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Abstract: In the design of dental multifunctional Cone Beam Computed Tomography, the linear
scanning strategy not only saves equipment cost, but also avoids the demand for patients to be
repositioned when acquiring lateral cranial sequence images. In order to obtain panoramic images, we
propose a local normalized cross-correlation stitching algorithm based on Gaussian Mixture Model.
Firstly, the Block-Matching and 3D filtering algorithm is used to remove quantum and impulse noises
according to the characteristics of X-ray images; Then, the segmentation of the irrelevant region
and the extraction of the region of interest are performed by Gaussian Mixture Model; The locally
normalized cross-relation is used to complete the registration with the multi-resolution strategy based
on wavelet transform and Particle Swarm Optimization algorithm; Finally, image fusion is achieved
by the weighted smoothing fusion algorithm. The experimental results show that the panoramic
image obtained by this method has significant performance in both subjective vision and objective
quality evaluation and can be applied to preoperative diagnosis of clinical dental deformity and
postoperative effect evaluation.

Keywords: lateral cephalogram; Gaussian mixture model; image registration; image fusion

1. Introduction

Oral disease is common and frequently occurring in all ages. With the improvement
of medical the level, oral imaging has been widely used in preoperative diagnosis and
postoperative evaluation of orthodontics, dental implant [1]. Oral imaging can be divided
into three-dimensional Cone Beam Computed Tomography (CBCT) imaging and two-
dimensional Digital Radiography (DR) imaging. The two-dimensional lateral cephalogram
has important clinical value in the diagnosis of oral deformity, the reliability of the upper
respiratory tract, the hyoid bone and the soft palate, and the diagnosis of head and cervical
spine [2,3]. It can not only help doctors better understand the structure and relative
position of the patient’s cranial, maxillary, face and teeth, but also be widely used in the
evaluation of the effect of orthodontic treatment [4]. Therefore, the addition of lateral cranial
imaging in the design of oral CBCT instrument can expand the function and improve the
cost performance.

In order to reduce the cost of the instrument and avoid the demand for patients to be
repositioned when switching imaging types in CBCT imaging, the planar detector with
a small field of view is used to obtain sequential images through linear scanning. Then,
the image stitching algorithm is used to continuously stitch the sequence images to get the
panoramic image. Image stitching methods have made great achievements in many fields,
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but some gaps still exist in continuous stitching of small size. How to stitch a large number
of continuous small dimensions without obvious features into a panorama is a difficult
but hot topic in current research. A large number of image registration-based stitching
methods have been proposed, which are basically divided into five categories [5].

Phase correlation method: Fast Fourier transform (FFT) is applied to the image, and
then the translation vector between the two images can be directly calculated by their
mutual power spectrum, so that the image registration can be realized. Yan song et al. [6]
improved the phase correlation method by combining it with threshold segmentation.
Yunyun Dong et al. [7] assumed the noise is a mixed Gaussian distribution, performed
rank one matrix decomposition on the phase correlation matrix to complete the image
registration. Xiaohua Tong et al. [8] integrated the advantages of Hoge’s method and
the RANSAC algorithm and avoided the corresponding shortfalls of the original phase
correlation method.

Feature-based method: The key to the success of this method is feature point ex-
traction and matching. Tian Zhang et al. [9] proposed an improved SURF operator by
calculating the normalized gray-level difference and second-order gradient in the neigh-
borhood. Herng-Hua Chang et al. [10] improved the Scale Invariant Feature Transform
(SIFT) operator, feature slope calculation, feature point grouping, the and outlier removal
and transformation were adopted. SK sharma et al. [11] utilized AKAZE to detect feature
points, obtained corresponding matching pairs by using K-NN algorithm, and removed
the false matched points by MSAC.

Intensity information-based method: This method directly uses the intensity informa-
tion of two images and determines the best transformation parameters by measuring the
similarity. S Song et al. [12] proposed a peripheral mutual information (PMI) maximiza-
tion method for image registration, which makes use of the closed-form solution for the
Shannon entropy. M Pan et al. [13] adopted Renyi’s quadratic mutual information as the
similarity criterion between the reference and floating images, and the Simplex method, as
multi-parameter optimization one, is used to search the optimal registering values.

Hybrid-based method: In order to synthesize the advantages of different methods,
many hybrid-based registration methods have been proposed. M song et al. [14] combined
the method based on SIFT feature and mutual information to achieve remote sensing image
registration from Coarse-to-fine. Ruitao Feng et al. [15] developed a robust algorithm
by combining and localizing feature- and area-based methods. Han et al. [16] aimed to
accurately register Optical and TIR images by Using SURF and Local Phase Correlation.

Deep-learning-based method: Deep learning has achieved good performance in
feature extraction and parameter registration output. Dosovitskiy et al. [17] trained the
convolutional neural network with unlabeled data, and the performance of the extracted
feature descriptor was better than that of the SIFT descriptor. Z Yang et al. [18] used
a pre-trained VGG network layer to generate a feature descriptor while preserving the
convolution information and local features. Cao X et al. [19] used the deformation site as a
label and applied supervised learning to output registration parameters. G Wu et al. [20]
adopted unsupervised learning and directly input the registration pair into the network to
obtain the deformation field. The method based on deep learning requires a large number
of manual annotation samples to optimize the learning process [21]. As far as we know,
there is no large public database to annotate lateral cephalic sequence images. Therefore,
the traditional method is chosen to explore a suitable mathematical method for continuous
stitching of small-size images.

Most of the existing image stitching methods are based on feature extraction. For
example, L Deng et al. [22] proposed a stitching method based on global alignment model,
Kim D T et al. [23] proposed a combination of ROI and reduction technology for endoscopic
panoramic video stitching, and Qu Z et al. [24] proposed a stitching method based on
binary tree and estimated overlap region. However, the essence of these methods is based
on the successful extraction of feature points of the image to be stitched. For the oral
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cranial sequence images, it is difficult to extract enough feature points from the images to
be stitched, and the stability of continuous stitching cannot be guaranteed.

In view of these difficulties, a local normalized cross-correlation stitching algorithm
based on Gaussian Mixture Model (GMM) is suggested. The primary contributions of our
study are summarized as follows:

BM3D algorithm is applied to remove the quantum and impulse noise of the X-ray
sequence image before image stitching.

In order to eliminate the influence of the irrelevant regions in X-ray image stitching, a
local normalized cross-correlation registration based on GMM is proposed.

The source image is decomposed into a three-layer image pyramid by wavelet trans-
form [25], and the multi-resolution strategy is combined with the particle swarm optimiza-
tion algorithm to optimize registration parameters and improve the stitching accuracy.

To process the overlapping area of adjacent images, we combined the distance from
the pixel to the boundary of the overlapping area with a weighted average [26], which can
make the overlapping area transition naturally.

In the Section 2, we will introduce the principle of lateral cranial imaging with multi-
functional CBCT device and explain the properties of images and why image stitching
is used. The design of stitching algorithm based on local normalized cross-correlation
is presented in Section 3. In Section 4, we will first introduce our experimental dataset,
and we will present the results of experiments. Section 5 concludes our work, which can
provide a clinical basis for oral diagnosis.

2. Multi-Functional Oral CBCT Devices

The traditional multifunctional oral CBCT device is shown in Figure 1a. It consists of
a Lateral cranial imaging module (red box 1) and CBCT imaging module (red box 2). When
taking a 3D image of the oral cavity, CBCT module is used to carry out the ring scan and
then reconstruct this image on a computer. The patient needs to be moved to the lateral
cranial module for repositioning during lateral cranial radiographs. This imaging strategy
results in the cost of the equipment being expensive, as at least two sets of X-tube and flat
plate detectors are required.
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The data in this paper came from the new multi-functional CBCT, as shown in
Figure 1b. 3D oral images and lateral cranial sequence images can be obtained at the
same time by positioning the patient once. The lateral cranial imaging module is shown
in Figure 1c, and we only need to rotate the detector of CBCT imaging by 90 degrees and
adopt the strategy of combining small field detector with linear scanning to obtain the
serial images of lateral cranial position. The X-ray tube sends X-rays to transit the head
to a small field flat panel detector, which converts the X-ray image directly into an analog
signal, which A/D converts into A digital signal. Due to the size limitations of the X-ray
ball tube and sensor, only a small vertical slice of the skull was recorded at each imaging
session. Therefore, in order to obtain the lateral cephalogram of the entire head model, the
X-ray ball tube and detector were moved from point a to point b, and multiple images were
taken consecutively. This design strategy not only avoids the need to reposition the patient
during the acquisition of lateral cephalogram, but also saves equipment costs by requiring
only one set of X-ball tubes and flat plate detector.

A partial image sequence obtained by linear scanning is shown in Figure 1c, and each
image is 2232(height) × 60(width) pixels in size, and all images are partially overlapped
with adjacent ones. The data in this paper came from the human head model, and a total
of 480 small-size images were obtained by linear scanning. Sequential images need to be
processed by a stitching algorithm to obtain panoramic images before they can be used for
clinical diagnosis.

3. Design of Stitching Algorithm

In this study, the feature-based approach is not applicable to the data in this paper.
The main difficulty is that it is difficult to extract effective features from the 60-pixel-wide
images, especially in the soft tissue areas without teeth and bones. SIFT feature extraction
operator with strong robustness and rotation invariance [27] was selected to extract and
match features of some sequence images. As shown in Figure 2, The number of feature
points extracted is not enough to calculate the transformation matrix between adjacent
images, and some feature points are mismatched.
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In this paper, intensity information is directly used as the direct feature, which has
the characteristics of simplicity, high precision, and strong anti-jamming ability. The flow
chart of the overall algorithm is shown in Figure 3, which is mainly composed of four parts:
Image denoising, image segmentation, image registration, and image fusion.
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3.1. Image Denoising

Image noise refers to the unnecessary or redundant interference information existing
in image data, and the noise of X-ray image mainly comes from system structure, charge
diffusion, photon fluctuation, analog-to-digital conversion, and so on [28]. According to
the category of noise, it mainly includes quantum noise and impulse noise.

Quantum noise is the random spatial fluctuation of X-ray quantum according to
Poisson distribution law, and its magnitude is related to the radiation dose of the ray source
and the absorption performance of the plate detector. In general, it is considered that the
quantum fluctuation noise of the radiography system obeys the Poisson distribution, which
is expressed as follows:

p(z) =
λz

z!
e−λ λ > 0 (1)

Impulse noise is the randomly distributed noise generated on the image by the excita-
tion action of X-ray scattering on the flat panel detector. Impulse noise can be described by
the following probability density function:

p(z) =


Pa z = a
Pb z = b
0 others

(2)

The image sequence needs to be de-noised before the image is stitched, mean filtering,
median filtering, Gaussian filtering, and NL-Means algorithm are widely used denoising
methods, and BM3D algorithm has excellent performance for denoising X-ray images
among many denoising algorithms [29]. The BM3D algorithm was proposed by Dabov
K et al. [30]. The flow chart of the BM3D algorithm is shown in Figure 4. It is generally
divided into two steps; each step includes similar block grouping, collaborative filtering,
and aggregation. The algorithm makes a basic estimate before making a final estimate of
the image.
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Similar block grouping: For each target block, look for a maximum of MAXN1 similar
blocks in the vicinity, this process can be expressed as follows:

G(P) =
{

Q : d(P, Q) ≤ τstep} (3)

where d(P, Q) is the Euclidean distance between the two blocks, after sorting from smallest
to largest, take the preceding maxN1 to form a three-dimensional array.

Collaborative filtering: The two-dimensional transformation of each two-dimensional
block in the three-dimensional matrix is carried out, and then the one-dimensional trans-
formation is carried out in the third dimension of the matrix. After transformation, the
parameter less than the super parameter is set to 0 by means of the hard threshold. At
the same time, the number of non-zero components counted as a reference for subsequent
weights. This process is as follows:

Q(P) = T−1
3Dhard(γ(T3Dhard(Q(P)))) (4)

Aggregation: After the inverse transformation of these graph blocks, the algorithm
puts them back to the original position, uses the number of non-zero components to
calculate the stack weight, and finally divides the stacked graph by the weight of each
point to get the basic estimated image.

3.2. Image Segmentation

X-rays are penetrative, but the density and thickness of human tissue vary, and as
X-rays penetrate bone (including teeth) and muscle, the denser the tissue, the better it
absorbs the X-ray, so the imaging process produces different images. Four images were
randomly selected from the sequence to observe their gray histogram distribution, as
shown in Figure 5.
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The histogram reflects the probability of the occurrence of a certain grayscale value
in the image. The grayscale value of the image in this paper is distributed between 0 and
14,000, and most of the grayscale histograms of sequence images are of peak structure.
After analysis, we know that the area with smaller gray value in the histogram is bone
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imaging, while the part with larger gray value (red box) belongs to air and soft tissue
imaging. For the registration of sequence images, bone imaging is regarded as the target
region of interest, but when there is no bone imaging, soft tissue is regarded as the region
of interest. An appropriate image segmentation method is used to extract the target region
for subsequent registration steps.

In order to avoid the influence of the background region, the image is segmented by
the clustering method. The pixel value of the image is taken as the clustering element, so
that all the points in the image are divided into two categories to achieve the segmentation
of the target area and the background area. Gaussian Mixed model (GMM) is used to
estimate the probability density distribution of the sample, and each Gaussian model
represents a class. GMM (Gaussian mixture model), by the weighted combination of
several Gaussian distribution models, can be used to fit any type of distribution, and this
process can be expressed as follows:

GMM(i) =
j=c

∑
j=1

ϕj
1√
2πσ

× exp

[
−
(
h(i)− uj

)2

2σj
2

]
(5)

where C represents the number of Gaussian distributions, h(i) represents the gray value of
the pixel point, ϕj represents the weight of the j Gaussian distribution, uj and σ2

j represent
the mean and variance of the Gaussian distribution.

The maximum expectation (EM) algorithm is used to estimate the parameters of
each Gaussian function, and the segmentation of foreground and background regions
is completed. It is a kind of optimization algorithm for maximum likelihood estimation
through iteration, which consists of alternating Expectation-step and Maximization-step.
Expectation-step calculates the expectation of the implicit variable based on the initial
value of the parameter or the model parameters of the last iteration, which is expressed as:

Qi(z(i)) := p(z(i)
∣∣∣ x(i); θ) (6)

Maximization-step maximizes the likelihood function to obtain the new parameter
value, which is expressed as:

θ := arg max
θ

∑
i

∑
z(i)

Qi(z(i)) log
p(x(i), z(i); θ)

Qi(z(i))
(7)

Algorithm 1 summarizes the use of Gaussian mixture model combined with EM
algorithm to segment sequence images.

Algorithm 1 Gaussian mixture model combined with EM algorithm for image segmentation

Input: Original sequence images.
Step1: Initializes the parameters of the GMM uj, σj, πj.
do {
Step2: Calculate the value of the posterior probability per Equation (6).
Step3: Maximize the likelihood function to get the new uj, σj, πj per Equation (7).
} while (The logarithm likelihood function does not converge)
Step4: Pixels are allocated using the maximum posterior probability criterion.
Output: Segmentation results.

Four images were selected from the sequence of images for segmentation, and the
segmentation results are shown in Figure 6.
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Figure 6a,b images without bone areas are shown, and the segmentation method can
accurately extract soft tissue areas. In Figure 6c,d, most of the bone areas can be completely
segmented, and the boundary of the extracted target region was clear and continuous.

3.3. Image Registration

Adjacent image registration is the key to panoramic image generation technology.
Its essence is to find out the position of the corresponding point in the reference image
through a certain matching strategy, and then determine the transformation relationship
between two images. The image registration process in this paper is shown in Figure 7,
which consists of the wavelet transform, spatial transformation, interpolator, similarity
measure, and optimization algorithm.
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3.3.1. Wavelet Transform

Image pyramid is a representation of the multi-scale image. An image pyramid is a
set of images with different resolutions arranged in a pyramid shape. The bottom of the
pyramid is a high-resolution representation of the image, while the top is a low-resolution
approximation. In image registration, the multi-resolution strategy can not only shorten the
registration time, but also reduce the influence of image noise on the registration results [31].
Wavelet transform has the characteristics of multi-resolution and has higher frequency
resolution in the low-frequency part. The Wavelet transform of the two-dimensional image
and the wavelet function is expressed as:

Ws f (a, b) =
∫

R

∫
R

f (x, y)
1
s2 × ψ(

a− x
s

,
b− y

s
)dxdy (8)
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Two-layer wavelet decomposition is performed on the original image, as shown in
Figure 8, to obtain the low-frequency part A1 and other B1 of the image. The low-frequency
part A1 can retain the features of the source image, and then wavelet decomposition is
performed on A1 to form an image pyramid composed of A2, A1, and the original image,
as shown in Figure 9.
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Figure 8. Two-layer wavelet decomposition tree.
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3.3.2. Spatial Transformation

To successfully register two adjacent oral cephalic images X1(a1, b1) and X2(a2 , b2),
the key is to determine the mapping relationship between them: P : (a1, b1)→ (a2, b2) ,
make each point in X1 and X2 correspond one to one, that is, a corresponding point in two
images represents the same position. The image transformation mode can be divided into
local, global, and displacement field. Global transformation means that the transformation
of the whole image can be represented by the same parameters. Different regions in local
transformation can have different parameters. Displacement field transformation shows
that each pixel in the image is independent of parameter conversion.

The global mapping model is adopted in this paper, which is more suitable for auto-
matic registration, which can be defined as follows:

T(x) = A(x− c)+t + c (9)

where A represents matrix, C represents the Center of the image, and T represents trans-
lation. Since the data are taken from the human head model, object deformation is not
involved in the imaging process, that is, the distance and parallel relation of the corre-
sponding points of adjacent images remain unchanged, so the rigid body transformation is
selected as the global transformation model [32]. (x1, y1) is the coordinate before the trans-
formation, and (x2, y2) is the new coordinate after the transformation, and the conversion
format can be described as:[

x2
y2

]
= s
[

cos θ − sin θ
sin θ cosθ

] [
x1
y1

]
+

[
dx
dy

]
(10)

where S is the scaling factor, θ is the rotation angle, and the translation in the x and y
directions are respectively

[
dx dy

]
.

3.3.3. Interpolator

In general, the digital image displays the image through the gray value, and the
discrete pixel coordinates are usually integers, while the pixel coordinates of the image
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to be registered are generally not integers after the spatial transformation. The image
interpolation is used to solve the problem that the pixel point of the image is not integer
after the spatial transformation, and the image pixel value at integer position is obtained
by interpolation. In this paper, a bilinear interpolation algorithm is selected to process the
image. The core idea is shown in Figure 10.
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First, we interpolate the X and Y directions respectively to get two points, R1 and R2,
and then we interpolate the points R1 and R2 to get the value of P, which is expressed as:

f (x, y) = f (0, 0)(1− x)(1− y) + f (1, 0)x(1− y) + f (0, 1)(1− x)y + f (1, 1)xy (11)

where f (x, y) is the value of the interpolated point P, f (0, 0), f (0, 1), f (1, 0) and f (1, 1) are
the values of points Q1, Q2, Q3, and Q4, respectively.

3.3.4. Similarity Measure

The similarity measure is a quantitative measure to indicate the degree of similarity
between the reference image and the image to be registered. The selection of similarity
measure function directly determines the reliability and validity of image registration.
Image registration is to find the optimal parameters to ensure that the similarity or dif-
ference between images to be registered can reach the maximum value, so selecting the
appropriate similarity measurement function is helpful to improve the accuracy of registra-
tion. The most commonly used similarity measures are mutual information, normalized
cross-correlation, and so on. Among them, the normalized cross-correlation has the charac-
teristics of high accuracy and good stability in registration, but it is easily affected by the
irrelevant area in the image during registration.

In this paper, a similarity measurement function based on GMM and Normalized
Cross-Correlation (NCC) for ROI is proposed, which avoids the influence of the irrelevant
background region in registration. GMM-NCC is defined as:

GMM− NCC = −
∑
i,j

〈
Ire fROI (i, j)− Ire fROI , IregROI (i, j)− IregROI

〉2

∑
i,j

∣∣∣Ire fROI (i, j)− Ire fROI

∣∣∣2 ∣∣IregROI (i, j)− IregROI

∣∣2 (12)

where Ire fROI and IregROI
respectively represent the regions of interest of the fixed images

and images to be registered, Ire fROI and IregROI
represent their mean values, i and j are the

coordinates of pixels. When GMM− NCC = 1, it means that the two registered images
are completely unrelated; When GMM− NCC = −1, it means that the registration effect
between two images is the best.

Figure 11a is the measure curve of the classical normalized cross-correlation measure
function, and Figure 11b is the normalized cross-correlation measure curve based on the
GMM proposed. The results show that the measurement function proposed in this paper
has higher accuracy for the same sequence image registration.
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3.3.5. Optimizer

Using the optimization algorithm to optimize the registration parameters can speed
up the search process of parameters and reduce the registration time of sequence images.
At present, the Powell algorithm, conjugate gradient algorithm, simulated annealing
algorithm, and genetic algorithm are widely used [33,34]. The first two algorithms are
local optimization algorithms, which depend on the selection of initial values. Although
the latter two algorithms are global optimization algorithms, the computational process is
complex, and the convergence speed is slow. In summary, the particle swarm optimization
algorithm is adopted in this paper, which is an optimization method based on the swarm
intelligence method and is very suitable for solving the global optimal solution. Suppose
that m particles form a population in an-dimensional space, and the position of the ith
particle is defined as:

xi = (xi1, xi2, . . . , xin) (i = 1, 2, . . . , m) (13)

The current position is substituted into the similarity measure to measure the advan-
tages and disadvantages of the particle position. If it is not optimal, the update of the
particle position is defined as:

x(n + 1) = x(n) + v(n + 1) (14)

where v(n + 1) is the flight speed of the particle at the next update, which is defined as:

v(n + 1) = wv(n) + c1r1(pbest− x(n)) + c2r2(gbest− x(n)) (15)

where v(n) is the current particle’s flight speed, w is the inertial weight, c1 and c2 are the
learning factors, r1 and r2 are the random numbers in the range of (0,1).

Algorithm 2 summarizes the registration process of adjacent sequence images.

Algorithm 2 Image registration algorithm in this paper

Input: Target regions of fixed and to be registered images: R, F.
Step1: Two three-layer image pyramids are formed by wavelet transform of two images: Ri, Fi,
(i = 1, 2, 3).
Step2: registration from low resolution to high resolution registration. i = 3.

for each Ri and Fi i ∈ 1, 2, 3 do
Step3: Fi performs spatial transformation per Equation (9).
Step4: Fi is interpolated after the spatial transformation per Equation (11).
Step5: Ri and Fi measure GMM-NCC per Equation (12).

if the value of GMM-NCC is optimal do
if i = 1 do output final parameters.
else do i = i− 1.

Output the current registration parameters and return to step 3.
else do Optimize using the PSO algorithm and then g return to Step 3.

Output: The displacement parameters
[
dx dy

]
and rotation parameters θ.
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3.4. Image Fusion

Image fusion refers to the process of merging the registration results into a natural
and uniform image according to a specific fusion method under the same scene. It can
retain all the information of the registration image to the maximum extent and is the last
key step in the image stitching process. In the application of image Mosaic, the function of
image fusion is to make the stitching image smooth and natural transition at the boundary
of the overlapping area without damaging the original image quality, and to eliminate the
stitching gap and ghost problems caused by different contrast and exposure.

Firstly, the fixed image and the image to be registered are transformed into a unified
coordinate system, and then the image is transformed according to the displacement
parameters obtained from the image registration. In order to save the computation time
and make the overlapping area more natural, the weighted fusion algorithm is used to deal
with the stitching problem, which is expressed as:

Pixel = kPixel_L + (1− k)Pixel_R (16)

where k is the weighted coefficient, which is defined as k = d1
d1+d2

. d1 and d2 are the
distances from each point to the boundary of the overlapping region, respectively.

4. Result and Discussion

The experiments were operated using python3.7 on a computer with i5-8000CPU and
8 GB RAM. Firstly, the original image sequence is denoised by the BM3D algorithm, and
then the target region of the sequence image is extracted by GMM to remove the influence
of the irrelevant background region in the registration. Furthermore, the GMM-NCC
measure function proposed in this paper is optimized by combining the multi-resolution
strategy based on wavelet variation with the particle swarm optimization algorithm, and
the optimal registration parameters are output. Finally, the overlapping area is processed
by image fusion.

The image data we used are from the imaging of a human head model. The sequence
of images consists of 480 images, each of which has a size of 2320 (height) × 60 (width)
pixels and 65,536 grey levels.

Before image registration, we used BM3D algorithm to remove quantum noise and im-
pulse noise of all original sequence images. As shown in Figure 12, the BM3D algorithm can
well remove the noise in the original image and avoid the impact on the subsequent steps.
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The essence of image registration is the problem of parameter optimization. In order
to verify the accuracy of the registration algorithm in this paper, a group of adjacent images
in the image sequence are selected to measure their real displacement parameters using
image software, and the algorithm in this paper is compared with three different algorithms
for registration. In order to avoid the randomness of single registration, it is assumed
that k ∈ [1, 50], and the registration parameter xk in the x direction is selected, and the
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registration error is defined as error = x− xk. k is taken as the abscissa and k as the ordinate
to draw a registration error statistical graph, as shown in Figure 13.
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Figure 13 shows the statistical chart of registration error comparison between the
proposed method and the three different algorithms. As shown in Figure 11a, Yuan
Huang et al. [35] used the Normalized Cross-Correlation algorithm to register adjacent
images, the fluctuation range of registration error is [8, −6]. As shown in Figure 11b,
Xiaoping Liu et al. [36] combined local self-similarity and mutual information (LSS-MI)
to register multi-sensor images and the fluctuation range of registration error is [6, −6].
As shown in Figure 11b, Yang H et al. [37] proposed a registration method combining
SIFT feature-based and phase correlation, and the fluctuation range of registration error
is [4, −3]. The proposed algorithm is more stable in the registration process. Compared
with the other three methods, the fluctuation range is [1, −1], and the registration accuracy
reaches the sub-pixel level, which is closer to the real displacement parameters.

In order to directly observe the influence of registration error on image Mosaic,
Figure 14a,b is selected to adopt the above registration method for image stitching. The
same position of the two images is marked with red dots. Figure 14c,d and Figure 14e are
respectively the panoramic images obtained by the above three registration algorithms, and
it can be seen that the marking points do not overlap. Figure 14f is the panoramic image of
the registration method in this paper, and the overlap of the marking points indicates that
the estimation of registration parameters is accurate.
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As shown in Figure 15a, the continuous stitching strategy was adopted in this paper
to complete the stitching of 480 original sequence images. Figure 15b is an image of the
anterior part of the skull obtained from serial image stitching, which is mainly used for the
diagnosis and postoperative evaluation of oral deformity. Figure 15c is a stitching image
of the posterior portion of the skull, which is used to diagnose the spine. Figure 15b,c
obtained the final cranial lateral panoramic image of the oral cavity through a round
of stitching.
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In order to verify the excellent ability of the algorithm in this paper to stitching images
of lateral cranial sequences, we compared it with three different stitching methods. The
stitching results of the algorithm in this paper are shown in Figure 16a; panoramic images
have no stitching gaps and ghosts and the information remains intact during the stitching
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process. Ref. [38] uses SIFT to extract features for stitching, resulting in information loss
in boneless areas of lateral cranial images, as shown in Figure 16b. Ref. [39] uses the
combination of normalized cross-correlation and threshold method to stitching the image,
but there was much false stitching and ghosting in the complex texture area, as shown in
Figure 16c. Ref. [14] uses the strategy of SIFT combined with mutual information (SIFT-
MI) to make up for the shortcoming of failing to extract feature points, however there
are obvious ghosts and stitching gaps in some areas, as shown in Figure 16d. Ref. [40]
uses an improved phase correlation (PC) algorithm and weighted blending to generate
panoramic images, and there are a lot of information missing and stitching errors in the
image, as shown in Figure 16e. Ref. [41] uses a new and improved algorithm based on
the Accelerated KAZE (A-KAZE) Features, and there are significant stitching errors in the
cervical stitching of the image, as shown in Figure 16f.
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The performance of the proposed algorithm can be measured more objectively by
using image quality evaluation parameters. The entropy value can determine the informa-
tion amount in the image. For the same data source, the larger the entropy value of the
Mosaic image is, the more complete the retained information will be, and the better the
performance of the Mosaic algorithm will be, which can be expressed as:

IE(x) = −
n

∑
i=1

P(ai) ∗ log P(ai) (17)

The standard deviation reflects the degree of dispersion between the pixel value of the
image and the mean value. The higher the standard deviation, the better the image quality,
which can be expressed as:

SD =

√√√√ 1
M× N

M

∑
i=1

N

∑
j=1

(P(i, j)− u)2 (18)

The average gradient represents the average value of gray scale transformation, re-
flecting the clarity of the stitching image. The larger the value is, the more obvious the
detail of the image is, and the clearer the image is, which is expressed as:

AG =
1

(Mr − 1)(Nc − 1)

Mr−1

∑
i=1

Nc−1

∑
j=1

√
1
2
[(h(i, j)− h(i + 1, j))2 + (h(i, j)− h(i, j + 1))2] (19)

For continuous stitching of sequence images, the success rate is also an important
index to measure the algorithm, which represents the stability of the algorithm in practical
application. Five algorithms were used to conduct 100 stitching experiments on the
sequential images, and the stitching success rate of lateral cephalic panorama could be
obtained statistically.

Through the above discussion, it is obvious that the stitching algorithm proposed
in this paper can complete the continuous stitching of dental lateral cephalic sequence
images. The image quality evaluation results obtained are shown in Table 1. Compared
with the other Five algorithms, although the running time of the algorithm in this paper
is slightly longer than that of some algorithms, the image quality after stitching is better.
The maximum information entropy of the method in this paper indicates that the retained
information is the most complete. The maximum standard deviation and evaluation gray
value indicate that the brightness transformation of the image obtained by the algorithm in
this paper is uniform and the image details remain intact. The success rate of the proposed
algorithm in this article is higher than that of other algorithms, which indicates that the
proposed algorithm has good stability.

Table 1. Different stitching algorithms quality evaluation parameters.

Methods IE SD AG Time Success Rate

SIFT-PSI 5.0631 42.0415 1.4327 78.6542 s 68%
NCC 6.0254 73.1553 1.4493 106.0612 s 73%

SIFT-NMI 6.0554 68.0053 1.557 83.5381 s 78%
PC 4.1567 40.2985 1.3645 97.9457 s 76%

A-KAZE 5.9683 67.8642 1.4765 62.2938 s 59%
This article 6.1711 74.6245 1.6913 98.3258 s 98%

In X-ray imaging, the higher the density of the tissue, the more obvious the absorption
of X-rays. In order to make the images more detailed for clinical diagnosis, therefore
we need to reverse color manipulation of the stitching panoramic image, as shown in
Figure 17.
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5. Conclusions

In the field of image stitching, image registration and image fusion have a great
influence on the stitching result. Image stitching methods are mainly based on feature
extraction or intensity information. The deep learning method has achieved a good result
in feature extraction, and due to the limitations of the part of the imaging area and lack of
annotated dataset of lateral cephalogram, continuous stitching of the sequence images is
difficult. The methods of NCC and NMI algorithms based on intensity information have
low stitching accuracy for small size X-ray images with high dynamic range, and it is easy
to appear stitching gaps and ghosts.

This paper makes improvements from the perspective of image registration; the BM3D
algorithm is used to remove the impact of quantum noise and impulse noise of the origi-
nal X-ray image and innovatively proposes the normalized cross-correlation registration
method of ROI based on GMM segmentation, while the irrelevant background region is re-
moved successfully. The multi-resolution strategy based on wavelet decomposition realizes
accurate registration from low resolution to high resolution, and PSO is used to optimize
the displacement parameters. After the image registration, the adjacent images are fused
by combining the distance between the pixel points and the boundary of the overlapping
region. Panoramic images of the lateral dental skull were obtained after successive rounds
of stitching. Compared with other methods, the stitching panoramic image performed
better in both subjective visual and objective evaluation., the image information remains
intact during the stitching process, the image details are clear, and there are no stitching
gaps and ghosts. The experimental results show that the proposed algorithm can complete
continuous stitching of sequential images, which is of great significance for lateral cephalic
imaging based on multifunctional dental CBCT.
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