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ABSTRACT

Chromatin is a tightly packaged structure of DNA and
protein within the nucleus of a cell. The arrangement
of different protein complexes along the DNA modu-
lates and is modulated by gene expression. Measur-
ing the binding locations and occupancy levels of dif-
ferent transcription factors (TFs) and nucleosomes is
therefore crucial to understanding gene regulation.
Antibody-based methods for assaying chromatin oc-
cupancy are capable of identifying the binding sites
of specific DNA binding factors, but only one fac-
tor at a time. In contrast, epigenomic accessibility
data like MNase-seq, DNase-seq, and ATAC-seq pro-
vide insight into the chromatin landscape of all fac-
tors bound along the genome, but with little insight
into the identities of those factors. Here, we present
RoboCOP, a multivariate state space model that inte-
grates chromatin accessibility data with nucleotide
sequence to jointly compute genome-wide proba-
bilistic scores of nucleosome and TF occupancy,
for hundreds of different factors. We apply Robo-
COP to MNase-seq and ATAC-seq data to elucidate
the protein-binding landscape of nucleosomes and
150 TFs across the yeast genome, and show that our
model makes better predictions than existing meth-
ods. We also compute a chromatin occupancy profile
of the yeast genome under cadmium stress, reveal-
ing chromatin dynamics associated with transcrip-
tional regulation.

INTRODUCTION

The chromatin of a cell consists of the genome and all
the proteins and protein complexes arrayed along it. The

ensemble of potential arrangements of proteins along the
genome is combinatorially vast, but the specific configura-
tion of the chromatin within each cell determines whether
and to what extent its various genes are expressed. There-
fore, deciphering the chromatin landscape––which proteins
are bound at every position in the genome––is crucial to de-
veloping a more mechanistic and predictive understanding
of gene regulation.

Two important types of DNA binding factors (DBFs)
are transcription factors (TFs) and nucleosomes. TFs are
gene regulatory proteins that activate or repress the tran-
scription of genes by binding with specific sequence pref-
erences to sites along the DNA. Nucleosomes form when
147 base pairs of DNA are wrapped around an octamer of
histone proteins. They have lower sequence specificity than
TFs, but still exhibit a preference for a periodic arrangement
of dinucleotides that facilitates DNA wrapping (1). Likened
to beads on a string, nucleosomes are positioned fairly reg-
ularly along the DNA, occupying about 81% of the genome
in the case of the yeast Saccharomyces cerevisiae (2). In tak-
ing up their respective positions, nucleosomes contribute
to the regulation of gene expression in part by allowing or
blocking TFs from occupying their putative binding sites.
Useful models of the chromatin landscape must therefore
be able to simultaneously represent and reason about many
DBFs at once, and must explicitly account for the way they
compete with one another to bind the genome.

The binding locations of DBFs have been assayed ex-
tensively at high resolution with antibody-based methods
(3–5). However, these methods are limited to assaying only
one particular factor at a time, and require a separate anti-
body for each factor. Consequently, using this approach to
identify the binding locations of myriad different DBFs is
extremely expensive and laborious, especially if we are in-
terested in studying how the chromatin landscape changes
dynamically across time or in response to changing environ-
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mental conditions. In such scenarios, antibody-based meth-
ods are often used to assay a small number of important
histone modifications. Computational algorithms are of-
ten employed to integrate these datasets and segment the
genome into broad ‘epigenomic states’ that may be asso-
ciated with larger regulatory loci like promoters and en-
hancers (6–9).

In contrast to antibody-based methods, chromatin acces-
sibility assays probe unoccupied, or open, regions of the
chromatin, thereby providing indirect information about
the genomic regions occupied by bound proteins. Chro-
matin accessibility data can be generated in a few different
ways, including enzymatic cleavage (DNase-seq), enzymatic
digestion (MNase-seq), or transposon insertion (ATAC-
seq). Here, we consider the latter two. In MNase-seq, the
endo-exonuclease MNase is used to digest unbound DNA,
leaving behind fragments of bound DNA. In ATAC-seq, the
transposase Tn5 is loaded with adapters and used to cleave
and tag unbound DNA, yielding fragments of DNA whose
ends were unbound. In either case, paired-end sequencing
of the resulting fragments reveals not only their location but
also their length, providing information about the length
of protein-bound sites throughout the genome. MNase-seq
and ATAC-seq have primarily been used to study nucleo-
some positioning (2,10–14) and identify accessible regula-
tory regions (15), respectively. However, recent experiments
have demonstrated that MNase-seq can be used to identify
some TFs (16–19) and ATAC-seq to study some nucleo-
some positions (20). We set out to explore whether a suf-
ficiently sophisticated computational model might be able
to leverage these data to produce a chromatin occupancy
profile at every position in the genome, revealing the precise
binding locations for numerous different DBFs at once.

In earlier work, we developed COMPETE to compute
a probabilistic landscape of DBF occupancy along the
genome (21). COMPETE considers DBFs binding to the
genome from the perspective of a thermodynamic ensemble,
where the DBFs are in continual competition to occupy lo-
cations along the genome and their chances of binding are
affected by their concentrations, akin to a repeated game
of ‘musical chairs’. COMPETE output depends only on
genome sequence (which is static) and DBF concentrations
(which may be dynamic); it does not utilize experimental
data, so its predictions of the chromatin landscape are en-
tirely theoretical. We later developed a modified version of
COMPETE to estimate DBF concentrations by maximiz-
ing the correlation between the output of COMPETE’s the-
oretical model and an MNase-seq signal, improving the re-
ported binding landscape (22). However, this modified ver-
sion still does not incorporate chromatin accessibility data
directly into the underlying probabilistic model.

Here, we present RoboCOP (robotic chromatin
occupancy profiler), a new method that takes nucleotide
sequence and chromatin accessibility data as input and then
uses a multivariate hidden Markov model (HMM) (23) to
compute a probabilistic occupancy landscape of hundreds
of DBFs genome-wide at single-nucleotide resolution. We
demonstrate that RoboCOP can use chromatin accessi-
bility data generated from paired-end MNase-seq and/or
ATAC-seq experiments to compute a chromatin occupancy
profile of 150 TFs and nucleosomes across the Saccha-

romyces cerevisiae genome. We validate its nucleosome
positioning predictions using high-precision annotations
resulting from a chemical cleavage method (24), and its
TF binding site predictions using annotations reported
by ChIP-chip (25), ChIP-exo (5), and ORGANIC (26)
experiments. Because ATAC-seq fragments occur primarily
in regions of open chromatin, the chromatin occupancy
profiles learned by RoboCOP from ATAC-seq data alone
are generally informative only in those regions. In contrast,
MNase-seq fragments are distributed more evenly across
the genome, and as a result, can be used to generate
chromatin occupancy profiles genome-wide. RoboCOP is
the first method for using MNase-seq data to elucidate
the chromatin landscape of the entire genome, and can
be used to study how chromatin responds dynamically to
changing environmental conditions, as we demonstrate by
revealing the genome-wide chromatin landscape of yeast
under cadmium stress.

MATERIALS AND METHODS

MNase-seq fragments of different lengths provide informa-
tion about different kinds of DNA binding factors

Our high-resolution paired-end MNase-seq data can be
plotted in two dimensions by representing every fragment
as a point, whose x-coordinate is the genomic location of
its midpoint and whose y-coordinate is its length, thereby
capturing both the fragment length and location distribu-
tions at single base pair resolution. As can be seen from the
region in Figure 1A, gene bodies mostly contain fragments
about 150 bases long, corresponding to nucleosomes. Pro-
moter regions contain shorter fragments, often associated
with TF binding sites. Each of the two promoter regions in
Figure 1A has an annotated Abf1 binding site (25) that can
explain the enrichment of short fragments nearby.

Since the degree of MNase digestion can influence
the fragment length distribution (27,28), we plotted the
MNase-seq fragments around transcription start sites
(TSSs) to get an estimate of the length of the fragments
corresponding to nucleosomes and TF binding sites (Fig-
ure 1C). We find that fragments of length 157 have the high-
est frequency (left panel of Figure 1C). Given that nucleo-
somes are about this size and occupy about 81% of the yeast
genome (2), fragments of this length generally correspond
to nucleosomes. We denote all fragments whose length is
157 ± 30 to be nucleosomal fragments, or nucFrags for
short. The midpoints of nucFrags are depicted in red
dots in Figure 1A. As expected, these nucFrags occur
in tandem arrays within gene bodies but are generally ab-
sent from promoters (Figure 1A,C). Fragments are partic-
ularly concentrated at the +1 nucleosome position in Fig-
ure 1C, just downstream of the TSS, because the +1 nucleo-
some is usually well-positioned. Furthermore, the marginal
density of the midpoints of these fragments around anno-
tated nucleosome dyads (24) peaks precisely at the dyad
(the central nucleotide position of the nucleosome, through
which is an axis of symmetry for the nucleosome in 3D),
with counts dropping nearly symmetrically in either direc-
tion (Figure 1D). This makes sense because MNase di-
gests linker regions, leaving behind undigested DNA frag-
ments wrapped around histone octamers. So the midpoint
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Figure 1. Paired-end MNase-seq data is informative about the binding of both nucleosomes and smaller DBFs, such as transcription factors. (A) Two-
dimensional plot of MNase-seq fragments from positions 60,000 to 65,000 of yeast chromosome I. Each fragment is plotted based on its length (y-axis)
and the genomic location of its midpoint (x-axis). Nucleosome-sized fragments (nucFrags, length 157±30) are colored red, while shorter fragments
corresponding to smaller proteins (shortFrags, length ≤ 80) are colored blue. Above the plot are genomic annotations for this region, with Watson
strand genes depicted as green arrows and Crick strand genes as orange. Below the gene annotations, known TF binding sites (25) are indicated using
triangles. This region contains two annotated binding sites for Abf1 (pink). (B) Aggregate numbers of red and blue dots at each genomic position in
(A), resulting in the one-dimensional nucFrags and shortFrags signals, respectively. (C) Composite heatmap of MNase-seq fragments around all
yeast genes, centered on each gene’s TSS. Panels along the side and bottom show marginal densities. The side panel shows that nucFrags predominate,
consistent with the fact that over 80% of the yeast genome is occupied by nucleosomes (2), but the bottom panel clarifies that nucFrags and shortFrags
are positioned differently with respect to genes. nucFrags appear in tandem arrays within gene bodies, with particularly strong enrichment (deep red)
at +1 nucleosomes just downstream of the TSS. In contrast, shortFrags are enriched in the nucleosome-free promoter region just upstream of the
TSS. (D) Composite heatmap of MNase-seq fragments around the 2,000 most well-positioned nucleosomes in the yeast genome (24), centered on each
nucleosome’s dyad. The nucFrags signal peaks precisely at the dyad and decreases symmetrically in either direction. (E) Composite heatmap of MNase-
seq fragments around all annotated Abf1 binding sites (25) in the yeast genome, centered on each site’s motif. Note the clear enrichment of shortFrags
near Abf1 sites.

counts of these nucFrags would be highest at the anno-
tated dyads and decrease on moving away from the dyad.

In addition, it has been shown that shorter fragments
in MNase-seq provide information about TF binding sites
(16). To verify that we see this signal in our data, both the
composite plot in Figure 1C and the genomic region in
Figure 1A reveal that promoter regions are enriched with
shorter fragments. The promoter region is often bound by
specific and general TFs that aid in the transcription of
genes. To ensure that the MNase-seq signal in these pro-
moter regions is not just noise, we plot the MNase-seq mid-
points around a set of annotated TF binding sites (Fig-
ure 1E). We choose the well-studied TF, Abf1, because it
has multiple annotated binding sites across the genome. On
plotting the MNase-seq midpoint counts around these an-
notated binding sites, we notice a clear enrichment of short
fragments at the binding sites. We denote these short frag-
ments of length less than 80 as shortFrags. The mid-

points of shortFrags are plotted as blue dots in Fig-
ure 1A. Unlike the midpoint counts of the nucFrags
which have a symmetrically decreasing shape around the
nucleosome dyads (Figure 1D), the midpoint counts of
shortFrags are more uniformly distributed within the
binding site (Figure 1E). The shortFrags signal at the
Abf1 binding sites is noisier than the MNase signal associ-
ated with nucleosomes. One reason for this increased noise
is that fragments protected from digestion by bound TFs
may be quite small, and the smallest fragments (of length
less than 27 in our case) are not even present in the dataset
due to sequencing and alignment limitations.

We ignore fragments of intermediate length (81–126) in
our analysis, though these could provide information about
other kinds of complexes along the genome, like hexasomes
(29). Such factors would also be important for a complete
understanding of the chromatin landscape, but we limit our
analysis here to studying the occupancy of nucleosomes and
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TFs. For the subsequent sections of this paper, we only con-
sider the midpoint counts of nucFrags and shortFrags
as depicted in red and blue respectively in Figure 1A. We
further simplify the two-dimensional plot in Figure 1A to
form two one-dimensional signals by separately aggregat-
ing the midpoint counts of nucFrags and shortFrags,
as shown in Figure 1B.

ATAC-seq fragments provide similar information near re-
gions of open chromatin

To understand whether paired-end ATAC-seq provides sim-
ilar information, we studied the midpoint distribution of
ATAC-seq fragments (20) in the same genomic region (Sup-
plementary Figure S1A). Because the Tn5 insertion into the
genome is offset by 4 bp (15), we decreased the length of
all ATAC-seq fragments by 8 bp in our analyses. Owing to
the nature of the ATAC-seq protocol, most fragments map
within and adjacent to nucleosome-depleted promoter re-
gions; the signal becomes quite sparse away from these re-
gions (Supplementary Figure S1B). We confirm this by ex-
amining the aggregate ATAC-seq signal at all yeast genes
and find that even the nucleosomal signal weakens beyond
the +1 nucleosome within the gene body (Supplementary
Figure S1C). Aggregate ATAC-seq signal around annotated
nucleosome positions (Supplementary Figure S1D) looks
similar in character to MNase-seq; the signal is strongest
when we consider fragments of length 135–200, so we use
this range for nucFrags in ATAC-seq data. Aggregate
ATAC-seq signal around annotated Abf1 binding sites ex-
hibits a very strong shortFrags signal (Supplementary
Figure S1E), although the shortFrags peak with ATAC-
seq is a bit broader than with MNase-seq (Supplemen-
tary Figure S2), likely because the exonuclease activity of
MNase allows it to digest unoccupied DNA beyond its site
of initial cleavage.

RoboCOP model structure and transition probabilities

RoboCOP is a multivariate hidden Markov model (HMM)
for jointly computing genome-wide chromatin occupancy
profiles using nucleotide sequence and chromatin accessi-
bility data as observables (Figure 2). The HMM structure
has been adapted from (21). Let the number of TFs be K.
Let π1, . . . ,π K denote the models for the K TFs, and let
π K+1 denote the model for nucleosomes. To simplify nota-
tion, we consider an unbound DNA nucleotide to be oc-
cupied by a special ‘empty’ DBF (22); suggestively, let π0
denote this model. Therefore, we have K + 2 DBF models
in total, and we use a central non-emitting (‘silent’) state
to simplify transitions among them. The HMM may tran-
sition from this central silent state to any one of the K + 2
DBF models; at the end of each DBF model, the HMM al-
ways transitions back to the central silent state (Figure 2B,
Supplementary Figure S3). This approach assumes DBFs
bind independently of their neighbors, and each DBF there-
fore has just a single transition probability associated with
it. The transition probabilities from the central state to the
various DBFs are denoted as {�0, . . . , �K + 1}.

Each genome coordinate is represented by one hidden
state in the HMM. An unbound DNA nucleotide is length

one, so its model π0 has just a single hidden state. The other
DBFs (nucleosomes and TFs) have binding sites of greater
length and are thus modeled using collections of multiple
hidden states. For TF k with a binding site of length Lk,
the HMM either transitions through Lk hidden states of
its binding motif or Lk hidden states of the reverse com-
plement of its binding motif. An additional non-emitting
state is added as the first hidden state of the TF model πk,
allowing the HMM to transition through the forward or re-
verse complement of the motif with equal probability (Sup-
plementary Figure S4A). The complete TF model πk there-
fore has a total of 2Lk + 1 hidden states. Once the HMM
enters the hidden states for either the forward or reverse
motif, it transitions through the sequence of hidden states
with probability one between consecutive hidden states. On
reaching the final hidden state of either motif, the HMM
transitions back to the central silent state with probability
one. Likewise, once the HMM enters the nucleosome model
π K+1, it transitions through a sequence of hidden states
corresponding to 147 nucleotides, after which it transitions
back to the central silent state (Supplementary Figure S4B).
The nucleosome model differs from the TF models in that
the latter are modeled with simple PWM motifs, while the
former is implemented using a dinucleotide sequence speci-
ficity model.

Suppose the sequence of hidden states for the entire
genome of length G is denoted as z1, . . . , zG . Then the tran-
sition probabilities satisfy the following:

• P(zg+1 = πk,l+1 | zg = πk,l ) = 1 whenever l < Lk. Within
a DBF, the HMM only transitions to that DBF’s next
state and not any other state, until it reaches the end of
the DBF.

• P(zg+1 = πk1,1 | zg = πk2,Lk2
) = αk1 for all k1 and k2. The

transition probability to the first state of a DBF is a con-
stant, independent of which DBF the HMM visited pre-
viously.

• P(zg+1 | zg) = 0 for all other cases.

The HMM always starts in the central silent state with
probability one; this guarantees that it cannot start in the
middle of a DBF.

RoboCOP emission probabilities

The HMM employed by RoboCOP is multivariate, mean-
ing that each hidden state is responsible for emitting mul-
tiple observables per position in the genome (Figure 2C).
In our case, these observables are modeled as independent,
conditioned on the hidden state, but adding dependence
would be straightforward. The structure of RoboCOP is
flexible enough to allow any combination of chromatin ac-
cessibility data to be used as input. In this paper, we apply
it to combinations of paired-end MNase-seq and paired-
end ATAC-seq data. So for a genome of length G, the se-
quences of observables being explained by the model are:
(i) nucleotide sequence {s1, . . . , sG}, (ii) midpoint counts of
MNase-seq and/or ATAC-seq nucFrags {l1, j, . . . , lG, j},
and (iii) midpoint counts of MNase-seq and/or ATAC-
seq shortFrags {m1, j, . . . , mG, j}. Here, j indexes over
the chromatin accessibility datasets provided as input. So if
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Figure 2. RoboCOP takes various inputs (blue arrows) and produces as output (pink arrow) a chromatin occupancy profile providing quantitative estimates
of occupancy for the specified collection of DBFs. The underlying genomic sequence (A) and the collection of DBFs and their sequence specificity models
(B) are provided as input to the RoboCOP model (C), along with the nucFrags and shortFrags signals that result from aggregation of MNase-
seq/ATAC-seq fragment midpoint counts (D). (B) The state transition matrix for the HMM is simplified by the inclusion of a central, non-emitting
silent state; from this state, the model can transition to any DBF, after which it necessarily transitions back to the central silent state, thereby removing
dependencies among the DBFs. (C) RoboCOP is a multivariate HMM where the hidden state zi at genomic position i emits a nucleotide (si), and for each
chromatin accessibility dataset input, j, a nucFrags count (li, j), and a shortFrags count (mi, j). (E) RoboCOP performs posterior decoding and yields
the probability of each DBF at every position in the genome. The score on the y-axis is the probability of that location being bound by a given DBF.

RoboCOP is run with both MNase-seq and ATAC-seq, we
would have two sets of nucFrags and two sets of short-
Frags observed at each position in the genome.

For any position g in the genome, the hidden state zg is
thus responsible for emitting a nucleotide sg, and for each
of the chromatin accessibility datasets, j, a number lg, j of
midpoints of nucFrags, and a number mg, j of midpoints
of shortFrags (Figure 2C). Since these observations are
independent of one another given the hidden state zg, each
hidden state has an emission model for each of the observ-
ables, and the joint probability of the multivariate emission
is the product of the emission probabilities of all the observ-
ables.

For the hidden states corresponding to the TF models
π1, . . . ,π K , emission probabilities for nucleotide sequences
are represented using PWMs. For each of our 150 TFs, we
use the PWM of its primary motif reported in (30) (except
for Rap1, where we use the more detailed motifs in (5)). For
the nucleosome model π K+1, the emission probability for a
nucleotide sequence of length 147 can be represented using a
position-specific dinucleotide model (31). To represent this
dinucleotide model, the number of hidden states in π K+1 is
roughly 4 × 147. We use the same dinucleotide model that
was used earlier in COMPETE (21).

To simplify the model description in what follows, with-
out loss of generality, let us suppose that the model is
run with MNase-seq alone. As described earlier, the two-
dimensional MNase-seq data are transformed into two one-
dimensional signals (Figure 2D); the midpoint counts of
nucFrags primarily influence the learned nucleosome po-

sitions and the midpoint counts of shortFrags primar-
ily influence the learned TF binding sites. In both cases,
a negative binomial (NB) distribution is used to model
the emission probabilities. We use two sets of NB dis-
tributions to model the midpoint counts of nucFrags.
One distribution, NB (μnuc, φnuc), explains the counts of
nucFrags at the nucleosome positions and another dis-
tribution, NB (μlb , φlb ), explains the counts of nucFrags
elsewhere in the genome. Since the midpoint counts of
nucFrags within a nucleosome are not uniform (Fig-
ure 1B), we model each of the 147 positions separately.
To obtain μnuc and φnuc, we collect the midpoint counts of
nucFrags in a window of size 147 centered on the anno-
tated nucleosome dyads of the 2,000 most well-positioned
nucleosomes (24) and estimate 147 NB distributions using
maximum likelihood estimation (MLE). The 147 estimated
values of μ are denoted as μnuc. The mean of the 147 esti-
mated values of φ is denoted as φnuc (shared across all 147
positions). Quantile-quantile plots show the resulting NB
distributions to be a good fit (Supplementary Figure S5).
As for NB (μlb , φlb ), we use MLE to estimate its parameters
from the midpoint counts of nucFrags within the linker
regions on both sides of the same set of 2,000 nucleosomes.
For this purpose, we considered linkers to be 15 bases long
(32).

Similarly, we model the midpoint counts of short-
Frags using two distributions where one of them,
NB (μTF, φTF), explains the counts of shortFrags within
TF binding sites, while the other, NB (μmb , φmb ), ex-
plains counts elsewhere. To estimate the parameters of
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NB (μTF, φTF), we collect the midpoint counts of short-
Frags within annotated Abf1 and Reb1 binding sites (25)
and fit the NB distribution using MLE. A quantile-quantile
plot again shows the NB distribution provides a good fit
(Supplementary Figure S6). We chose Abf1 and Reb1 for
fitting the distribution because these TFs have many bind-
ing sites in the genome and the binding sites are often less
noisy compared to those of other TFs. For parameterizing
NB (μmb , φmb ), we collect the midpoint counts of short-
Frags within the same linker regions used earlier and esti-
mate the NB distribution using MLE.

When we use multiple chromatin accessibility datasets as
input, we fit separate negative binomial distributions for the
nucFrags and shortFrags signals of each. We denote
the model run with MNase-seq alone as RoboCOPMNase,
the model run with ATAC-seq alone as RoboCOPATAC,
and the model run with both MNase-seq and ATAC-seq
as RoboCOPMNase+ATAC.

RoboCOP transition probability updates

Within each single DBF model, the transition probabilities
between hidden states can only be zero or one (except for
the two transition probabilities from each TF model’s first,
non-emitting state to the first state of either its forward or
reverse motif; these are fixed at 0.5). Consequently, the only
transition probabilities we need to learn are {�0, . . . , �K + 1},
those from the central silent state to the first state of each
DBF (Supplementary Figure S3). Our approach is to ini-
tialize these to sensible values, and then optimize them us-
ing Baum-Welch, which is guaranteed to converge to a local
maximum of the model’s likelihood.

To initialize the transition probabilities {�0, . . . , �K + 1},
we first assign a non-negative concentration or ‘weight’ to
each DBF. Let the weight for DBF i be denoted wi. Follow-
ing previous work (21,22), we assign weight w0 = 1 to the
‘empty’ DBF (representing an unbound DNA nucleotide)
and wK + 1 = 35 to the nucleosome. To each TF k ∈ {1, . . . ,
K}, we assign a weight wk which is that TF’s estimated dis-
sociation constant Kd (or alternatively, a multiple thereof:
8Kd, 16Kd, 32Kd, or 64Kd), which can be calculated from its
PWM (21,33).

To convert these weights into transition probabilities {�0,
. . . , �K + 1}, we need to account for the fact that the weights
are contributing to a Boltzmann distribution that is being
normalized by a partition function. Because of the parti-
tion function, preserving an identical Boltzmann distribu-
tion while rescaling the weights requires that the weight for
each DBF be rescaled by an amount that accounts for its
length. Specifically, for any choice of positive constant c,
the weight of DBF k must be rescaled by cLk , where Lk is its
length, from as little as 1 for an unbound nucleotide (k = 0)
to 147 for a nucleosome (k = K + 1). Maintaining this prop-
erty for all DBFs preserves the Boltzmann distribution.

Since L0 = 1 and w0 = 1, it follows from the above dis-
cussion that αk = wkα

Lk
0 . Since {�0, . . . , �K + 1} are a set of

probabilities, it must also be the case that they sum to 1:

1 =
K+1∑
k=0

αk =
K+1∑
k=0

wk · α
Lk
0

Finally, because we know all the values of wk and Lk, we are
left with an expression in just one unknown, �0. We can eas-
ily solve for �0, and then use it and the relationship above to
compute the transition probabilities of all the other DBFs.

After initializing the transition probabilities as described
above, we iteratively update them using Baum-Welch until
convergence to a local optimum of the likelihood. To update
�k, we compute:

αk =
∑G

g=1 P(πk,1 | θ∗, s, l, m)
∑K+1

k′=0

∑G
g=1 P(πk′,1 | θ∗, s, l, m)

Here, θ∗ represents all the model parameters. We find the
likelihood converges within ten iterations (Supplementary
Figure S7) and the optimized transition probabilities for
each DBF almost always converge to the same final values
regardless of how we initialize the weights (Supplementary
Figure S8). We find convergence is faster for most DBFs
when we initialize TF weights to Kd rather than multiples
thereof (Supplementary Figure S8).

We find that transition probabilities for a few TFs with
AT-rich motifs like Azf1 and Smp1 can grow quite large,
resulting in a large number of binding sites in the genome,
most of which are potential false positives. To curb the num-
ber of binding site predictions for such TFs, we apply a
threshold on TF transition probabilities. The threshold δ is
chosen to be two standard deviations above the mean of the
initial transition probabilities of all the TFs (Supplementary
Figure S9). Therefore, after the Baum-Welch step in every
iteration, an additional modified Baum-Welch step is com-
puted as follows:

αk =

⎧⎪⎪⎨
⎪⎪⎩

(1 − nδ)

G∑
g=1

P(πk,1 | θ∗,s,l,m)

∑K+1
k′=0,αk′ <δ

G∑
g=1

P(πk′ ,1 | θ∗,s,l,m)
, if αk < δ

δ, otherwise

where n is the number of TFs that have a transition prob-
ability more than δ. So, for all the TFs whose transition
probabilities would be more than δ, they are instead set
to δ, and the remaining DBFs (including the nucleosome
and unbound state) have a regular Baum-Welch update of
their transition probabilities. We find that this approach re-
duces the number of false positives (Supplementary Fig-
ure S10). An alternative mechanism might be to use an in-
formed prior, in situations where prior information is avail-
able.

Implementation of posterior decoding

RoboCOP employs posterior decoding to infer probabilis-
tic occupancy profiles of protein-DNA binding. The moti-
vation behind posterior decoding is that it represents the
thermodynamic ensemble of potential binding configura-
tions; the resulting probability distribution sheds light on
the many different ways proteins may be bound to the
genome across a cell population (applying Viterbi decod-
ing would not provide a probabilistic landscape, but only a
single, most likely chromatin configuration). The resulting
posterior probability of each DBF at each position in the
genome provides a probabilistic profile of DBF occupancy
at base-pair resolution (Figure 2E).
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As a multivariate HMM, RoboCOP has a time com-
plexity of O(GN2) and a space complexity of O(GN) (for
a genome of length G and where N denotes the total num-
ber of hidden states). The high complexity makes it difficult
to decode the entire genome at once. To reduce the compu-
tational complexity of RoboCOP, we perform posterior de-
coding separately on blocks of the genome of length 5,000,
with an overlap of 1,000 bases, and stitch results together.
This ensures that the model has a sufficiently long sequence
to learn an accurate chromatin landscape, but not so long
that we run out of memory. In addition, we use only the
longest chromosome (chrIV in yeast) to train DBF tran-
sition probabilities with Baum-Welch, and then undertake
posterior decoding genome-wide.

Validation of TF and nucleosome predictions

Using the MNase-seq and ATAC-seq datasets, we ran
RoboCOP three times, each time with three different
set of inputs. RoboCOPMNase was run with MNase-seq
alone, RoboCOPATAC was run with ATAC-seq alone, and
RoboCOPMNase+ATAC was run with both MNase-seq and
ATAC-seq data as input. Unlike RoboCOP, COMPETE is
not able to learn DBF weights from the data using Baum-
Welch; rather, the weights need to be provided as input. We
ran COMPETE with the TF weights set to different mul-
tiples of the TF dissociation constant Kd, 8Kd, and 16Kd
(21) and these models are referred to as COMPETEKd,
COMPETE8Kd, and COMPETE16Kd, respectively. To iso-
late the differences in the learned chromatin occupancy pro-
files that arise from the inclusion of chromatin accessibil-
ity data as input to RoboCOPMNase, we also ran COM-
PETE with the DBF weights learned by RoboCOPMNase
after Baum-Welch training. We refer to this model as
COMPETERoboCOP.

We use posterior probabilities of TF occupancy from
RoboCOP and COMPETE outputs to identify binding
sites. The starting probability of a motif is computed by
adding the starting probability of the forward and reverse
complement of the motif for every position in the genome.
In the case of Rap1 which has multiple PWMs, the max-
imum starting probability among the PWMs is chosen at
every position. For validation, a site is considered a true
positive (TP) if it overlaps with an annotated binding site for
that TF, and a false positive (FP) otherwise. If an annotated
TF binding site does not overlap any of our predictions, it
is a false negative (FN). We plotted precision-recall curves
and calculated area under precision-recall curve for vali-
dating TF binding sites. We consider the TF binding sites
in (25) as ground truth. We have more precise binding site
predictions from ORGANIC (26) for Abf1 and Reb1, and
from ChIP-exo for Reb1 and Rap1 (5). We combined these
datasets with (25) and considered the combined dataset to
be ground truth for these three TFs. For each pair of mod-
els, a pairwise Mann-Whitney U test was performed on the
AUPR values of its TF predictions to establish statistical
significance.

We call nucleosomes from RoboCOP and COMPETE
outputs using the probability of the nucleosome dyad as
computed by the two methods. We employ a greedy ap-
proach as described in (34). Briefly, we iteratively call nu-

cleosome dyads with the highest probability and remove a
genomic window of length 117 bases centered on the called
nucleosome dyad from future inclusion. This allows nucle-
osomes to partially overlap. For validation, a nucleosome
position is considered a true positive (TP) if the distance
between the predicted and annotated dyad is 50 bases or
less. We consider the nucleosome dyads reported in (24) to
be our ground truth, and used precision-recall curves to val-
idate all other predicted nucleosome positions against this
reference set.

Comparison to DANPOS2 and NucleoATAC nucleosomes

To assess whether alternative methods might identify nucle-
osome positions more simply or accurately, we compared
the nucleosome position predictions of RoboCOP against
two established methods, one for calling nucleosome predic-
tions from MNase-seq data (DANPOS2), and the other for
calling nucleosome predictions from ATAC-seq data (Nu-
cleoATAC).

We provided our paired-end MNase-seq data to DAN-
POS version 2.2.2 (13), and allowed it to call nucleosome
positions using the command: danpos.py dpos -m 1.
The resulting occupancy attribute was used to sort predic-
tions when evaluating precision and recall.

We used the nucleosome positions reported by the au-
thors of NucleoATAC (20). Because NucleoATAC reports
only a small fraction of all genomic nucleosomes (around
20%), we also evaluated how well different models predicted
the limited set of ‘NucleoATAC nucleosomes’. When doing
so, we retained only nucleosomes within 55 bp of those pre-
dicted by NucleoATAC.

Comparison to FIMO-MNase and FIMO-ATAC TFs

To calibrate the accuracy of the TF binding site predictions
of RoboCOP and COMPETE, we developed a baseline by
running FIMO (35) on peaks of shortFrags for MNase-
seq and ATAC-seq as follows. We first filtered short-
Frags into a separate BAM file and then ran MACS2
(36) to call peaks with parameters -f BAMPE -p 1e-20
--nolambda --nomodel. We called peaks separately on
MNase-seq and ATAC-seq data. Then, to scan for matches
to any of our PWMs, we ran FIMO (35) within 50-bp win-
dows centered on the reported peaks.

ORC mutant analysis

We used the most prevalent ORC binding motif within
ORC ChIP-seq peaks, as previously reported (37). Anno-
tated ACS sites in the yeast genome were obtained from a
previous study (38).

Data sources

We generated RNA-seq and paired-end MNase-seq data
from S. cerevisiae before and after cadmium treatment
(19). These are available for download at the NCBI Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/
geo) under accession number GSE153609. The MNase-seq
data from the 0 min timepoint, before cadmium treatment

http://www.ncbi.nlm.nih.gov/geo
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Figure 3. Representative chromatin occupancy profile produced by RoboCOPMNase, in comparison with that of COMPETERoboCOP, an existing method.
(A) Two-dimensional plot of MNase-seq fragments from positions 207,000 to 209,000 of yeast chromosome X, with nucFrags in red and shortFrags
in blue. Gene annotations depicted with arrows at the top. (B) The nucFrags and shortFrags signals that result from aggregation of MNase-seq
fragment midpoint counts in the region. (C) RoboCOPMNase and (D) COMPETERoboCOP outputs for the region, with known TF binding sites indicated
with triangles above. Because RoboCOPMNase makes use of MNase-seq data in generating its chromatin occupancy profile, it, unlike COMPETERoboCOP,
positions nucleosomes more precisely and successfully identifies not only the nucleosome-depleted region, but also the known Abf1 and Reb1 binding sites
therein (25).

(DM504), was the basis of most of our MNase-seq anal-
ysis. When exploring chromatin dynamics under cadmium
stress, we used the 60 min timepoint (DM508).

Paired-end ATAC-seq data from S. cerevisiae were down-
loaded from GEO accession number GSE66386. Data from
the 11 non-osmotic stress datasets were merged. Nucleo-
some calls from NucleoATAC applied to that data were
downloaded from the same accession number.

We previously generated paired-end MNase-seq data
from S. cerevisiae under G2 arrest, in both wild-type and
orc1-161 mutant cells (17). These are available for download
at the NCBI Sequence Read Archive (SRA; https://www.
ncbi.nlm.nih.gov/sra) under SRA study accession number
SRP041314. Data from the two replicates in each case were
merged.

The sacCer3 (April 2011) version of the yeast genome was
used for all analyses.

RESULTS

RoboCOP computes probabilistic chromatin occupancy pro-
files

We use RoboCOP to predict the nucleosome positions
and binding sites of 150 different TFs across the Saccha-
romyces cerevisiae genome using MNase-seq and/or ATAC-
seq data. Even though we include 150 different TFs in our
model (listed in Supplementary Table S1), this does not
exhaust what binds the genome: We are missing replica-
tion factors and general transcription factors, as well as
sequence-specific TFs for which we have no binding pref-
erence information. To address this, we add a 10-bp DBF
labeled ‘unknown’ that we use to capture any extra short-
Frags signal not captured by our 150 known TFs (this also

has the salutary effect of reducing false positive predictions
for the known TFs; see Supplementary Figure S10 for a
comparison).

Beyond the genome sequence and the collection of
DBFs and their binding preferences, RoboCOPMNase,
RoboCOPATAC, and RoboCOPMNase+ATAC take as input
the nucFrags and shortFrags signals derived from
paired-end MNase-seq, ATAC-seq, and both MNase-seq
and ATAC-seq data respectively. Figure 3 shows the input
MNase-seq data and the resulting RoboCOPMNase output
for a representative segment of the genome. The nucleo-
some predictions in RoboCOP’s output (Figure 3C) line
up well with the nucleosomal fragments in the data (Fig-
ure 3A,B). In addition, RoboCOPMNase predicts one Abf1
and one Reb1 binding site, which align with the short frag-
ments in the data and match annotated binding sites in this
locus (25).

RoboCOP’s use of chromatin accessibility data improves
chromatin occupancy profiles

Our group’s earlier work, COMPETE (21) uses only nu-
cleotide sequence as input to an HMM in order to com-
pute a probabilistic occupancy landscape of DBFs across a
genome. COMPETE’s output is theoretical in that it does
not incorporate experimental data in learning the binding
landscape of the genome. In order to make a fair compari-
son, COMPETE was run with DBF weights learned using
RoboCOPMNase which we refer to as COMPETERoboCOP.
Unsurprisingly, due to the lack of chromatin accessibility
information in COMPETERoboCOP, the nucleosome posi-
tions learned by the model (Figure 3D) do not line up well
with the nucleosomal signal apparent in the MNase-seq
and ATAC-seq data (Figure 3A,B, Supplementary Figure

https://www.ncbi.nlm.nih.gov/sra
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Figure 4. RoboCOPMNase positions nucleosomes with precision and accuracy, including avoiding their placement within nucleosome-depleted regions
(NDRs). (A,B) Heatmaps depict the posterior probability of a nucleosome dyad as calculated by (A) RoboCOPMNase and (B) COMPETERoboCOP, at
each position around experimentally determined NDRs genome-wide (32). Each row is a distinct NDR, sorted by NDR size. Lime green lines depict
the experimentally determined NDR boundaries. Note that P(dyad | s,l,m) computed by RoboCOPMNase is appropriately almost always zero within
NDRs, unlike COMPETERoboCOP, and the signal is well-phased in both directions. (C) Curves depict aggregate values of the posterior probability of
nucleosome dyad across the 2,000 most well-positioned nucleosomes (24), as computed by RoboCOPMNase, RoboCOPMNase+ATAC, RoboCOPATAC, and
COMPETERoboCOP. Aggregate signals all exhibit an expected ∼10 bp periodicity that arises from the periodic nature of the weak sequence specificity of
nucleosomes. Note that RoboCOP-based predictions, especially those that include MNase data, appropriately peak at annotated dyads and fall off rapidly
in both directions, indicating that learned positions are both more precise and more accurate than those of COMPETERoboCOP.

S11). The nucleosome predictions of COMPETERoboCOP
(Figure 3D) are more diffuse, which is understandable be-
cause it relies entirely on sequence information, and nu-
cleosomes have only weak and periodic sequence speci-
ficity (1). Because of a lack of chromatin accessibility data,
COMPETERoboCOP fails to identify the clear nucleosome-
depleted region in this locus (and does so all throughout
the genome, as seen in Figure 4A,B), as a result of which it
fails to recognize the Abf1 and Reb1 binding sites known
to reside in the locus in (25). In contrast, RoboCOPMNase
utilizes the chromatin accessibility data to accurately learn
the nucleosome positions and the annotated Abf1 and Reb1
binding sites (Figure 3C).

Genome-wide prediction of nucleosome positioning

Nucleosomes have weak sequence specificity and can adopt
alternative nearby positions along the genome (32,39). It
is therefore likely that the nucleosome positions reported
by one method do not exactly match those reported by
another. However, since RoboCOP generates genome-wide
probabilistic scores of nucleosome occupancy, we can plot
the probability of a nucleosome dyad given the nucleotide
sequence and MNase-seq signals, P(dyad | s,l,m), around
annotated nucleosome locations (24). We find that the
RoboCOPMNase dyad score peaks precisely at the annotated
dyads (Figure 4C), and decreases almost symmetrically in
either direction. In contrast, COMPETERoboCOP does not
provide accurate location predictions (Figure 4C); the os-
cillatory nature of the score reported by COMPETERoboCOP
reflects the periodic dinucleotide sequence specificity model
for nucleosomes, and does not correspond well with ac-
tual nucleosome locations. When evaluated genome-wide
using precision-recall curves (Supplementary Figure S12A),

the nucleosome positions called by RoboCOPMNase are
far more similar to the nucleosome annotations of Bro-
gaard and colleagues (24) than are the ones called by
COMPETERoboCOP, which are only slightly better than ran-
dom (Supplementary Table S2).

Similarly, we find that when RoboCOP is run with ATAC-
seq alone or with both MNase-seq and ATAC-seq, it can ef-
ficiently infer the nucleosome occupancy profile (Figure 4C)
and also infer the NDR boundaries in the genome (Supple-
mentary Figure S13,S14). Since RoboCOP uses a combina-
tion of nucFrags, shortFrags, and nucleotide sequence
to infer DBF occupancy profile, it can successfully differ-
entiate between nucleosome-dense regions and NDRs from
both MNase-seq and ATAC-seq data. However, because
MNase-seq generates a cleaner nucleosomal signal, the nu-
cleosome predictions are more accurate when MNase-seq
is provided as input to RoboCOP in comparison to ATAC-
seq and the performance is intermediate when using both
MNase-seq and ATAC-seq (Figure 4C, Supplementary Fig-
ure S15).

Likewise, precision-recall curves in Supplementary Fig-
ure S12A further confirm that the nucleosome positions
predicted by the RoboCOP models incorporating MNase-
seq have higher AUPR compared to RoboCOPATAC that
uses ATAC-seq alone. These models outperform all the
COMPETE models that do not utilize chromatin acces-
sibility data. We also find that COMPETERoboCOP which
has its parameters initialized with the parameters learned
by RoboCOPMNase, performs better than other models of
COMPETE. On comparing to the nucleosome positions
predicted by DANPOS2 (13) to MNase-seq, the RoboCOP
models incorporating MNase-seq have higher AUPR (Sup-
plementary Figure S12A). The AUPR of RoboCOPATAC
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Figure 5. Scatter plots comparing AUPR curves of 81 TFs (blue dots) for (A) RoboCOPMNase and COMPETERoboCOP, (B) RoboCOPMNase and
COMPETEKd, (C) RoboCOPMNase and FIMO-MNase, and (D) RoboCOPATAC and FIMO-ATAC. (A) and (B) also compare the AUPR for nucleo-
some positions for the three methods (red dots). FIMO-MNase and FIMO-ATAC do not predict nucleosome positions. Hence, (C) and (D) do not have
AUPR value for nucleosome. The numbers on the top-left and bottom-right corners of (A–D) indicate the number of DBFs for which the model on the
given axis performs better than the model on the other axis. The numbers are in bold if they are greater than the numbers on the other axis. Because the
AUPR values are close to 0 for many DBFs, the numbers within parentheses indicate the number of factors for which the model on the given axis has
higher AUPR value and is at least 0.01. (E) Box plots comparing the AUPR values across all methods for all 46 TFs that have AUPR ≥ 0.01 for at least one
method. The box plots are sorted in decreasing order of median AUPR per method. P-value significance is shown only for two of the four comparisons
made in (A–D). Both RoboCOPMNase and RoboCOPATAC outperform the baseline methods FIMO-MNase and FIMO-ATAC. All RoboCOP models have
higher accuracy than COMPETE models or baseline methods. Remaining p-values are reported in Supplementary Table S3.

is lower compared to DANPOS2 because of the spar-
sity of ATAC-seq data within the gene bodies. How-
ever, RoboCOPATAC finds more nucleosomes than Nu-
cleoATAC, another method that incorporates ATAC-seq to
find nucleosome positions (Supplementary Figure S12A).
We notice that even though NucleoATAC finds fewer nucle-
osomes, it finds the nucleosomes with high precision (Sup-
plementary Figure S12A). Since NucleoATAC identifies
nucleosomes that are around open chromatin (20), we com-
pared the precision recall curves of the nucleosomes identi-
fied by other models near the NucleoATAC nucleosomes.
We find that the RoboCOP models and DANPOS2 have
similar performance as NucleoATAC (Supplementary Fig-
ure S12B). Moreover, we notice in Supplementary Figure
S12B that the COMPETE models also have high precision
indicating that the nucleosomes around the accessible re-
gions of the chromatin are overall easier to predict solely
based on nucleotide sequence specificity, even without chro-
matin accessibility data.

Genome-wide prediction of TF binding sites

RoboCOP seeks to learn a full chromatin occupancy pro-
file of multiple DBFs at once, with the hope that the bind-
ing sites of many TFs can be predicted simultaneously at
least as well as they are by existing methods and assays that
identify them one at a time. This is a significant challenge
because while MNase-seq and ATAC-seq data have been
reported to provide evidence of binding for at least some
TFs and DNA replication initiation factors (15–18,40), the
shortFrags signal of chromatin accessibility datasets is
quite noisy. For instance, TFs can sometimes be bound tran-

siently (41), allowing the entire region to be digested by
MNase or cleaved by Tn5 transposase and leaving behind
no shortFrags signal.

Although RoboCOP predicts the genome-wide occu-
pancy of a set of 150 TFs, we can only validate the binding
sites of 81 of them, given available ChIP-chip (25), ChIP-
exo (5), and ORGANIC (26) datasets (Supplementary Ta-
ble S1). Making things more complicated, available yeast
ChIP-chip data assay binding at the genomic resolution
of whole intergenic regions, with computational algorithms
being used to refine those into specific binding sites, making
the ChIP-chip dataset somewhat less reliable for validation
purposes. Compounding the problem, data for many of the
TFs were generated under multiple conditions (3) (Supple-
mentary Table S1), but the annotations are not generally
condition-specific.

With those caveats in place, we compare TF
binding site predictions made by the three runs of
RoboCOP (RoboCOPMNase, RoboCOPATAC, and
RoboCOPMNase+ATAC) to predictions made by the different
runs of COMPETE (COMPETERoboCOP, COMPETEKd,
COMPETE8Kd, and COMPETE16Kd) and FIMO-MNase
and FIMO-ATAC. We observe that RoboCOPMNase
has higher AUPR values for more DBFs compared to
COMPETERoboCOP, both of which have the same DBF
weights with the exception that RoboCOPMNase has access
to MNase-seq data whereas COMPETERoboCOP builds
the model entirely based on the nucleotide sequence
of the genome (Figure 5A). Both RoboCOPMNase and
COMPETERoboCOP have higher AUPR values compared
to other COMPETE models that were assigned DBF
weights using multiples of dissociation constants of the
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Figure 6. (A–C) Aggregate nucleosome dyad probability, as computed by RoboCOPMNase, around annotated +1 nucleosomes (32) of (A) the 100 most
up-regulated genes (purple), (B) the 100 genes least changed in transcription (gray), and (C) the 100 most down-regulated genes (teal), before and 60
min after treating cells with cadmium. After treatment, we see the +1 nucleosome closing in on the promoters of the most down-regulated genes (teal)
but opening up the promoters of the most up-regulated genes (purple). (D) Two-dimensional plot of MNase-seq fragments near the HSP26 promoter
(positions 380,700 to 382,350 of yeast chromosome II are shown) before treatment with cadmium (nucFrags in red; shortFrags in blue), along with
the nucFrags and shortFrags signals that result from aggregating those midpoint counts. Gene annotations depicted with arrows at the top (Watson
strand in green; Crick strand in orange). (E) RoboCOPMNase-predicted occupancy profile of this region before treatment with cadmium. (F,G) The same
as (D,E), respectively, but 60 min after cadmium treatment. HSP26 transcription is highly up-regulated under cadmium stress, and we observe here that
its promoter exhibits marked TF binding after treatment, most prominently by Rap1, known to bind this promoter during stress response. Nucleosome
positions also shift notably.

TFs (Figure 5B, Supplementary Figure S16). We also
observe that RoboCOPMNase and RoboCOPATAC perform
significantly better than the two baseline methods that
we defined as FIMO-MNase and FIMO-ATAC (Figure
5A–E). We notice that overall the RoboCOP models fare
better than the COMPETE models which are further sig-
nificantly better than the baseline models of FIMO-MNase
and FIMO-ATAC (Figure 5E, Supplementary Figure S16,
Supplementary Table S3). The precision-recall curves in
Supplementary Figure S17 show the AUPR values for the
individual TFs.

RoboCOP reveals chromatin dynamics under cadmium stress

One of the most powerful uses of RoboCOP is that it can
elucidate the dynamics of chromatin occupancy, generat-
ing profiles under changing environmental conditions. As
an example, we explore the occupancy profiles of yeast
cells before and after being subjected to cadmium stress for
60 min. We run RoboCOPMNase separately on two MNase-
seq datasets: one for a cell population before treatment and
another 60 min after treatment with 1 mM of CdCl2. Cad-
mium is toxic to the cells and activates stress response path-
ways. Stress response genes are heavily transcribed under
cadmium treatment, while ribosomal genes are repressed
(42). We use RNA-seq to identify the 100 genes most up-
regulated (‘upmost 100’, for short) and the 100 genes most
down-regulated (‘downmost 100’). As a control, we choose
the 100 genes with the least change in transcription under

treatment (‘constant 100’) (see Supplementary Table S4 for
the three gene lists). Separately for each group of genes, we
plot the composite RoboCOPMNase-predicted nucleosome
dyad probability in a 1000-bp window centered on estab-
lished +1 nucleosome annotations (32). Prior to cadmium
treatment, the composite +1 nucleosome peaks for all three
groups align closely with the annotations (filled curves in
Figure 6A–C). Upon treatment with cadmium, the +1 nu-
cleosomes of the upmost 100 genes shift downstream, ex-
panding the NDR (solid curve in Figure 6A). Owing to high
variability in the new positions of the +1 nucleosomes of the
upmost 100 genes, the composite +1 nucleosome peak for
these genes becomes shorter and broader. Furthermore, the
position of the −1 nucleosome also becomes more uncertain
with the expansion of the NDR. In contrast, the +1 nucle-
osomes of the downmost 100 genes shift upstream, closing
in on the NDR (solid curve in Figure 6C). Interestingly, the
shift is precise, resulting in the composite +1 nucleosome
peak remaining narrow and sharp. Unlike the upmost 100
genes, we do not see changes in the position of the −1 nu-
cleosomes of the downmost 100 genes. As expected from a
control, we observe no changes in the position of the +1
nucleosome for the constant 100 genes (Figure 6B).

We can also use RoboCOPMNase to study detailed
changes in the chromatin landscape under cadmium stress
within a specific locus, for example that of HSP26, a key
stress response gene in the upmost 100 genes. In Figure 6D–
G, we notice the HSP26 promoter opening up under stress,
with shifts in nucleosomes leading to more TF binding in
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the promoter. From the shortFrags midpoint counts,
RoboCOPMNase identifies multiple potential TF binding
sites, most prominently for Rap1, which has already been
shown to re-localize to the promoter region of HSP26 dur-
ing general stress response (43).

In comparison, COMPETERoboCOP fails to capture the
dynamics of chromatin occupancy under cadmium stress
because it does not incorporate chromatin accessibility
information into its model. We ran COMPETERoboCOP
with the RoboCOPMNase-trained DBF weights for the
two time points of cadmium treatment and found that
COMPETERoboCOP generates binding landscapes for the
two time points that are nearly identical (Supplemen-
tary Figure S18). This is a key difference between
RoboCOPMNase and COMPETERoboCOP: Being able to in-
corporate experimental chromatin accessibility data allows
RoboCOPMNase to provide a more accurate binding pro-
file for cell populations undergoing dramatic chromatin
changes.

The preceding analysis highlights the broad utility of
RoboCOP. Because RoboCOP models DBFs competing to
bind the genome, it produces a probabilistic prediction of
the occupancy level of each DBF at single-nucleotide res-
olution. Moreover, as the chromatin architecture changes
under different environmental conditions, RoboCOP is able
to elucidate the dynamics of chromatin occupancy. The
cadmium treatment experiment shows that the predictions
made by RoboCOP can be used both to study overall
changes for groups of genes (Figure 6A–C), as well as to
focus on specific genomic loci in order to understand their
detailed chromatin dynamics (Figure 6D–G).

DISCUSSION

RoboCOP is a new computational method that utilizes
a multivariate HMM to generate a probabilistic occu-
pancy profile of the genome by integrating chromatin
accessibility data with nucleotide sequence. The integra-
tion of experimental data leads to a number of improve-
ments over COMPETE: It increases the accuracy of TF
binding site predictions, it markedly increases the accu-
racy of nucleosome positioning predictions, and it pro-
vides a principled mechanism for learning DBF transition
probabilities.

RoboCOP can learn chromatin occupancy profiles from
different kinds of accessibility data; in this paper, we have
demonstrated its application to MNase- and ATAC-seq
data, separately or in combination. However, we observe
markedly better performance when using MNase-seq than
when using ATAC-seq, for two primary reasons. First,
ATAC-seq fragments are highly enriched for regions of
open chromatin, whereas MNase-seq fragments are dis-
tributed more evenly across the entirety of the genome, al-
lowing for a more comprehensive view of the chromatin
genome-wide. Second, MNase has an exonuclease activity
which allows fragments to be digested to more accurately
reflect the sizes of the DBFs that protect them. If one were
designing an experiment to generate data for RoboCOP, we
would recommend MNase-seq, but in many cases, ATAC-
seq (or DNase-seq) data is already available, and it is reas-
suring that RoboCOP is applicable to this kind of data also,

though its insights will likely be concentrated near regions
of open chromatin.

The chromatin occupancy profiles produced by Robo-
COP are very effective at positioning nucleosomes (espe-
cially with MNase-seq data, but RoboCOPATAC also posi-
tions many more nucleosomes than NucleoATAC using the
same data). However, inferring TF occupancy from chro-
matin accessibility data remains a challenge. Nevertheless,
we observe that RoboCOP with MNase- or ATAC-seq data
performs notably better than alternative approaches that
use peak or footprint identification with MACS2 (36) fol-
lowed by TF-labeling with FIMO (35). Presumably this is
because RoboCOP considers all DBFs together within a
single joint model that explicitly accounts for the thermo-
dynamic competition among DBFs, including nucleosomes.
In future work, it might be possible to improve TF bind-
ing site predictions through the incorporation of prior in-
formation about DBF transition probabilities. Regardless,
the accuracy and comprehensiveness of chromatin occu-
pancy profiles will improve with deeper sequencing. Suffi-
cient read depth is already commonplace in compact eu-
karyotic genomes like that of yeast (as we demonstrate
here), attainable in medium-sized genomes like worm or
fly, and hopefully feasible in the near future in larger mam-
malian genomes.

One of the most important applications of RoboCOP
is that it enables comparison of the chromatin landscape
across time or varying conditions, facilitating the study of
chromatin dynamics (a task to which COMPETE is un-
suited). We have demonstrated that RoboCOP can reveal
chromatin changes in response to an environmental stimu-
lus like cadmium exposure, but it can be applied in other
contexts as well. As one example, we applied RoboCOP
to MNase-seq data from two different populations of cells
under G2 arrest, one wild-type and the other an orc1-161
temperature-sensitive mutant that prevents binding of the
origin recognition complex (ORC) at origins of replication.
In Supplementary Figure S19, we show that RoboCOP de-
tects strong ORC binding during G2 at origins in wild-type
cells, but not in mutant cells, and also reveals that flank-
ing nucleosomes are positioned farther apart when ORC
is bound. This example additionally highlights that Robo-
COP can be applied to any site-specific DBF, not just nucle-
osomes and TFs.

Importantly, since changes in transcription can likewise
be measured across time or varying conditions, in conjunc-
tion with such measurements, RoboCOP can help elucidate
how the dynamics of chromatin occupancy and the dynam-
ics of gene expression interrelate.

DATA AVAILABILITY

RoboCOP source code is available at: https://github.com/
HarteminkLab/RoboCOP. MNase-seq and RNA-seq data
used for various analyses (including cadmium stress)
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GSE153609. ATAC-seq data can be downloaded from
GEO under accession number GSE66386. MNase-seq data
used to compare the orc1-161 mutant and wild type under
G2 arrest can be downloaded from SRA under accession
number SRP041314.
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Moore,I.K., Wang,J.-P.Z. and Widom,J. (2006) A genomic code for
nucleosome positioning. Nature, 442, 772–778.

32. Chereji,R.V., Ramachandran,S., Bryson,T.D. and Henikoff,S. (2018)
Precise genome-wide mapping of single nucleosomes and linkers in
vivo. Genome Biol., 19, 19.

33. Granek,J.A. and Clarke,N.D. (2005) Explicit equilibrium modeling of
transcription-factor binding and gene regulation. Genome Biol., 6,
R87.

34. Zhong,J., Luo,K., Winter,P.S., Crawford,G.E., Iversen,E.S. and
Hartemink,A.J. (2016) Mapping nucleosome positions using
DNase-seq. Genome Res., 26, 351–364.

35. Grant,C.E., Bailey,T.L. and Noble,W.S. (2011) FIMO: Scanning for
occurrences of a given motif. Bioinformatics, 27, 1017–1018.

36. Zhang,Y., Liu,T., Meyer,C.A., Eeckhoute,J., Johnson,D.S.,
Bernstein,B.E., Nusbaum,C., Myers,R.M., Brown,M., Li,W. and
Liu,X.S. (2008) Model-based analysis of ChIP-Seq (MACS). Genome
Biol., 9, R137.

37. Lee,C. S.K., Cheung,M.F., Li,J., Zhao,Y., Lam,W.H., Ho,V.,
Rohs,R., Zhai,Y., Leung,D. and Tye,B.-K. (2021) Humanizing the
yeast origin recognition complex. Nat. Commun., 12, 33.

38. Eaton,M.L., Galani,K., Kang,S., Bell,S.P. and MacAlpine,D.M.
(2010) Conserved nucleosome positioning defines replication origins.
Gene. Dev., 24, 748–753.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkab553#supplementary-data


7938 Nucleic Acids Research, 2021, Vol. 49, No. 14

39. Fragoso,G., John,S., Roberts,M.S. and Hager,G.L. (1995)
Nucleosome positioning on the MMTV LTR results from the
frequency-biased occupancy of multiple frames. Gene. Dev., 9,
1933–1947.

40. Li,Z., Schulz,M.H., Look,T., Begemann,M., Zenke,M. and
Costa,I.G. (2019) Identification of transcription factor binding sites
using ATAC-seq. Genome Biol., 20, 45.

41. Sung,M.-H., Guertin,M.J., Baek,S. and Hager,G.L. (2014) DNase
footprint signatures are dictated by factor dynamics and DNA
sequence. Mol. Cell, 56, 275–285.

42. Hosiner,D., Gerber,S., Lichtenberg-Fraté,H., Glaser,W., Schüller,C.
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