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Abstract
Cerebral metabolism is critically dependent on the regulation of cerebral blood flow (CBF),

so it would be expected that vascular mechanisms that play a critical role in CBF regulation

would be tightly conserved across individuals. However, the relationships between blood

pressure (BP) and cerebral blood velocity fluctuations exhibit inter-individual variations con-

sistent with heterogeneity in the integrity of CBF regulating systems. Here we sought to

determine the nature and consistency of dynamic cerebral autoregulation (dCA) during the

application of oscillatory lower body negative pressure (OLBNP). In 18 volunteers we

recorded BP and middle cerebral artery blood flow velocity (MCAv) and examined the rela-

tionships between BP and MCAv fluctuations during 0.03, 0.05 and 0.07Hz OLBNP. dCA

was characterised using project pursuit regression (PPR) and locally weighted scatterplot

smoother (LOWESS) plots. Additionally, we proposed a piecewise regression method to

statistically determine the presence of a dCA curve, which was defined as the presence of a

restricted autoregulatory plateau shouldered by pressure-passive regions. Results show

that LOWESS has similar explanatory power to that of PPR. However, we observed hetero-

geneous patterns of dynamic BP-MCAv relations with few individuals demonstrating clear

evidence of a dCA central plateau. Thus, although BP explains a significant proportion of

variance, dCA does not manifest as any single characteristic BP-MCAv function.

Introduction
The human brain is a highly metabolically active organ that comprises only 1–2% of total body
weight, but accounts for 20% of resting total body O2 consumption [1]. Because of this high
demand for energy, stringent regulation of cerebral blood flow (CBF) is paramount for normal
brain function and several mechanisms have been identified as key regulators of CBF homeo-
stasis [2–4]. One of these mechanisms is cerebral autoregulation (CA), which refers to the
active dilation and constriction of the cerebral resistance blood vessels in response to changes
in cerebral perfusion pressure [3, 5, 6]. Using system-level terminology, CA is often thought to
be composed of both dynamic and steady-state response components. The ‘static’ component
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refers to CBF regulations against gradual BP changes over minutes to hours and is encapsulated
by Lassen’s classic autoregulatory curve [7], which has a characteristically wide central CBF
plateau for BP levels ranging between 60 and 150 mmHg (Fig 1a). In contrast, the ‘dynamic’
component (dCA) typically refers to rapid cerebrovascular responses to BP transients occur-
ring over seconds [8, 9].

Cerebral metabolism is critically reliant on a stable blood supply, so it is generally assumed
that vital mechanisms such as dCA are tightly conserved across healthy individuals within a
population [2, 3]. However, in practice the dynamic relationships between BP and cerebral
blood velocity fluctuations exhibit marked inter-subject variations [10], suggesting that the
functional integrity of CBF regulating systems such as dCA may vary significant between indi-
viduals. Unfortunately, gaining insight into the nature of such variations is challenging since
dCA is a nonlinear process and the use of linear methods such as transfer function analysis [6,
11], autoregressive models [12, 13], and linear differential equations [14] may not accurately
capture the true nature of dCA.

Recent studies characterised the oscillatory relationships between BP and middle cerebral
blood flow velocity (MCAv) using nonlinear projection pursuit regression (PPR) [4, 15]. It was
reported that a characteristic signature of dCA at frequencies between 0.03–0.07 Hz is the pres-
ence of a restricted (~5–10 mmHg range) autoregulatory plateau shouldered by pressure-pas-
sive regions (Fig 1b; herein referred to simply as the dCA curve). However, whilst such a
nonlinear curve might directly reflect dCA, we were motivated to evaluate the validity of this
construct for at least two reasons. First, the concept suggests that dCA effectively responds
against only minor deviations (5 mmHg) in the very low frequency (VLF) component of BP.
This is a surprising inference since BP deviations within 5 mmHg do not present a major threat
to cerebral metabolism and microscopy studies have shown that pial precapillary arterioles typ-
ically do not respond to BP changes unless deviations exceed>10–15 mmHg relative to base-
line values (i.e., when there is a clear stimulus and threat to cerebral perfusion) [16]. Second,
the concept implies that BP deviations exceeding narrow dCA margins are associated with par-
allel changes in CBF. This is inconsistent with experimental data suggesting that precapillary
arterioles can undergo active dilation and constriction across a wide BP range [16]. Thus in our
view, dynamic cerebral autoregulation in healthy subjects may not necessarily conform to the
dCA curve reported in recent studies [4, 15].

Here we report findings from an experimental series that sought to test the presence and
consistency of the dCA curve across different subjects during the application of oscillatory
lower body negative pressure (OLBNP). To date the dCA curve has only been observed using
PPR [4, 15], which is only one of the several methodologies that can theoretically accommodate
the characterisation of nonlinear relationships. The validity of the dCA curve would be greatly
strengthened if it could be replicated using complementary methods. Therefore, we deployed
both PPR as well as locally weighted scatterplot smoothing (LOWESS) [17, 18] analyses on BP
and MCAv time series collected from healthy individuals. Additionally, we also developed and
applied a statistical approach based on piecewise linear regression to test the hypothesis that
the BP-MCAv fluctuations contain a central dCA plateau.

Materials and Methods

Subjects
Eighteen healthy, normotensive and non-smoking subjects (9 women; mean age 23 0.67 years)
were recruited for this study. This study conformed to the standards set by the Declaration of
Helsinki and was approved by the New Zealand Central Regional Ethics Committee. All sub-
jects were advised to abstain from caffeine-containing beverages and heavy exercise for at least
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12 hours before the study and to have a light breakfast at least 2 hours before the study. None
of the subjects was on regular medication and none had a known history of respiratory, cardio-
vascular or endocrine diseases. All subjects gave written informed consent prior to
participation.

Measurements
A data-acquisition unit (Powerlab/16 SP ML 795, AD Instruments) was used to record electro-
cardiogram (ECG), non-invasive beat-to-beat blood pressure via the finger photoplethysmo-
graphy (Finometer, MIDI, MLE1054-V, Finapres Medical Systems, Amsterdam, Netherlands),
right middle cerebral artery blood flow velocity (MCAv; 2MHz pulsed Doppler Ultrasound,
ST3 Transcranial Doppler (TCD), Spencer Technologies) and end-tidal CO2 sampled from a
nasal line (Gas analyser model ML206, AD Instruments, Colorado Springs, CO, USA) at 1 kHz
per channel. The data was stored on a computer for off-line analysis. For TCD assessment, a
headband strap (Marc 600, Spencer Technologies) was used to maintain optimal insonation
angle throughout each testing session.

Experimental Protocols
This study was conducted in the supine position in a quiet, temperature- and humidity-con-
trolled laboratory (22–23°) between 9 am-12 noon. Following approximately 10 minutes of sta-
bilization, we recorded 10 min of resting data before commencing a comprehensive BP
manipulation protocol involving OLBNP, bilateral thigh cuff deflation and sit-to-stand
manoeuvres in the upright position. Findings for the thigh cuff deflation and sit-to-stand
experiments were designed to test distinct a priori defined hypotheses that have already been
reported elsewhere [19]. For the OLBNP protocol, subjects were studied with their lower body
sealed in a tank connected to a vacuum source. During testing, the vacuum source was set to

Fig 1. Stylised representation of cerebral autoregulatory behaviour. (a) Lassen’s classical autoregulatory curve of static cerebral autoregulation [7], (b)
nonlinear curve for dynamic cerebral autoregulation (dCA) [4,15].

doi:10.1371/journal.pone.0139470.g001
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periodically oscillate the chamber pressure between 0 and approximately -45 mmHg at 0.03,
0.05 and 0.07Hz in randomized order. In two subjects a slightly greater negative pressure of -60
mmHg was applied to generate comparable and consistent fluctuations in BP. These frequen-
cies were chosen because they lie within the range where dCA is commonly thought to be oper-
ant [20, 21]. At each OLBNP frequency, 12 cycles were completed before transition to the next
frequency, except for two subjects where 15 cycles were completed. For subsequent analysis 12
cycles were analysed across each OLBNP frequency for all subjects. To ensure accurate mea-
surements, finger blood pressure recordings were always recalibrated before applying OLBNP
and were verified against the manually measured brachial artery blood pressure.

Signal pre-processing
Data were analysed using custom written software in MATLAB (version R2014b; Mathworks)
and R-Language (version 3.0.1; R foundation for statistical computing, Vienna, Austria). In
keeping with previous studies [4, 15], the 1-kHz recorded continuous BP and MCAv (an index
of CBF) waveforms were averaged over each cardiac interval. These reduced time-series were
cubic-spline interpolated and then down-sampled to 5-Hz before linear detrending. A low pass
anti-aliasing filter was also used to avoid aliasing while down-sampling the interpolated time-
series. Grubb’s test was employed to identify and remove occasional measurement artefacts
[22].

To account for the effects of different sampling rates and filters on the characteristic rela-
tionship between BP and MCAv signals, we applied several alternative data processing meth-
ods. First, in keeping with previous studies [4, 15], we analysed 5-Hz time-series data that were
bandpass filtered with a bandwidth of 0.01 Hz centred at OLBNP frequency to remove the
effects of random fluctuations. Second, given that 5-Hz time series tend to exhibit high serial
correlation, we repeated our analyses on BP and MCAv time series that were first decimated to
0.23-Hz to remove the potential confounding influence of serial correlation before bandpass
filtering. This lower sampling frequency corresponded to a small fraction of the bandwidth of
the spontaneous BP and MCAv fluctuations, and was well below the cardiac (0.6–1 Hz) and
the breathing frequencies (0.3–0.37 Hz). Examination of the autocorrelation functions suggest
that time series resampled at this rate were largely decorrelated having only 0.13 0.03 auto-cor-
relation on average. Finally, since nonlinear BP-MCAv relations may generate harmonics asso-
ciated with the induced OLBNP frequency, we also assessed the effects of applying a comb
filter to the 0.23-Hz resampled data to determine the effects of these harmonics on resultant
BP-MCAv relations.

Transient artefacts at the beginning of all time series associated with data filtering were
removed by truncating the first n samples (where n is the filter length). In keeping with previ-
ous studies [4, 15], all analyses were conducted with time series that were synchronised to each
other without any inherent delays. However, to account for the effects of potential delays
between BP and MCAv dynamics, we identified the maximum BP-MCAv cross-correlation
and also analysed signals that were realigned according to this delay. Results for these sensitiv-
ity analyses are presented as supplementary information (see S3 File).

Projection pursuit regression (PPR)
PPR is essentially a non-parametric regression approach that models the regression curve as a
sum of general smooth functions (termed ‘ridge functions’) of linear combinations of the pre-
dictor variables [23]. In keeping with previous studies [4, 15], PPR models were specified to
include only one ridge function, which can be visually interpreted as the relation between BP
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and MCAv that best fits the data. The detailed description and mathematical formulation of
PPR can be found elsewhere [23].

LOWESS
In this study, we employed LOWESS as a complementary nonlinear analytic method to capture
the intrinsic nonlinearities of the relationship between fluctuations in BP andMCAv without
imposing any a-priori assumptions about the input-output relationship [17]. A full description
of LOWESS can be found elsewhere [17] but briefly LOWESS is a local polynomial based regres-
sion technique that characterizes the relationships between paired variables by fitting a smooth
curve to the scatter diagram of data points. The algorithm begins by first determining the local
neighbourhood of a given data point before applying a weighting function to its neighbourhood
and then fitting a local linear polynomial to the weighted points within that neighbourhood.
This procedure is repeated for all data points of the input series to derive estimated points for
the output, which are then joined using linear local polynomials to obtain a smooth fitted curve.

Piecewise regression
In this study we adopted two variants of piecewise linear regression for the statistical detection
of central MCAv plateaus that may be indicative of a dCA curve. In keeping with previous
studies [4, 15], the first approach uses the estimated models of PPR and LOWESS, and fits
three hinged straight lines using Bruno-Luong’s Free-knot spline approximation technique.
The mathematical formulation and implementation details of Bruno-Luong’s Free-knot spline
approximation can be found elsewhere [24] but briefly this parameterization statistically deter-
mines the points where the pressure-flow relationships changes and approximates separate
regions by linear functions.

The second approach fits three unhinged straight lines to the BP-MCAv data points rather
than to the estimated models of PPR or LOWESS (see S1 File for full derivation). Here the
same data segments (of hinged regression) are used and a least square line is fitted to each seg-
ment. The least square line between BP and MCAv suggests a model of the form [25]

VðnÞ ¼ bo þ b1PðnÞ þ �ðnÞ ð1Þ

where V(n) is MCAv, P(n) is BP, �(n) is the error in the n-th observation and, β0 and β1 are the
intercept and the gradient of the least square line, respectively. We can calculate the mean of β1
and its uncertainty under the following assumptions concerning the errors in the least-square
model [25]: (1) the errors are random and independent, (2) the errors have the mean zero, (3)
the errors have the same variance, and (4) the errors are normally distributed. Under these

assumptions, the estimated quantities b̂o and b̂1 become normally distributed random vari-
ables. The use of 0.23-Hz resampled data ensures these assumptions are fulfilled. As we are

interested only in the gradient b̂1, its mean and standard deviation can be obtained by equation
(A1) and equation (A2) given in S1 File. From the means and the standard deviations of the
normally distributed gradients of the least-square lines, we can plot their probability distribu-
tions, which describe the BP-MCAv dynamics in terms of probability distributions. Where
BP-MCAv relationships resemble the dCA curve, the gradient of the middle (i.e., autoregula-
tory) segment should be lower than that of the right (higher BP) and the left (lower BP) seg-
ments. Accordingly, the probability distribution of the middle segment will show relative shift
towards low blood pressure values (i.e., leftward displacements) as compared to the probability
distributions of the left- and the right segments. The test statistic for unhinged regression has a
Student’s t distribution with N-3 degrees of freedom, where N is the number of data points in
each segment of time series (see S1 File for details).
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Although serial correlation was largely eliminated by down-sampling the data to 0.23-Hz, it
remains possible that residual serial correlation could affect the estimated probability distribu-
tions of unhinged regression lines. We accounted for such effects by considering the serial cor-
relation factor defined in equation (A4).

Additionally, we developed and applied a statistical approach to determine the significance
of the estimated gradients of piecewise regressions by examining the hypothesis defined in
equation (A6). The P-values corresponding to the test-statistics, defined in equation (A7) for
hinged regression and in equation (A8) for unhinged regression, were determined to validate
the statistical significance of the null and alternate hypothesis. Here, the P-values correspond-
ing to the null hypothesis for hinged regression are determined using an empirical approach by
generating multiple observations of the normal data with the same statistical features (i.e.,
mean, standard deviation and correlation) as that of the original BP-MCAv data.

Power spectral analysis
Spectral analysis of BP and MCAv time series was performed based onWelch’s overlapped seg-
ment averaging estimator. First, each bandpass filtered time series was divided into 5 segments
(each segment consisting of 2–3 cycles of OLBNP) with 50% overlap between the consecutive
segments. A Hann window was then applied to each data segment before fast Fourier trans-
form analysis. The modified periodograms were averaged to obtain power spectral density
(PSD) estimates. The cross spectrum between BP and MCAv was divided by the auto spectrum
of BP from which the coherence, gain and phase indexes were derived.

Statistics
All values are presented as means±SE unless otherwise stated. PSD values were log trans-
formed, coherence values were r-to-z transformed and phase values were arcsine transformed
to get asymptotical distributions. R2 values were transformed to normally distributed values
using Box-Cox transformation. The normal distribution of the data was established by Sha-
piro-Wilk test. For ease of interpretation and analysis, all values and confidence intervals are
presented here in standard units. All comparisons were made using either one- or two-way
repeated measures ANOVA tests. For two-way ANOVA, the experimental condition (i.e.,
OLBNP frequency) and regression approach were adopted as independent factors while for
one-way ANOVA the experimental condition (i.e., OLBNP frequency) was considered as the
independent factor. When a significant interaction between OLBNP frequency and regression
approach was observed, two-way ANOVA was followed by post hoc Tukey’s honestly signifi-
cant difference test and one-way ANOVA was followed by a post-hoc paired-t test to determine
at which OLBNP frequency significant difference was present. The confidence interval for
Grubb’s test was 0.05. The variance-explained is defined as R2 = 1—SSE/ SST, where SSE is sum
of squared errors and SST is sum of squared true values. Cross-validation of regression tech-
niques was performed using a leave-one-out approach (i.e., one data point is used for evolution
of a model fitted to the remaining data points within each subject). Unless otherwise stated sta-
tistical significance was set a priori at P< 0.05.

Results
Cardiovascular, respiratory and cerebrovascular parameters for OLBNP protocols are pre-
sented in Table 1. We observed that all haemodynamic variables were similar across the three
OLBNP conditions (P> 0.28 for all comparisons; one-way repeated measures ANOVA). An
illustrative example of raw BP and MCAv, and corresponding 0.23-Hz resampled and band-
pass filtered (using 0.01 Hz bandwidth filter) time series for three OLBNP frequencies along
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with the input OLBNP signal (i.e., tank pressure) is shown in Fig 2. The following sections
present 5-Hz and 0.23-Hz resampled data that was bandpass filtered (0.01 Hz bandwidth).
Summary results of delay-shifted data and subject to comb filtering are presented as supporting
information (see S3 File).

Power spectral analysis
Table 2 shows power spectral densities and Table 3 shows the cross-spectral coherence, gain
and phase associated with each OLBNP frequency. Overall coherence during OLBNP was
found to be below than 0.4 in 8 subjects at 0.03Hz OLBNP, in 4 subjects at 0.05Hz, and in 2
subjects at 0.07Hz. We found that the coherence between BP and MCAv fluctuations increased
with increase in OLBNP frequency (P< 0.05; one-way repeated measures ANOVA). Gain val-
ues showed a tendency to increase with higher OLBNP frequency (P< 0.05; one-way repeated
measures ANOVA). In contrast, phase decreased with higher OLBNP frequencies (P< 0.05;
one-way repeated measures ANOVA).

Analysis of 5-Hz resampled data
Fig 3a shows an example of LOWESS curve fitted to 5-Hz resampled data at 0.03Hz OLBNP.
Fig 4 shows the characteristic relationships between BP and MCAv derived using PPR and
LOWESS at 0.03Hz OLBNP. Visual inspection of the derived curves indicate that both tech-
niques yield qualitatively similar curves with comparable explanatory power in terms of pro-
portion of MCAv variance explained by the models (46.93±4.6% by PPR vs. 50±4.2% by
LOWESS; see S1 Fig and S2 File for more details).

Insets of Fig 4 show the corresponding hinged piecewise regression lines fitted to PPR
curves. In summary, at low BP (i.e., left segment) 14 subjects had positive gradients, 1 subject
had negative gradient and 3 subjects had approximately zero gradient (P> 0.05 for linear
regression). For the middle segment, 9 subjects had positive gradients, 4 subjects had negative
gradients and 5 subjects have approximately zero gradients (P> 0.05 for linear regression). At
high BP (i.e., right segment) 16 subjects had positive gradients, 1 subject had negative gradient,
and 1 subject had approximately zero gradient (P> 0.05 for linear regression). Thus, autoregu-
latory regions (i.e., slope approximately zero) were identified in several subjects, but when all
three segments are taken into account only 5 individuals exhibited patterns that clearly resem-
bled the dCA curve.

Table 1. Haemodynamic Variables.

OLBNP frequency (Hz)

Variable 0.03 0.05 0.07

R-R Interval (sec) 1 ± 0.02 1 ± 0.03 1 ± 0.03

Breathing rate (breath.min-1) 13 ± 0.97 13 ± 0.63 14 ± 0.92

End-tidal CO2 (mmHg) 38 ± 0.55 39 ± 0.82 39 ± 0.67

Systolic BP (mmHg) 128 ± 3 130 ± 1 134 ± 2

Diastolic BP (mmHg) 58 ± 2 58 ± 2 57 ± 1

MAP (mmHg) 82 ± 2 83 ± 1 82 ± 1

MCAvmean (cm.s-1) 64 ± 4 64 ± 4 65 ± 4

Values are mean ± SE for OLBNP data. R-R Interval, beat-to-beat interval; MAP, mean arterial pressure; MCAvmean, mean middle cerebral artery blood

flow velocity; OLBNP, oscillatory lower body negative pressure. P > 0.28 for all comparisons; one-way repeated measures ANOVA.

doi:10.1371/journal.pone.0139470.t001
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The P-values of the test statistic (defined in equation A7) for hinged piecewise regression
were greater than 0.05 for all subjects, except for three subjects for which the middle segment
gradient is negative and large (see S1 Table). Similar results were obtained for piecewise regres-
sion on LOWESS curves (see S2 Fig). Collectively, these observations show that the hinged
lines fitted to PPR and LOWESS curves did not reveal any consistent BP-MCAv relationships
that resemble the dCA curve.

Fig 2. Representative example of the study protocol showing tank pressure, and raw, 0.23-Hz resampled and band-pass filtered (0.01 Hz
bandwidth) BP and MCAv time series (subject 1). (a) tank pressure (mmHg); leftmost is 0.03Hz, middle is 0.05Hz and rightmost is 0.07Hz OLBNP, (b) raw
BP and MCAv time series, sampled at 1-KHz, (c) zero-mean 0.23-Hz resampled BP and MCAv time series, (d) band-pass filtered (0.01 Hz bandwidth) BP
and MCAv time series. OLBNP, oscillatory lower body negative pressure; BP, blood pressure; MCAv, middle cerebral artery blood flow velocity.

doi:10.1371/journal.pone.0139470.g002

Table 2. Power spectral density of BP andMCAv during OLBNP for 0.23-Hz resampled data.

OLBNP frequency (Hz)

Variable 0.03 0.05 0.07

BP spectral density (mmHg2 Hz-1) 3.39 ± 0.96 3.69 ± 1.06 3.28 ± 0.94

MCAv spectral density (cm2 s-2 Hz-1) 2.57 ± 0.4 1.43 ± 0.45 2.57 ± 0.43

Values are mean ± SE for OLBNP data. BP, blood pressure; MCAv, middle cerebral artery blood flow velocity; OLBNP, oscillatory lower body negative

pressure. P > 0.15 for all comparisons; one-way repeated measures ANOVA.

doi:10.1371/journal.pone.0139470.t002
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Analysis of 0.23-Hz resampled data
Data series sampled at 5-Hz exhibit high serial correlation, so BP-MCAv relationships were
also assessed on 0.23-Hz resampled time series where serial correlation was suppressed. Similar
to the results based on 5-Hz data, we found that BP-MCAv relationships characterised using
LOWESS were similar to those with PPR with comparable MCAv variance explained (47.5
±5.28% by PPR vs. 52±4.5% by LOWESS; see S1 Fig and S2 File for details).

Fig 3b shows an illustrative example of LOWESS curve fitted to 0.23-Hz resampled BP and
MCAv data at 0.03 Hz OLBNP, and Fig 5 summarises LOWESS curves for all subjects at each
of the three OLBNP frequencies. In general we observed marked diversity in the characteristic
relationships between BP and MCAv with the vast majority of subjects showing asymmetric
BP-MCAv relationships around the mean values. At 0.03Hz OLBNP, BP was positively related
to MCAv in the majority of subjects, however in 8 cases a negative relation was found at BP
extremes. Qualitative assessment across all subjects showed that only 14 out of 54 cases (i.e., 3
OLBNP frequencies for each subject) showed BP-MCAv relations that clearly resembled a cen-
tral MCAv plateau (e.g., subject 12). However, in these individuals MCAv did not necessarily
become more positively linear at higher OLBNP frequencies. For example, in some individuals
the BP-MCAv relationships were (positively) linear at 0.03Hz OLBNP but resembled a flat pla-
teau at 0.05 or 0.07Hz (e.g., subject 2).

To statistically establish the possible presence of a central dCA plateau based on these
LOWESS curves (of Fig 5), we fitted hinged piecewise regression lines to each curve. Fig 3b

Table 3. Cross-spectral coherence, gain and phase for 0.23-Hz resampled BP andMCAv during OLBNP.

OLBNP frequency (Hz)

Variable 0.03 0.05 0.07

Coherence (AU) 0.42 ± 0.06 0.52 ± 0.059* 0.64 ± 0.05*†

Gain (cm/s/mmHg) 0.29 ± 0.04 0.43 ± 0.04* 0.52 ± 0.03*†

Phase (degrees) 46 ± 14 28 ± 14* 20 ± 7*†

Values are mean ± SE for OLBNP data. AU, arbitrary units; BP, blood pressure; MCAv, middle cerebral artery blood flow velocity; OLBNP, oscillatory

lower body negative pressure.

* P < 0.05 vs. 0.03Hz
† P < 0.05 vs. 0.05Hz for significant differences; one-way repeated measures ANOVA.

doi:10.1371/journal.pone.0139470.t003

Fig 3. Example of LOWESS fitted curve and two piecewise regression approaches for 0.03Hz OLBNP (subject 1 in Fig 4) superimposed on
individual BP-MCAv data points. Dots represent BP and MCAv data points. (a) LOWESS fitted curve to 5-Hz data points along with hinged regression
lines, (b) LOWESS fitted curve to 0.23-Hz data points along with hinged regression lines, (c) unhinged piecewise regression lines to 0.23-Hz data points.
LOWESS, locally weighted scatterplot smoother; BP, blood pressure; MCAv, middle cerebral artery blood flow velocity; OLBNP, oscillatory lower body
negative pressure.

doi:10.1371/journal.pone.0139470.g003
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Fig 4. LOWESS and PPR estimated models of 5-Hz resampled data for 0.03Hz OLBNP. The corresponding hinged lines to PPR curves using Bruno-
Luong’s Free-knot spline approximation are shown in inset of each subplot. Along axis, mean values of BP and MCAv fluctuations are given. In each subplot
the top-left digit(s), italic-bold, refers to the subject’s identifier. BP, blood pressure; MCAv, middle cerebral artery blood flow velocity; OLBNP, oscillatory
lower body negative pressure; PPR, projection pursuit regression; LOWESS, locally weighted scatterplot smoother.

doi:10.1371/journal.pone.0139470.g004
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Fig 5. LOWESS estimatedmodels of 0.23-Hz resampled OLBNP data. Along axis, mean values of BP and MCAv fluctuations are given. In each subplot
the top-left digit(s), italic-bold, refers to the subject’s identifier. LOWESS, locally weighted scatterplot smoother; OLBNP, oscillatory lower body negative
pressure; BP, blood pressure; MCAv, middle cerebral artery blood flow velocity.

doi:10.1371/journal.pone.0139470.g005

Non-Linear Cerebral Pressure-Flow Characteristics

PLOS ONE | DOI:10.1371/journal.pone.0139470 September 30, 2015 11 / 19



shows a representative example of piecewise hinged regressions lines fitted to LOWESS curves
at 0.03Hz OLBNP. Overall we found that the P-values of the test statistic (defined in equation
A7) for hinged regression were greater than 0.05 for all subjects consistent with the absence of
a central dCA plateau.

Since the hinging of piecewise regression lines can impose structures on the underlying
BP-MCAv relationship, we also fitted unhinged piecewise regression lines to the BP and
MCAv data points. Fig 3c shows an example of unhinged piecewise regression fitted to 0.23-Hz
resampled data points, and Fig 6 shows the probability distributions corresponding to the gra-
dients and uncertainties of unhinged piecewise lines during 0.03Hz OLBNP for all subjects.
For clarity the corresponding unhinged regression fits for each subject are shown in the figure
insets. Assessment of the slopes of individual segments showed that at low BP (i.e., left seg-
ment) 14 subjects had positive gradients, 3 subjects had negative gradients and 1 subject had
approximately zero gradient. For the middle segment 8 subjects had positive gradients, 7 sub-
jects had negative gradients and 1 subject had a gradient that was approximately zero. At high
BP (i.e., right segment) 14 subjects had positive gradients, 2 subjects had negative gradients
and 2 subjects had approximately zero gradients. Thus qualitatively only 4 subjects demon-
strated middle segment gradients that were lower than both left- and right segments (i.e., indic-
ative of possible central plateau). However, the corresponding P-values of the test statistic
(defined in equation A8) for unhinged piecewise regression were greater than 0.05 (except for
two subjects for which the middle segment gradient is negative and large; see S2 Table) under
0.03Hz OLBNP. These results indicate that the null hypothesis (i.e., absence of a middle seg-
ment plateau) cannot be rejected for unhinged piecewise lines.

Residual serial correlation was associated with a 5.5±0.4% difference in the standard devia-
tions of estimated probability distributions of the unhinged regression (see S1 File for details).
This difference did not substantially affect our overall conclusions since the P-values of the test
statistic for unhinged lines (after taking into account the factor of residual serial correlation)
were all still greater than 0.05 for all subjects under each OLBNP condition.

Discussion

Main findings
This study sought to define the characteristic relationships between BP and CBF in healthy
humans. We found that PPR and LOWESS explained half of the MCAv variance during
OLBNP at 0.03Hz, suggesting that BP is an important determinant of CBF dynamics. However,
BP-MCAv fluctuations characterised using PPR, LOWESS, and piecewise regression methods
showed marked between-subject variations. Although we did observe BP-MCAv relationships
that resembled a dCA curve in a few subjects, such relations were absent in a significant major-
ity of individuals. These findings suggest that dCA does not appear to be a process that can be
readily summarised by any archetypal relationship.

Non-linear characterisation of BP-MCAv fluctuations
Prior studies using linear transfer function analysis have suggested that dCA is a frequency
dependent phenomenon that can be modelled as a high pass filter [8, 9]. However, the cross-
spectral coherence between BP and MCAv in the VLF range (0.02–0.07 Hz) is typically lower
than 0.4, indicating that less than 40% of the VLF MCAv variance can be linearly explained by
fluctuations in BP. To resolve the inherent nature of these nonlinear relationships, various
non-parametric approaches with differing theoretical advantages have been applied including
the Hilbert-Huang transformation [26], dynamic non-linear Volterra-Kernel models [27], and
variants of Volterra-Kernel models such as Volterra-Laguerre network (LVN) [28], Laguerre-
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Fig 6. Normal probability distributions corresponding to gradients and their uncertainties of 0.23-Hz resampled data at 0.03Hz OLBNP using
unhinged piecewise regression. The corresponding unhinged lines are shown in inset of each subplot. In each subplot the top-left digit(s), italic-bold,
refers to the subject’s identifier. OLBNP, oscillatory lower body negative pressure; AU, arbitrary units.

doi:10.1371/journal.pone.0139470.g006
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Expansion technique (LET) [29] and Principal Dynamic Modes (PDMs) [30]. In general these
Volterra-Kernel based techniques have demonstrated good predictive capability but their com-
plex formulations do not give rise to physiologically interpretable parameters.

In contrast, more recent studies have examined cerebral BP-MCAv dynamics using PPR [4,
15]. One apparent advantage of PPR is that inherently nonlinear relationships can be approxi-
mated using weighted sums of ridge functions that are amenable to graphical interpretation
[31]. Implementation of this approach during mild OLBNP across a range of frequencies
(0.03–0.07 Hz) have revealed nonlinear ridge functions that qualitatively resemble static cere-
bral autoregulation curves with pressure passive regions shouldering an intervening plateau [4,
15]. These nonlinear ridge functions have been interpreted as a direct representation of dCA
and ascribed high deterministic influence on cerebral pressure-flow relationships [4].

However, we were motivated to verify the external validity of this model dCA curve for sev-
eral reasons. First, although the dCA curve has been reported to explain>50% of the relation-
ship between BP and MCAv fluctuations consistently between individuals even between
different study days [4, 15], flow plateaus are decidedly absent in signal averaged traces of cere-
bral blood velocity [32]. Second, the notion that dCA manifests restricted flow plateau about
some average BP set point (within the VLF range) implies that dCA is only effective against
minor BP deviations (± 5 mmHg). Very low frequency BP excursions exceeding these narrow
margins are associated with parallel changes in CBF, implying that cerebral haemodynamics
beyond the dCA range resembles a time-invariant system. However, such implications contra-
dicts data from direct microscopy experiments showing that active dCA tends to occur when
BP deviations exceed a threshold>10–15 mmHg (i.e., when there is a clear stimulus), and that
beyond this threshold dCA maintains a relatively wide operational range [16].

Therefore, in this study we sought to clarify the characteristics relationships between BP
and CBF using a range of complementary methodologies that are also amenable to graphical
interpretation. Our analysis showed that BP-MCAv relationships defined using LOWESS were
comparable to PPR. However, contrary to previous studies [4, 15], we found that the underly-
ing relationships varied markedly between individuals with few exhibiting LOWESS, PPR, or
piecewise regression curves that resembled the dCA curve.

Potential explanations and implications
It is important to emphasise that although nonlinear regression methods like LOWESS and
PPR enable the evaluation of nonlinear systems, these methods do not of themselves explicate
the physiological mechanisms that might give rise to observable relationships. Therefore, our
findings do not imply that dCA is necessarily non-existent; they simply suggest that CBF
dynamics at the lower frequencies studied (0.03 and 0.05Hz) are not consistently linked to BP
according to any single deterministic nonlinear dCA curve. Indeed since we expect autoregula-
tory responses to weaken associations between BP and MCAv, it remains entirely possible that
dCA is the reason why BP-MCAv relations appear so obscure. Alternatively, latent interactions
between dCA and other flow-influencing processes may be relevant although to resolve these
issues future studies will need to incorporate the full range of factors that are known to modu-
late CBF such the Windkessel properties of the cerebrovasculature [33], the partial pressure of
arterial PCO2 [34], and neurovascular coupling [35, 36].

One potential explanation for the lack of concordance with previous studies [4, 15] may
relate to the way BP and MCAv signals were processed. Specifically, MCAv fluctuations are
known to lead BP changes within the VLF range. Therefore, previous PPR analyses that may
have assumed that BP and MCAv are instantaneously synchronised may yield sub-optimal
estimates of the underlying system [4]. To explore this possibility we also repeated our analyses
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after factoring in possible delay-shifts between BP and MCAv. Doing so predictably increased
model fits by ~10–15%, but does not tangibly influence our overall conclusions.

It is also important to recognise that the dCA curve has been described under situations
where BP and MCAv signals have been passed through narrow-band filters (of 0.01 band-
width). Whilst such pre-processing recognises the frequency-dependent nature of cerebral
pressure-flow dynamics, the application of a narrow-band filter may remove harmonics gener-
ated by nonlinearities such that only linear components of the signal remain. This issue is par-
ticularly significant for higher OLBNP frequencies (e.g., 0.07 Hz) where a 0.01 Hz bandwidth
becomes a small proportion of the augmented frequency, and may be one reason why we did
not observe the characteristic nonlinear dCA curve reported in previous studies [4, 15]. How-
ever, the type of filter used is unlikely to be the main explanation for our findings since 1) the
bandwidth we applied corresponds to those used in previous studies [4, 15] and 2) our use of
comb filters that allow fundamental and harmonics frequencies to pass but removes (unre-
lated) noise at intermediate frequencies did not reveal characteristic dCA curves.

The observations of this study may have important implications. Our data suggests that the
absence of a clear ‘dCA curve’ does not necessarily imply the absence of autoregulatory behav-
iour and an abnormal state of CBF regulation. Because this study was conducted in healthy,
normotensive and non-smoking subjects, it seems reasonable to assume that the relationships
between BP and MCAv fluctuations observed are indicative of complexities that are inherent in
normal cerebrovascular systems. Additionally, contemporary clinical monitoring protocols
rely heavily on the assumption that brachial blood pressure measurements consistently inform
the state of end-organ perfusion. However, as our results indicate, BP-CBF relationships in the
VLF range can vary dramatically between individuals. Therefore, many clinical treatment para-
digms that focus narrowly on the monitoring and manipulation of BP (e.g., acute blood pres-
sure lowering therapy in stroke) may fail to achieve accurate and targeted control of brain
perfusion.

Methodological considerations
The findings of this study need to be interpreted in the context of several methodological con-
siderations. First, an important underlying assumption of LOWESS, PPR and piecewise regres-
sion is that the data points under analysis are statistically independent. This creates a challenge
because time series data often demonstrate serial correlation particularly at higher sampling
rates (e.g., 5-Hz). Due to the embedding of long-term correlations in physiological signals (up
to 60 sec for BP [37]), it is not possible to fully eliminate serial correlation. However, serial cor-
relation can be greatly suppressed by systematically assessing the BP and MCAv autocorrela-
tion functions and down-sampling the data [38]. Here we found that a down-sampled rate of
0.23-Hz created times series that were substantively devoid of serial correlation but still satis-
fied the minimum Nyquist rate required to characterise the BP-MCAv dynamics of interest in
this study. We furthermore developed a novel piecewise regression method that explicitly
accounted for the serial correlation factor. Together these measures help reassure that our prin-
cipal conclusions were not simply due to the serial correlation. Because our objective was to
graphically characterise the nature of dCA without any a priori assumptions, we did not
explore the use of nonlinear time series models that can compensate for serial correlation, but
require pre-specification of certain nonlinear functions.

Second, it needs to be acknowledged that cerebral perfusion pressure was estimated using
indirect methods. Theoretically, cerebral perfusion pressure is calculated from the difference
between mean arterial BP and the effective downstream pressure of the cerebral circulation. In
this investigation BP was estimated at the level of the finger using the Finapres, which is based
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on the volume clamp technique [39]. This practice is generally considered acceptable because
unlike systolic BP, mean BP is not affected by pulse wave amplification [39]. Further, Finapres
and intra-arterial recordings generate quantitatively similar estimates of mean BP spectral
powers within frequency ranges that are commonly analysed in cerebral haemodynamic
research [40].

Third, TCD measures cerebral blood flow velocity rather than volumetric blood flow and it
will be an adequate surrogate of the actual blood flow only when the insonated vessel diameter
is considered invariant to time and different experimental conditions. Several studies in
humans have proposed that the diameter of middle cerebral artery remains constant despite
the fluctuations in BP and blood gases for conditions similar to those of this study [41].

Fourth, in keeping with the objectives of the study, Fourier transform based filtering
approaches were used to extract BP and MCAv fluctuations at each OLBNP frequency. This
approach assumes that BP and MCAv time-series are stationary signals composed of sinusoi-
dals. However, considering that BP and MCAv signals possess nonlinear properties, more
sophisticated approaches based on the wavelet transform and empirical mode decomposition
can also be used to extract oscillatory components associated with the induced OLBNP fre-
quency [11, 26]. One advantage of these methods is that they permit characterisation of time-
varying phase relationships between BP and CBF, which may be a powerful approach for non-
linear dCA characterisation [11, 42, 43]. Unfortunately such phase relationship could not be
accurately assessed in our 0.23 Hz resampled time series given the raw signal recordings were
relatively short in duration.

Finally, we found that substantial (~ 50%) MCAv variations within the lowest OLBNP fre-
quencies studies were not explained by BP alone with either PPR or LOWESS. The variance
explained by these techniques can potentially be increased by decreasing the bandwidth of the
window function of LOWESS or increasing the number of non-linear PPR ridge functions.
However, this is tantamount to increasing the numbers of free parameters that can potentially
overfit the data, and give rise to models that are difficult to interpret. To avoid overfitting the
data with the LOWESS method, the optimal bandwidth of the LOWESS window function was
selected using the nearest neighbour bandwidth selection criteria (i.e., k-nearest neighbours)
[44].

Conclusion
In summary, we conclude that BP is an important determinant of CBF dynamics but the
underlying pressure-flow relations do not readily manifest itself as a single characteristic dCA
curve. These findings should lead to renewed efforts towards developing robust methods for
characterising dCA, and towards delineating its influence on CBF from other flow-modulating
processes such as carbon dioxide reactivity and neurovascular coupling.

Supporting Information
S1 Fig. Comparison of percentage variance-explained by different regression techniques.
(a) regressions applied directly to 0.23-Hz resampled band-pass filtered data, (b) cross-valida-
tion performed on 0.23-Hz resampled band-pass filtered data, (c) regressions applied directly
to 5-Hz resampled band-pass filtered data, (d) cross-validation performed on 5-Hz resampled
band-pass filtered data. Band-pass filter of 0.01 Hz bandwidth was used. Leave-one-out cross-
validation approach was applied for all comparisons. All comparisons were performed by two-
way repeated measures ANOVA with the experimental condition (i.e., OLBNP frequency) and
regression approach as independent factors. P< 0.05 vs. linear regression, P< 0.05 vs. PPR for
significant differences at different OLBNP frequencies. Linear, Linear regression; PPR,
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projection pursuit regression; LOWESS, locally weighted scatterplot smoother; freq, frequency;
reg, regression technique; freq × reg, frequency and regression technique interaction term.
(EPS)

S2 Fig. Comparison of slopes of hinged lines fitted to PPR and LOWESS curves (shown in
Fig 4) of 5-Hz resampled band-pass filtered BP-MCAv data during OLBNP at 0.03Hz. (a)
slopes of left segment, (b) slopes of middle segment, (c) slopes of right segment. AU, arbitrary
units; BP, blood pressure; MCAv, middle cerebral artery blood flow velocity; LOWESS, locally
weighted scatterplot smoother; OLBNP, oscillatory lower body negative pressure; PPR, projec-
tion pursuit regression. Error bars represent means±SD.
(EPS)

S3 Fig. Comparison of hinged lines slopes of three segments fitted to PPR and LOWESS
curves (shown in Fig 4) of 5-Hz resampled band-pass filtered BP-MCAv data during
OLBNP at 0.03Hz. (a) slopes of PPR curves, (b) slopes of LOWESS curves. AU, arbitrary
units; BP, blood pressure; MCAv, middle cerebral artery blood flow velocity; LOWESS, locally
weighted scatterplot smoother; OLBNP, oscillatory lower body negative pressure; PPR, projec-
tion pursuit regression. Error bars represent means±SD.
(EPS)

S1 File. Derivation of piecewise regression and test statistics for hypothesis testing.
(DOCX)

S2 File. Comparison of PPR and LOWES.
(DOCX)

S3 File. Analysis of delay-shifted data.
(DOCX)

S1 Table. Test statistic and their P-values for hinged piecewise regression of PPR curves
(shown in Fig 4) for 5-Hz resampled band-pass filtered (0.01 Hz bandwidth) data for
0.03Hz OLBNP.
(DOCX)

S2 Table. Test statistic and their P-values for unhinged piecewise regression (shown in
insets of Fig 6) for 0.23-Hz resampled band-pass filtered (0.01 Hz bandwidth) data for
0.03Hz OLBNP.
(DOCX)
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