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Abstract

Objective: Mild cognitive impairment in Parkinson’s disease (PD-MCI) is diag-

nosed based on the results of a standardized set of cognitive tests. We investi-

gate whether quantitative EEG (qEEG) measures could identify differences

between cognitively normal PD (PD-CogNL) and PD-MCI patients. Methods:

High-resolution EEG was recorded in 53 patients with Parkinson’s disease

(PD). Relative power in five frequency bands was calculated globally and for

ten regions. Peak and median frequencies were determined. qEEG results were

compared between groups. Effect sizes of all variables were calculated. The best

separating variable was used to demonstrate subject-wise classification. Results:

Lower mean values were observed in global alpha1 power and alpha1 power in

five brain regions (left hemisphere: frontal, central, temporal, occipital; right

hemisphere: temporal, P < 0.05), differentiating between PD-CogNL and

PD-MCI groups. Effect sizes were high, ranging from 0.79 to 0.87. Median fre-

quency was 8.56 � 0.74 Hz and was not different between the groups. The var-

iable with the best subject-wise classification was the power in the alpha1 band

in the right temporal region. The area under the corresponding receiver operat-

ing characteristic (ROC) curve was 0.72. The optimal classification threshold

yielded a sensitivity of 65.9% and a specificity of 66.7%. The positive and nega-

tive predictive values were 87.1% and 36.4%, respectively. Interpretation:

Reduction in alpha1 band power in nondemented PD patients, particularly in

the right temporal region, is highly indicative of MCI in PD patients. The

results might be used to assist in time-efficient diagnosis of PD-MCI and avoid

the drawbacks of test–retest effect in repeated neuropsychological testing.

Introduction

Cognitive and neuropsychiatric decline in patients with

Parkinson’s disease (PD) are key determinants of the

prognosis for survival and independence.1,2 The assess-

ment of the cognitive status of patients is done by carry-

ing out a battery of neuropsychological tests. Mild

cognitive impairment in PD patients (PD-MCI) differs

from dementia by the fact that it does not interfere with

daily activities. It is diagnosed by grouping the various

tests into different cognitive domains (alertness, executive

functions, visuo-spatial abilities, episodic, and working

memory) and applying selection criteria on the outcome.3

This is a lengthy process that is not widely available. It

incurs high costs and relatively long waiting times that

hinder repetition and adequate follow-up. Moreover, test–
retest effects could bias the assessment of cognitive func-

tions in repetitive clinical examinations.

Quantitative electroencephalography (qEEG) might pres-

ent itself as a potential alternative. Certain qEEG parame-

ters were shown to be associated with dementia in patients

with PD4–9 or with Alzheimer’s disease.9,10 For instance,

Caviness et al.8 identified an association between slowing of

EEG rhythms and the cognitive state of PD patients, in

particular in the theta and alpha frequency bands. Babiloni

et al.6 further discussed localized associations of brain
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signals with the cognitive states in both Parkinson’s disease

and Alzheimer’s disease patients. Moreover, most

studies4,6,8,9 agreed that alterations in signal power in the

theta and lower alpha frequency bands (4–8 Hz and

8–10 Hz, respectively) are potential biomarkers of the

cognitive state.

The aforementioned studies used either low-resolution

standard 10-20 EEG systems,4–6,8–10 or magnetoencepha-

lography5,7 for the recording of the electrical brain activ-

ity. High-resolution EEG systems are becoming widely

available and have lower running costs than the standard

neuropsychological assessment. They offer superior spatial

resolution and allow for a better localization of the elec-

trical activity in both signal and source spaces. Unlike

cognitive tests, qEEG is immune to the test–retest effect

and has high retest reliability.11–15

In this study, we use high-resolution EEG recordings to

determine whether PD-MCI can be diagnosed with suffi-

cient confidence using signal frequency and power con-

tent as biomarkers. We aim at identifying associations of

the cognitive state with reductions in the median back-

ground frequency and in focally pronounced changes of

the EEG rhythms.

Materials and Methods

Subjects

From May 2011 to January 2013, a total of 74 patients

were recruited from the outpatient clinic for movement

disorders of the Basel University Hospital or through

advertisements in the magazine of the Swiss Parkinson’s

Disease Association. To be included in the study, patients

had to fulfil the UK Parkinson’s Disease Society Brain

Bank criteria16 and needed to have sufficient knowledge

of the German language. Patients with dementia or other

severe neurological conditions were excluded from the

study. Anxiety, mild head injury, and drowsiness were

used as additional exclusion criteria. Consequently, the

final sample was reduced to 53 patients. The sample size

is capable of detecting an effect size as low as 0.55 with a

statistical power of 80% at a 5% significance level.

Mean age of the patients was 67.2 (�8.4). The disease

duration since the first symptoms was 8.6 (�4) years and

patients had 14.5 (�3) years of education. Nineteen of

the participants were female and 34 were male. The levo-

dopa equivalent dose (LED) was 679 (�454) and the UP-

DRS III 15 (�11.3). Twelve patients were cognitively

normal (PD-CogNL), whereas 41 were positively diag-

nosed with PD-MCI.

The study was approved by the local ethics committee

(Ethikkommission beider Basel, ref. no.: 135/11). All

patients gave their written informed consent.

Neuropsychological assessment of PD-MCI

PD-MCI was evaluated along the Movement Disorder

Society Task Force guidelines for the diagnosis of PD-

MCI.3 In Litvan et al.3, a separation in the diagnostic

guidelines is made in which Level I is an abbreviated

assessment procedure capable of identifying the possibility

of PD-MCI. In contrast, Level II is a comprehensive

assessment that covers more tests and cognitive domains

and offers higher diagnostic certainty. In our assessment,

we applied the Level II diagnostic criteria.

Test results were compared to normative data from the

Memory Clinic, University Center for Medicine of Aging

Basel. The normative data are based on a sample of 604

healthy subjects and are adjusted for covariates such as

age, sex, and education.17 PD-MCI in each domain was

rated as positive if a patient scored below 1.28 standard

deviations (representing the 10th percentile) in at least

one third of the cognitive tests in that domain when

compared to the normative data. A similar criterion was

used elsewhere18 in order to correct for the number of

tests in each domain. A patient was rated as having global

PD-MCI if there was a deficit in at least one domain.

Moreover, reduced cognitive abilities in PD-MCI should

not be interfering with the patient’s day-to-day activities.

EEG recording

A high-resolution 256-channel DC-EEG system (Netsta-

tion 300; Electrical Geodesics, Inc., Eugene, OR) was used

for recording EEG on all patients. Sampling rate was set

to 1 kHz and a first high-pass filter with a cutoff fre-

quency of 0.01 Hz was used to eliminate the direct

current component. Impedance of all channels was kept

below 40 kO. Subjects were seated comfortably in a

reclining chair in a dimly lit, sound attenuated and elec-

tromagnetically shielded room. They were instructed to

relax, but to stay awake while minimizing eye and body

movements. A continuous EEG with closed eyes was

recorded for a period of 12 min. During the data acquisi-

tion process, a subset of electrodes was monitored by a

technician to check for vigilance and artifacts.

Processing pipeline

The EEG signals were treated by series of semi- and fully

automatic processing steps.14 The initial step in the pro-

cessing pipeline was a visual inspection of the EEG

recordings by an experienced neurologist. In this step,

segments free of elevated levels of sleepiness, eye blink

artifacts, and other large artifacts were marked for inclu-

sion in subsequent processing steps. Several such seg-

ments were extracted for each subject and were required
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to fit the minimum length criterion of 35 sec. Shorter

segments were stitched together using an inverse Hanning

window. A high-order linear phase finite impulse

response filter (Matlab�; The MathWorks, Inc., Natick,

MA) was then applied to define the frequency range of

interest and remove direct current and power line com-

ponents from the signal (band pass: 0.5–70 Hz, notch:

50 Hz). Bad channels were automatically detected and

excluded using the FASTER19 and Fieldtrip20 routines and

the results were visually checked for plausibility. Further

artifacts such as ECG and eye blinks were detected and

removed by applying the independent component analysis

implementation of EEGLAB21 (“runica” with default set-

tings) on the remaining channels followed by a visual

examination of the independent activations. Bad activa-

tions were excluded and the original signal reconstructed

from the cleaned activations. Channels with bad quality

were replaced by spherical spline interpolations.22 The

resulting segments were subsequently stitched together in

order to obtain a total cleaned recording time of at least

120 sec per subject.

The frequency spectrum was divided into five bands

(delta: 1–4 Hz; theta: 4–8 Hz; alpha1: 8–10 Hz; alpha2:

10–13 Hz; beta: 13–30 Hz). Fourier transform-based fre-

quency analysis (Welch’s method,23 Matlab�) was then

applied in order to extract spectral information of the sig-

nals in each channel. Relative power was calculated as the

ratio of the signal power within a frequency band to the

total signal power (1–30 Hz). The results were reduced to

ten predefined regions on the scalp corresponding to the

anatomical brain regions – left and right frontal, central,

parietal, temporal, and occipital (Fig. 1).

Extracted measures

Following the frequency analysis, a total of 57 different

measures could be derived. These are the median and

peak frequencies recorded on the occipital electrodes, glo-

bal power, and power in every region in all five frequency

bands. These measures are carried forward to the next

steps of our analysis.

Statistical analysis

Potential confounding by factors, such as age, gender,

and education of the patients was accounted for by calcu-

lating linear regression models. Various variable combina-

tions and interactions were tested and a stepwise

backward elimination process was applied.

For every qEEG measure, group differences between

the PD-MCI and the PD-CogNL patients were assessed.

Permutation tests on t-statistics with 10,000 permutations

were used to correct for multiple testing within the

frequency bands. The effect size associated with PD-MCI

classification was calculated for every variable (ratio of

the difference between means to the pooled standard

deviation). The confidence intervals around the differ-

ences between the means of the two groups were calcu-

lated using standard errors multiplied by t-quantiles for

97.5% cumulative probability and degrees of freedom

generated using the Welch–Satterthwaite equation. This

approach was chosen due to the relatively small sample

size and potentially unequal variances between the

groups.

Toward subject-wise classification

Up to this point, attempts to identify group-wise differ-

ences were carried out. However, the ultimate goal is to

set a basis for automatic subject-wise classification meth-

ods. To this purpose, the receiver operating characteristic

(ROC) curve for the strongest marker identified through

the exploratory statistics described above was generated.

The strongest marker was chosen so that it has a high

effect size, a low P-value, a tight confidence interval

around the difference of means, and the highest area

under the ROC curve (AUC). The ROC curve was

smoothed by fitting a cubic spline. Youden’s index24

(J = sensitivity + specificity � 1) was used to calculate

the optimal point on the ROC curve and subsequently

the classification threshold. Bootstrapping with 10,000

Figure 1. Head plot showing the ten regions corresponding to the

anatomical regions of the brain. Highlighted in red are the regions

where alpha1 power showed statistically significant differences

between the PD-MCI and PD-CogNL after correction for multiple

testing. PD, Parkinson’s disease; MCI, mild cognitive impairment;

CogNL, cognitively normal.
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samples was performed in order to calculate the 95%

confidence interval around the ROC curve as well as

around the classification threshold. Additionally, the posi-

tive and negative predictive values (PPV/NPV) were cal-

culated for the classification threshold.

Results

The linear regression models revealed that the effect of

the potential confounding factors was negligible. Age,

gender, and education were not associated with PD-MCI

(P > 0.05).

Global power and power in five out of ten regions

showed differences in the alpha1 frequency band between

PD-MCI patients and cognitively normal PD patients.

The effect size of the differences in alpha1 power between

the two groups ranged from 0.79 to 0.87. The overall

background median frequency was 8.56 � 0.74

(mean � SD) and was not different between the two

groups. The detailed results are listed in (Table 1). In

(Fig. 1), the regions that showed group differences are

highlighted in red. Figure 2 shows a side-by-side compar-

ison of the variable that presented statistically significant

differences.

The variable that matched the criteria of the strongest

marker was the alpha1 power in the right temporal region.

The AUC under its ROC curve was 0.72. The classification

threshold was calculated to be 0.178 (95% CI: 0.172–
0.187). The ROC curve and its corresponding boxplot

showing the classification threshold and the confidence

interval around it are presented in Figure 3. Using the cal-

culated optimal classification threshold on one variable, the

test was able to achieve a sensitivity of 65.9% (CI: 63.4–
70.7) and a specificity of 66.7% (CI: 58.3–66.7). The PPV

and NPV of the binary classification using the same thresh-

old were 87.1% and 36.4%, respectively.

Discussion

Patients with PD-MCI display a decrease in the alpha1

power (8–10 Hz) when compared to the PD-CogNL

group, particularly in the right temporal region. The

median frequency does not show significant differences

between the groups. This finding is in line with the litera-

ture where changes in alpha1 power have been shown to

be associated with the cognitive state.6,8,10 One study8

indicated an association between the increase in signal

power in the theta range and PD-MCI. In our analysis,

theta power shows a nonsignificant association trend with

PD-MCI (P = 0.078), but does not necessarily contradict

the findings of Caviness et al.8 The lack of association

might be due to the limited sample size and to differences

in diagnosing and assessing MCI.

Table 1. Summary statistics of main variables.

Variable P-value

Effect

size

95% confidence

interval (around

difference of

means)

Alpha1 –

8–10 Hz

Frontal left 0.033 0.82 0.01–0.133

Central left 0.044 0.79 0.006–0.109

Temporal left 0.046 0.79 0.006–0.106

Temporal right 0.025 0.86 0.012–0.122

Occipital left 0.022 0.87 0.016–0.161

Global power 0.034 0.82 0.01–0.131

Median

Frequency

n.s. 0.44 �0.78 to 0.238

Figure 2. Boxplots of the power variables in the alpha1 range (8–10 Hz) that presented statistically significant differences between the two

groups. The effect size for every variable is also shown.
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Alpha1 power extracted from EEG recordings may

serve as a surrogate marker for cognitive mild impair-

ment. Therefore, the shortcomings associated with

repeated neuropsychological assessment, such as availabil-

ity, cost, test–retest reliability, and learning effects might

be circumvented.

In clinical routine, subject-wise classification using

qEEG markers would be desirable. Although sensitivity

and specificity are relatively modest, PPV and NPV help

the clinician to decide whether an individual patient is

affected by PD-MCI. Using the classification threshold that

simultaneously optimizes specificity and sensitivity, a high

PPV along with a low NPV was obtained. Therefore, and if

corroborated in additional studies, these results imply that

PD-MCI could be screened for with an acceptable level of

certainty using the alpha1 power in the right temporal

region. However, lack of a decrease in alpha1 power in the

right temporal region is without diagnostic significance.

This study was based on a relatively limited sample size

in which a large number of variables were examined.

Nevertheless, the statistical analysis methods were chosen

in way to address the known limitations and minimize

the risk of spurious findings. More specifically, permuta-

tion tests and the Welch–Satterthwaite equation are par-

ticularly suitable for multiple testing scenarios, small

sample sizes, and uneven group distributions.

Moreover, variations in the alpha power could be

linked to factors other than MCI. For instance, drowsi-

ness, anxiety, or mild head injury could be reflected by

changes in the signal amplitude in the alpha range. Simi-

larly, the patient’s age, gender, level of education, and

medication play a further confounding role. In our

approach, we came around the problem of confounding

factors by either excluding from the analysis patients with

known status, or by numerically affirming the nonsignifi-

cant effect of certain factors using linear regression

analysis.

The results, if corroborated by prospective confirma-

tory studies, can be used as a foundation for further

development of automated diagnostic methods. Various

variables could be combined and presented to computer-

ized classification algorithms. Moreover, the potential pre-

dictive variables underlined in this work might serve as a

screening tool for beginning cognitive decline in PD

patients.
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