and O3 were employed in
this study. For controlled exposures to concentrated
ambient fine particulate matter, we used the Harvard
Ambient Particle Concentrator [32], which is a high-flow
(5000 L/min) three-stage virtual impactor system that is
part of the Southern Ontario Centre for Atmospheric
Aerosol Research at the Gage Occupational and Environ-
mental Health Unit. In this system, ambient air is drawn
in, and real-world particles with an aerodynamic dia-
meter 0.1-2.5 μm are concentrated approximately 40-fold
(range: 196-954 μg/m3). O3 was produced by an arc
generator using medical-grade oxygen and was intro-
duced into the transition plenum between the second
and third stages of the concentrator. CAP and O3 levels
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(>175 μg/m3 and 2 ppm, respectively) were selected
based upon previous inhalation exposure studies in
rodents [33-35]. Mice were exposed to CAP+O3 or FA
for 4 hours at a flow rate of 2 L/min (Figure 1B) using
a modified inExpose nose-only inhalation system (Scireq
Inc., Montréal, PQ) within a Plexiglas chamber. The O3

levels achieved using this system were monitored on the
outflow from the chamber, using a Dasibi Model
1008RS ozone analyzer (Dasibi Environmental Corp,
Glendale CA), and particle levels were determined grav-
imetrically (Table 1). In a subset of exposures, the con-
stituents of the CAP were measured and the levels of
major constituents (i.e., organic and elemental carbon,
NO3

-, SO4
2-, and NH4

+) were found to be consistent
with our previous analyses of PM2.5 in Toronto [36]
(data not shown). As our nose-only exposure system
allows for the simultaneous exposure of 6 mice, CAP
+O3 and FA exposures were conducted on 3 OVA/

OVA mice and 3 OVA/PBS controls at a time, to
ensure comparable exposures between groups. Prelimin-
ary experiments indicated that the increase in metha-
choline responsiveness following exposure to CAP+O3

was greater than that to either CAP or O3 alone (data
not shown).

Pulmonary Function Testing and Arginase Inhibition
Following the CAP+O3 or HEPA FA exposures, mice
were anesthetized with ketamine (50 mg/kg i.p., Bio-
niche, Belleville, ON)/xylazine (10 mg/kg i.p., Bayer Inc.,
Toronto, ON) for measurement of in vivo airways
responsiveness to methacholine using the flexiVent®

system (SciReq Inc., Montréal QC) [16]. The arginase
inhibitor, S-boronoethyl L-cysteine (BEC; 40 μg/g body
weight) or the PBS vehicle were nebulized directly into
the airways after establishment of baseline resistance
parameters, and allowed to equilibrate for 15 minutes
prior to pulmonary function testing, in randomly
selected mice from each model. We have previously
found this dose to be effective in inhibiting arginase in
acute and chronic murine models of asthma [16,20].
Respiratory mechanics were assessed using the linear
first-order single compartment model, which provides
resistance of the total respiratory system (R), and the
constant phase model, which utilizes forced oscillation
to differentiate between airways resistance (RN) and per-
ipheral tissue damping (G) [30,37,38]. Following pul-
monary function testing, bronchoalveolar lavage (BAL)
was performed in a subset of mice, for assessment of
inflammation and 8-isoprostane as a marker of oxidative
stress. All remaining lungs were harvested for protein
analysis or immunohistochemical staining.

Arginase activity and isozyme expression
Total arginase activity testing and Western blotting for
arginases 1 and 2 were performed as described pre-
viously [16]. Semi-quantitative assessment of the Wes-
tern blots was conducted using a Bio-Rad Fluor-S
MultiImager with the Bio-Rad Quantity One 4.3.0 soft-
ware package (Bio-Rad Laboratories, Hercules, CA).
Densitometry was performed using GelEval v1.22 (Frog-
Dance Software, Dundee UK).

Inflammation and Assessment of Immunohistochemical
Localization of Arginase 1
Differential cell counts were performed on cytospin
slides (Shandon, Thermo Scientific, Waltham, MA),
stained with DiffQuick (Dade Behring Inc., Newark, NJ).
Differential cell counts were performed under a light
microscope, by counting more than 300 cells per slide.
Immunohistochemical staining of BAL cells and histolo-
gical sections was performed using standard protocols at
the Toronto Centre for Phenogenomics Pathology Core

Figure 1 Experimental design and time-course. A) Schemas of
the sensitization and challenge regimens of the sub-acute and
chronic murine models of allergic airways inflammation. B)
Experimental design and time-course of the pollution exposure day.

Table 1 CAP and ozone exposure levels for the sub-acute
and chronic models

CAP (μg/m3) a Ozone (ppm)

Sub-acute 553 ± 79 1.80 ± 0.07

Chronic † 456 ± 44 1.79 ± 0.04
a Values represent the mean ± standard error of n = 8-11 exposures.
† There were no significant differences between the exposure levels for the
sub-acute and chronic model mice.
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Facility, as previously described [16]. Goat anti-arginase
1 primary (sc-18351) and donkey anti-goat secondary
(sc-2042) antibodies were purchased from Santa Cruz
Biotechnologies (Santa Cruz, CA). For immunohisto-
chemical counts of arginase 1-positive macrophages,
macrophages were identified based on size and mor-
phology using a hematoxylin counterstain. Lungs were
collected for immunohistochemical staining and inflated
to a pressure of 20 cmH2O with 10% neutral buffered
formalin (Sigma, Mississauga ON) [39]. For immunohis-
tochemical analyses of tissue arginase 1 expression,
slides were visualized on a Leica inverted microscope
and images were captured using a micropublisher RTV
5.0 camera with QCapture image capture software
(Quorum Technologies Inc., Guelph, ON).

Oxidative Stress Marker
As a marker of oxidative stress, 8-isoprostane levels
(8-iso-prostaglandin F2a) were measured in BAL fluid
using an enzyme immunoassay kit (8-Isoprostane EIA
Kit. Item No. 516351, Cayman Chemical Company, Ann
Arbor, MI), according to the manufacturer’s instructions
and standardized to protein concentration in the BAL,
as determined by Bradford assay (BioRad, Hercules, CA).

Statistics
Statistical analyses were performed independently on the
data from the sub-acute and chronic models. Specific
respiratory measurements (R, RN, G), arginase activity
and Western blotting densitometry data were analyzed
using one-way ANOVA with Bonferroni’s multiple com-
parison post-hoc test. BAL differential cell counts were
analyzed using the non-parametric Kruskal-Wallis test
with Dunn’s Multiple Comparison post-hoc test, as some
cell types were not observed in the OVA/PBS controls (i.
e., eosinophils). Dose-response curves were compared
using the F-test, with the null hypothesis that the data
from all groups could be modelled by the same curve,
and using two-way ANOVA with Bonferroni’s post-hoc
test. Correlations between exposure parameters and pro-
tein expression were determined by Spearman’s test.
P-values < 0.05 were considered significant. All statistical
analyses were performed using GraphPad Prism 4.0c.

Results
Arginase activity and expression
To investigate whether alterations in the arginase path-
way were induced by exposure to air pollution we mea-
sured total arginase activity in mouse lung homogenates
from FA and CAP+O3 exposed mice. FA-exposed OVA/
OVA mice from both models exhibited significantly
increased pulmonary arginase activity, relative to the
FA-exposed OVA/PBS controls (Figure 2A &2B). In
both models, OVA/OVA mice exposed to CAP+O3

exhibited further significant increases in pulmonary argi-
nase activity, compared to the FA-exposed OVA/OVA
mice (1.7- and 1.6-fold, respectively). CAP+O3 exposure
did not affect total pulmonary arginase activity in the
OVA/PBS mice.
We used Western blotting to determine the contribu-

tion of the arginase isozymes to the increased total argi-
nase activity. Arginase 1 expression was significantly
increased in lungs from FA-exposed OVA/OVA mice in
both models, relative to their respective OVA/PBS con-
trols (Figure 2C &2D). Following exposure to CAP+O3,
OVA/OVA mice in the sub-acute and chronic models
exhibited further significant increases in pulmonary argi-
nase 1 expression, relative to the FA exposed OVA/
OVA controls (2.6- and 1.7-fold, respectively). Interest-
ingly, in the sub-acute model, the pulmonary expression
of arginase 1 correlated directly with CAP exposure
levels at concentrations lower than 565 μg/m3 (Spear-
man r = 0.622, P = 0.013; linear regression r2 = 0.32;
n = 15 mice from 11 independent exposure days)
(Figure 2E), suggesting that the CAP-induced increase
in expression of arginase 1 was dose-dependent. At expo-
sure levels above 565 μg/m3 we observed no further
increase in arginase 1 expression, indicating a plateau in
the response at higher levels. As the ozone exposures were
fixed at the target concentration of 2 ppm, there was no
correlation with protein expression. While pulmonary
arginase 2 protein expression was increased significantly in
the sub-acute model OVA/OVA mice under FA condi-
tions, it was not further augmented by CAP+O3 exposure.
No significant increases in arginase 2 protein expression
were observed in the chronic model mice, regardless of
whether they were exposed to FA or CAP+O3.

Localization of increased arginase 1 expression
To determine which cell types were responsible for the
augmented arginase 1 expression following exposure to
CAP+O3, we investigated BAL and lung tissues, using
immunohistochemical staining. We first examined the
differential cell counts of the BAL samples from the
sub-acute model. While there was an overall increase in
the numbers of inflammatory cells in the OVA/OVA
compared to OVA/PBS mice, there were no significant
alterations in the differential cell counts in the CAP+O3

compared with the FA exposure groups (Figure 3A).
As arginase 1 is known to be expressed in alterna-

tively-activated macrophages [40], we investigated
arginase 1 expression in BAL cells using immunohisto-
chemistry. We did not observe any change in the pro-
portion of arginase 1-positive macrophages in the
immunostained BAL slides from the CAP+O3-exposed
OVA/PBS or OVA/OVA mice compared to their
respective FA controls (Figure 3B). Thus, the increase in
arginase 1 expression in the CAP+O3-exposed mice was
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Figure 2 Pulmonary arginase activity and arginase isozyme expression in CAP+O3-exposed mice and filtered air controls. Total arginase
activity in FA- and CAP+O3-exposed model OVA/PBS (□) and OVA/OVA (■) mice in the sub-acute (A) and chronic (B) models. Western blotting
and quantification of arginase 1 and actin loading controls in the sub-acute (C) and chronic (D) models (*P < 0.05, **P < 0.01, ***P < 0.001, (n)).
E) Correlation between levels of arginase 1 expression in the OVA/OVA mice in the sub-acute model and CAP exposure concentration
(Spearman r = 0.6219; P = 0.013, n = 11 independent exposure dates).
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Figure 3 Bronchoalveolar lavage differential cell counts and macrophage expression of arginase 1. A) Differential cell counts from
BAL samples in the sub-acute model OVA/PBS (□) and OVA/OVA (■) mice exposed to FA or CAP+O3 (*P < 0.05). (B) Images of arginase 1
immunostained slides of BAL samples and quantification of the percentage of positive macrophages (400× magnification; bar = 100 μm; brown
colour indicates positivity; representative images of n = 5-6/group; *P < 0.05, **P < 0.01).
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not due to an increased proportion of alternatively-acti-
vated macrophages infiltrating the lung.
We then investigated the expression of arginase 1 in

airways in lung sections using immunohistochemical
staining (Figure 4). Although expression was not quanti-
fiable by these methods, staining was localized to the
peribronchiolar region in both the sub-acute (Figure 4A)
and chronic (Figure 4B) models.

Effects of air pollution on methacholine responsiveness
After demonstrating augmentation of arginase 1 protein
expression in OVA/OVA mice exposed to CAP+O3, we
initially examined the functional effects of air pollution
exposure on methacholine responsiveness in vivo in the
sub-acute model. Total lung resistance (R) to methacho-
line was not significantly augmented in the OVA/OVA
mice compared to OVA/PBS controls under FA condi-
tions (Figure 5A and 5B), making this model suitable to
investigate the development of AHR induced specifically
by CAP+O3 exposure. Exposure to CAP+O3 did not
evoke any significant change in the methacholine respon-
siveness of the total lung in OVA/PBS mice (Figure 5A).
However, significant augmentation of the methacholine
dose-response curve was observed in the CAP+O3-
exposed OVA/OVA mice, with a two-fold increase in the
maximum resistance to methacholine, compared with the
FA-exposed OVA/OVA controls (F-test and 2-way
ANOVA, P < 0.001, Figure 5B and 5C). In the chronic
model, FA-exposed OVA/OVA mice exhibited a moder-
ate 1.5-fold increase in methacholine responsiveness
compared with the OVA/PBS, FA-exposed controls
(P = 0.0418), which was further augmented by 1.6-fold
in CAP+O3-exposed OVA/OVA mice (P = 0.0071)
(Figure 5D).

Arginase inhibition abrogates the CAP+O3-induced AHR
After determining that exposure to CAP+O3 resulted in
exacerbation of methacholine responsiveness in mice
with pre-existing allergic airways inflammation, parallel-
ing the up-regulation of pulmonary arginase 1, we admi-
nistered the arginase inhibitor, BEC, or vehicle control
(PBS) to randomly selected sub-groups of mice follow-
ing the CAP+O3 exposures in both the sub-acute and
chronic models. The maximum total respiratory resis-
tance (RMax) was significantly increased in OVA/OVA
mice vs. OVA/PBS from both models after the CAP+O3

exposure (Figure 5C and 5D). After treatment with BEC,
the RMax values in the CAP+O3-exposed OVA/OVA
mice was significantly attenuated compared with the
PBS-treated controls (i.e., CAP+O3-exposed OVA/OVA
mice), and were indistinguishable from the RMax for the
OVA/PBS controls. Thus, treatment with the arginase
inhibitor completely reversed the CAP+O3-induced
exacerbation of symptoms in the OVA/OVA mice.

To confirm that the exacerbation of symptoms was
due to effects on the airways, we assessed the contri-
bution of airways resistance (RN Max) and peripheral
tissue damping (GMax) to the total response of the
lung. In the sub-acute model, RN Max was not altered
significantly following CAP+O3 exposure, or by BEC
treatment (Figure 6A). Interestingly, GMax was
increased significantly following exposure to CAP+O3

in the sub-acute OVA/OVA mice, and was attenuated
to control levels by arginase inhibition with BEC (Fig-
ure 6C). Meanwhile, in the chronic model OVA/OVA
mice, RN Max was significantly augmented by CAP+O3,
and significantly reversed by treatment with BEC (Fig-
ure 6B). A significant increase in GMax was also
observed in the chronic model OVA/OVA mice fol-
lowing CAP+O3 exposure, however this was not atte-
nuated by BEC treatment (Figure 6D). Exposure to
CAP+O3 or administration of BEC did not affect any
of the responsiveness parameters in the OVA/PBS
mice in either model (Figure 5 and 6).

Oxidative Stress Due to CAP+O3 Exposures
To assess the level of oxidative stress induced by expo-
sure to CAP+O3, we determined levels of 8- prostaglan-
din F2a (8-isoprostane) in BAL supernatants from both
the sub-acute and chronic models (Table 2). In the sub-
acute model, the levels of 8-isoprostane were 7.9 ± 3.6
and 9.7 ± 4.1 pg/mg of BAL protein in the OVA/PBS
and OVA/OVA FA groups, respectively (P = n.s.).
OVA/PBS and OVA/OVA mice exposed to CAP+O3

exhibited 5.4- and 7.0-fold increases compared to the
FA groups (P < 0.05 to FA). In the chronic model, BAL
levels of 8-isoprostane in the OVA/OVA FA-exposed
mice were 1.9-fold greater than those in the OVA/PBS
FA-exposed mice (P = 0.017). OVA/PBS and OVA/
OVA mice exposed to CAP+O3 exhibited 3.5- and
2.3-fold increases in 8-isoprostane levels compared to
their respective FA controls (P < 0.05). There was no sig-
nificant difference in BAL 8-isoprostane levels between
the OVA/PBS and OVA/OVA CAP+O3-exposed groups.

Discussion
This study demonstrated that the increased arginase
activity in the lungs of mice from both sub-acute and
chronic models of allergic airways inflammation was
further augmented by exposure to CAP+O3, and that
this was primarily driven by arginase 1. We also deter-
mined that the up-regulation of arginase 1 in the lung
was not related to increased influx of macrophages.
Finally, we demonstrated that induction of AHR by CAP
+O3 was specific to the mice with pre-existing allergic
airways inflammation, and that local delivery of an argi-
nase inhibitor after exposure, significantly reduced the
CAP+O3-induced AHR in both models; thus providing
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Figure 4 Immunohistochemistry in CAP+O3 and FA exposed mice. Arginase 1 immunostained lung tissues from OVA/PBS, OVA/OVA mice
from the sub-acute (A) and chronic (B) models exposed to filtered air or CAP+O3 (200× magnification; bar = 100 μm; representative images of
n = 4-5 per group. Brown colour indicates immunopositivity, arrows highlight positive areas, key positive areas inset at 400× magnification; bar =
20 μm).
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further support for the potential of targeting this path-
way therapeutically in asthma.

Arginase induction by CAP+O3

There is increasing evidence to support the role of argi-
nase in the pathophysiology of asthma, and that further
up-regulation of arginase likely results in worsening of
asthma symptoms [15-19]. The sub-acute model mice in

the present study, challenged with ovalbumin daily for
three days, exhibited significantly lower arginase 1
expression and airways responsiveness, compared to the
acute OVA-model mice reported in our previous study,
in which we employed seven consecutive daily chal-
lenges [16]. Thus, increased arginase 1 expression is
directly associated with the increasing airways respon-
siveness in these murine models (P = 0.002, Spearman

Figure 5 Functional effects of CAP+O3 exposure on airways responsiveness to methacholine and attenuation by arginase inhibition.
Dose-response relationships for the increase in total lung resistance (R) to methacholine in OVA/PBS (A) and OVA/OVA (B) mice from the sub-
acute model exposed to FA or CAP+O3. Effects of treatment with arginase inhibitor (BEC) vs. vehicle control (PBS) on maximum total lung
resistance (RMax) in OVA/PBS (□) and OVA/OVA (■) mice following CAP+O3 exposures in the sub-acute (C) and chronic (D) models (*P < 0.05, **
P < 0.01, *** P < 0.001; n = 9-12/group).
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r = 0.522). We speculate that there is a critical thresh-
old of arginase induction, at which the increased argi-
nase activity exhibits physiological effects. Air pollution
is known to contribute to asthma exacerbations [41-43].
Increased levels of particulate matter and ozone have

been associated with increased oxidative stress and
decreased pulmonary function in children with asthma
[44]. Increased arginase protein expression has been
observed in smokers with asthma [25], but it is not
known whether arginase plays a role in air pollution-

Figure 6 Arginase inhibition in CAP+O3 exposed mice. Effect of treatment with arginase inhibitor (BEC) vs. vehicle control (PBS) on central
airways Newtonian resistance (RNMax; A and B) and peripheral tissue damping (GMax; C and D) in OVA/PBS (□) and OVA/OVA (■) mice from the
sub-acute (A and C) and chronic (B and D) models following CAP+O3 exposures (*P < 0.05, **P < 0.01, n = 9-12/group).
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induced exacerbations of respiratory symptoms. In this
study we demonstrated further augmentation of arginase
activity and arginase 1 expression in the airways of our
OVA-sensitized and -challenged mice following expo-
sure to CAP+O3.
Arginase 1 protein expression in blood serum has

recently been associated with markers of oxidative stress
in a healthy human population [45], and augmented argi-
nase activity correlates with indices of oxidative stress (i.
e., malondialdehyde and protein carbonylation levels) in
platelets and plasma from patients with chronic obstruc-
tive pulmonary disease exposed to wood smoke [46].
Arginase 1 has also been reported to be induced in iso-
lated coronary arterioles following one hour of ex vivo
exposure to hydrogen peroxide-induced oxidative stress
[47]. Thengchaisri et al. also demonstrated changes in
smooth muscle function in response to increased oxida-
tive stress, and demonstrated that arginase inhibition
restored the hydrogen peroxide-impaired vasodilation
[47]. However, in our model we only observed an
increase in arginase 1 in mice that were previously sensi-
tized and challenged with ovalbumin; while, we observed
increases in 8-isoprostane levels in the BAL samples
from all mice exposed to CAP+O3 regardless of the pre-
sence or absence of airways inflammation. This may be
due to differences in experimental procedures, as Theng-
chaisri et al. exposed isolated coronary arterioles to
hydrogen peroxide ex vivo [47], while we examined the
whole lung following in vivo acute CAP+O3 exposure.
Alternatively, toll-like receptors, the hallmark regulators
of the innate immune response to bacterial, viral, and
parasitic components, have recently been shown to upre-
gulate arginase 1 via an alternative promoter region [48].
It is highly likely that some of these biologic exposures
are relevant to our CAP exposures. Further work is
necessary to elucidate the mechanisms underlying the
upregulation of arginase 1 in response to environmental
stimuli in the presence of an inflammatory response.
While we did not investigate the effects of long-term

pollution exposure in these models, our findings raise
the interesting question of whether continued exposures
would result in chronic upregulation of arginase, and

lead to remodeling of the airways. Increased airway wall
remodeling has been observed by Dai et al., following
exposure of rat tracheal explants to Ottawa urban air
particles [49]. Diesel exhaust particles can also potenti-
ate airways remodeling in a house dust mite murine
model of allergic airways inflammation [50] that is
known to exhibit augmented arginase expression [22].
Thus, arginase may be induced as part of the host
response to cell damage by air pollution, as it is known
to be involved in cell growth and wound healing [51].
As the metabolic pathways downstream of arginase are
related to cellular proliferation and collagen biosynth-
esis, it is likely that augmented arginase expression con-
tributes to airways remodeling in asthma [52]. The role
of L-arginine metabolism in the effects of chronic air
pollution exposure, and the effects of concomitant inhi-
bition of arginase represent future avenues for
investigation.

Functional improvement of airways hyperresponsiveness
with arginase inhibition
Although the arginase pathway has been shown to be
functionally involved in the development of AHR in vivo
following allergen challenges with ovalbumin
[16,19,20,53] and house dust mite [22], it was not clear
whether this pathway would be functionally important
in the exacerbation of AHR induced by air pollution. In
this investigation we used two mouse models of asthma,
which exhibit the inflammatory changes, remodeling
and moderate AHR as symptoms of allergic airways dis-
ease; while the OVA/OVA mice in the sub-acute model
did not exhibit AHR to methacholine, those in the
chronic model did exhibit moderate AHR, which was
consistent with our previous report [16]. We further
demonstrated exacerbation of the AHR in the chronic
model and the development of AHR in the sub-acute
model after exposure to air pollution. In both murine
models we demonstrated an increase in the maximum
total lung resistance following air pollution exposure,
and that inhibition of arginase, post-exposure, blocked
this effect. We also examined the contribution of the
airways and peripheral tissue to the net response. Using
a sub-acute model of allergic airways inflammation,
Tomioka et al. previously demonstrated that the effects
of allergic inflammation in this model were more pro-
nounced in the lung periphery and thus affected periph-
eral lung mechanics more strongly than conducting
airways mechanics [38]. However, it was not known
how the added challenge of a CAP+O3 exposure would
affect peripheral lung mechanics in the sub-acute
model. Our data suggest that CAP+O3 exposure specifi-
cally aggravated peripheral lung responsiveness to
methacholine in the OVA/OVA mice in this sub-acute
model. Arginase inhibition with BEC completely

Table 2 8-isoprostane levels in BAL samples from the
sub-acute and chronic OVA-model mice exposed to
filtered air or CAP+O3

Filtered Air a CAP+O3

OVA/PBS OVA/OVA OVA/PBS OVA/OVA

Sub-acute 7.9 ± 3.6 9.7 ± 4.1 42.5 ± 11.4# 67.4 ± 22.4#

Chronic 19.0 ± 3.3 36.8 ± 5.0* 65.7 ± 16.0# 83.0 ± 17.0#

a Values are expressed as pg 8-isoprostane/mg BAL protein and represent the
mean ± standard error of n = 5-6 samples.

* P < 0.05 to OVA/PBS, same exposure; # P < 0.05 to Filtered air, same
treatment.
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abrogated the augmented GMax, strongly suggesting a
role for arginase in the functional exacerbation of per-
ipheral AHR by air pollution in the sub-acute model.
The particles we employed were derived from the

ambient air in Toronto, Ontario, and particles within a
specific size range (0.1-2.5 μm) were concentrated,
representing real-world particles. We examined the
effects of concentrated ambient particles and ozone, as
these pollutants have been shown to be associated with
increased asthma exacerbations in humans, and because
concomitant exposures have been shown to increase
respiratory resistance in mice, thus allowing our study
to examine the biological mechanisms responsible for
these effects [1,2,11,54]. Murine models present several
limitations, as no animal model exhibits all of the clini-
cal features of human asthma [30,55-57]. However, our
sub-acute model exhibits airways inflammation and our
chronic model recapitulates airways remodeling and
mild hyperresponsiveness, all of which are important
features of human asthma [28,58], and mice in both
models exhibited an even greater degree of airways
hyperresponsiveness following air pollution exposures.
Asthmatics as a group represent a potential susceptible
population that would be more significantly affected by
air pollution than those who do not have underlying
respiratory disease. Our results support this idea, as we
did not observe increased airways responsiveness in the
control mice, but demonstrated an increase in mice
with pre-existing allergic airways inflammation.
While the doses of particulate matter and ozone

employed in this study are high, similar doses have been
shown to be useful for studying acute mechanisms of air
pollution induced AHR in the setting of allergic airways
inflammation and healthy controls [33-35]. Exposure to
high levels of ozone can induce pulmonary edema and
lung injury [35,59]. While OVA/PBS control mice that
were exposed concurrent with the OVA/OVA mice in
our study did not exhibit any alterations in inflamma-
tory cell counts or profiles in bronchoalveolar lavage
samples obtained immediately after CAP+O3 exposures,
the possibility remains that our findings could be due
solely to the high-level exposures. Interestingly, the
OVA/PBS mice exposed to CAP+O3 exhibited a slight
increase in methacholine responsiveness compared with
FA. Similarly, the OVA/OVA mice exposed to CAP+O3

that were treated with BEC exhibited a similar increase
of methacholine responsiveness, suggesting that path-
ways unrelated to arginase induction, such as edema,
could contribute to this non-significant increase. Thus,
further investigations will be necessary to determine
whether the pathways activated by acute high-level
exposures are similar to those activated after chronic
exposures to lower levels of particulate matter and
ozone.

The chronic model offers the ability to study exacer-
bation of established disease, in a model that recapitu-
lates more of the features of chronic human asthma,
including remodeling, collagen deposition, smooth mus-
cle hypertrophy, and mild AHR [16,28,60-62]. Further-
more, we have previously shown that the chronic model
exhibits alterations in the profile of L-arginine-related
protein expression that are most similar to those of
human asthma [16]. In the chronic model OVA/OVA
mice, we found that both central airways resistance and
peripheral tissue damping contributed to the pulmonary
response to CAP+O3 exposure. However only central
airways resistance was attenuated by BEC, suggesting
that arginase-independent effects, such as lung edema or
the accumulation of endogenous NOS inhibitors (i.e.,
ADMA) [63,64], may also be induced by exposure to air
pollution and contribute to AHR. While we observed a
correlation between CAP exposures and arginase induc-
tion in OVA-sensitized and -challenged mice, future
studies should assess the dose-effects of air pollutants
and corroborate the findings with additional model
allergens.

Conclusions
Arginase activity and arginase 1 expression are upregu-
lated following environmental exposures in both sub-
acute and chronic murine models of allergic asthma.
Pollution-induced AHR is attenuated by arginase inhibi-
tion in both models. Thus, induction of arginase 1 is
likely a key step in the short-term response to air pollu-
tion and inhibition may represent a therapeutic target to
treat or prevent environmental pollution-induced
exacerbations of allergic airways disease.
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