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Abstract

In this paper, the problem of identifying differentially expressed genes under different condi-
tions using gene expression microarray data, in the presence of outliers, is discussed. For
this purpose, the robust modeling of gene expression data using some powerful distribu-
tions known as normal/independent distributions is considered. These distributions include
the Student’s t and normal distributions which have been used previously, but also include
extensions such as the slash, the contaminated normal and the Laplace distributions. The
purpose of this paper is to identify differentially expressed genes by considering these distri-
butional assumptions instead of the normal distribution. A Bayesian approach using the
Markov Chain Monte Carlo method is adopted for parameter estimation. Two publicly avail-
able gene expression data sets are analyzed using the proposed approach. The use of the
robust models for detecting differentially expressed genes is investigated. This investigation
shows that the choice of model for differentiating gene expression data is very important.
This is due to the small number of replicates for each gene and the existence of outlying
data. Comparison of the performance of these models is made using different statistical cri-
teria and the ROC curve. The method is illustrated using some simulation studies. We dem-
onstrate the flexibility of these robust models in identifying differentially expressed genes.

1 Introduction

Microarrays allow the simultaneous measurement of the expression levels of thousands of
genes. This excellent data structure has inspired a completely new area of research in statistics
and bioinformatics [1]. [2] considered the problem of identifying differentially expressed genes
under different conditions using gene expression microarray data. They used a robust Bayesian
hierarchical model for testing hypotheses relating to different gene expressions. Before this, an
initial statistical treatment was given by [3] to detect differentially expressed genes. Variants of
t or F-statistics were used by [4]. A modification of the t-statistic was used by [5, 6]. [7] using a
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permutation technique, estimated and controlled false discovery rate (FDR). An empirical
Bayes approach was used by [8-10]. More fully Bayesian approaches, using Markov Chain
Monte Carlo (MCMC), were applied by [11, 12]. [2, 13] introduced a hierarchical t distribution
formulation which is more robust to outliers than the normal model. [2] call their model
BRIDGE (Bayesian Robust Inference for Differential Gene Expression). BRIDGE (2013, http://
www.rglab.org) has been recently constructed as a package consisting of several functions in R
software for testing differential expressions in multiple samples.

[14] introduced a Laplace mixture model as a long-tailed alternative to the normal distribu-
tion when identifying differentially expressed genes in microarray experiments. This model
permits greater flexibility than models in current use as it has the potential, at least with suffi-
cient data, to accommodate both whole genome and restricted coverage arrays. The Laplace
model appears to give some improvement in fit to data. [15] also emphasized the potential in-
sufficiency of the Gaussian noise model in microarray data analysis and proposed different
noise models. In their work the goodness of fit of noise models is quantified by a hierarchical
Bayesian analysis of variance model, which predicts normalized expression values as a mixture
of a Gaussian density and t-distributions with adjustable degrees of freedom. They find that, ir-
respective of the chosen preprocessing and normalization method, a heavy-tailed noise model
is a better fit than a simple Gaussian. [16] discussed robust nonlinear differential models of
gene expression. Also, variance-modeling considerations for robust data analysis were empha-
sized by [17].

In the current paper, an extension of the Bayesian hierarchical model of [2, 13, 18] is pro-
posed using the family of normal/independent (N/I) distributions for errors to achieve some
more robust models for analyzing gene expression microarray data. Our approach will let the
data themselves determine the best robust model. This family includes normal and t distribu-
tions as well as slash, Laplace and contaminated normal distributions.

The same as [2] the model includes an exchangeable prior for the variances, allowing each
gene to have a different variance and a prior for the model that allows us to detect differentially
expressed genes in multiple-sample experiments. In practice, the prior is a mixture of singular
Gaussian distributions. Inference is based on the posterior probabilities of differential expres-
sions calculated from the chosen model. We call our method BRIN/IDGE (Bayesian Robust In-
ference using N/I family for Differential Gene Expression). Parameter estimation is carried out
using Markov Chain Monte Carlo. The method is illustrated using two publicly available gene
expression data sets which are fully explored in the next section. Also, some simulation studies
are conducted in order to illustrate the proposed approach.

[2] compared their BRIDGE method for testing differentially expressed genes with other
methods: (i) the t-test, (ii) the Bonferroni-adjusted t-test, (iii) significance analysis of microar-
rays (SAM, [7]), (iv) empirical Bayes lognormal-normal and (v) gamma-gamma models [8]
and (vi) Efron’s empirical model [10]. In this paper, not only we will compare the performance
of members of BRIN/IDGE with these six methods, but also we will compare the performance
of different members of BRIN/IDGE, and will find which one provides the best fit to two-sam-
ple and multiple-sample data sets.

This article is organized as follows. Section 2 introduces the data sets and some notation. In
Section 3 we give an overall view of normal/independent (N/I) distributions. In Section 4, we
present the Bayesian hierarchical model using the N/I structure. In Section 5, we apply the pro-
posed models to the two datasets introduced in Section 2 and test the differential expressions
using different members of the family of N/I distributions and compare the performance of
these models based on Bayesian false discovery rate (DFDR), Bayesian true negative rate
(bTNR), Bayesian false negative rate (bFNR) and area under the curve (AUC). Section 6 con-
tains the results of some simulation studies. In the final section we present some conclusions.
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Also, more details of members of the normal/independent (N/I) distributions and an analysis
of Bayesian false discovery rate are given in appendices A and B, respectively.

2 Data
2.1 Golub data

Gene expression data (3051 genes and 38 tumor mRNA samples) are extracted from the leuke-
mia microarray study of [19]. Pre-processing was done as described in [4]. The challenge of
cancer treatment has been to target specific therapies to pathogenetically distinct tumor types
in order to maximize efficacy and minimize toxicity. [19] chose acute leukemias as a test case.
They classified acute leukemias as those arising from lymphoid precursors (acute lymphoblas-
tic leukemia, ALL) or from myeloid precursors (acute myeloid leukemia, AML). The leukemia
data set consisted of 38 bone marrow samples (27 ALL, 11 AML) obtained from acute leukemia
patients at the time of diagnosis. RNA prepared from bone marrow mononuclear cells was hy-
bridized to high-density oligonucleotide microarrays, produced by Affymetrix and contained
probes for 3051 human genes. For each gene, a quantitative expression level is available. The
data take the form Y, i=1,2,...,N;s=1,2and r=1, 2, .., n, where Y, is the log trans-
formed estimated intensity for gene i in group s from replicate r.

Fig 1 displays profiles of the log transformed estimated intensities against replicate number
for the two subsets of Golub data. Also, the profiles of four randomly selected genes are also
drawn (genes 10, 91, 1059 and 2280). These profiles show that, for example, gene #2280 may
be identified as being expressed differentially between the two groups (ALL and AML). The
profiles of genes and #191 and #1059 in the two groups have similar behavior; thus, these genes
may not be identified as differentially expressed genes. Also, this figure shows that the log
transformed estimated intensities for some genes (for example, gene #10) include outliers (for
example, replicate 21 in the ALL group).

2.2 The hereditary breast cancer data

Many cases of hereditary breast cancer are due to mutations in either the BRCA1 gene or the
BRCA2 gene. The histopathological changes in these cancers are often characteristic of the mu-
tant gene. We hypothesize that the genes expressed by these two types of tumor are also dis-
tinctive, perhaps allowing us to identify cases of hereditary breast cancer on the basis of gene-
expression profiles. [20] conducted a study to examine breast cancer tissues from patients car-
rying mutations in the predisposing genes, BRCA1 or BRCA2, or from patients not expected to
carry a hereditary mutation.

[20] examined RNA from samples of primary tumors from seven carriers of the BRCA1
mutation, eight carriers of the BRCA2 mutation, and seven patients with sporadic cases of
breast cancer. In these data, samples or groups refer to tissue sample types and there is no color
swap. A set of 3226 genes was pre-selected by [20] by filtering the raw images. The data take
the form Y;,, = logy(x;/ref,), i=1,.. . Nsr=1,...,ngs=1, 2,3, where x;q, is the intensity
from gene i of the " (biological) replicate in group s, and ref;, is the intensity from a common
reference sample. Note that here, [20] used a reference sample because there are three groups
of interest: BRCA1 mutation, BRCA2 mutation, and sporadic cases of breast cancer.

Fig 2 displays the gene-expression profiles (log ratios) against the replicate number of tu-
mors with BRCA1 mutations, tumors with BRCA2 mutations, and sporadic tumors. This fig-
ure shows that there are some differences, particularly in terms of the variation in log ratios
between breast tumors with BRCA2 mutations and those with other mutations. There is great-
er variation in log ratios for the BRCA2 than for the other two mutations. Four randomly se-
lected genes are highlighted in different linestyles. They allow us to follow the behaviour of the
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Fig 1. Profiles of log transformed estimated intensities from each group. Left panel for ALL group and right panel for AML group.

doi:10.1371/journal.pone.0123791.g001

randomly selected genes in the three groups. Also, this figure shows that some genes (for exam-
ple, gene #1066) include outliers in their replications (for example, replicate 2 in group 2).

3 Normal/independent (N/I) distribution

A normal/independent (N/I) distribution [21] is a stochastic representation of the random var-
iable Y = u + e/+/u, where y is a location parameter, u is a positive random variable, with den-
sity g(u; v), where v is a scalar or random vector of parameters, and error (e) is a normally
distributed random variable with mean 0 and variance o.
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Fig 2. Profiles of log ratios from each group. Left panel for BRCA1, middle panel for BRCA2 and right panel for sporadic case.

doi:10.1371/journal.pone.0123791.g002

Given u, Y follows a normal distribution with location parameter y and scale parameter '
0. Then, the marginal distribution of Yis f(y | u,0,v) = [ ¢(y; u, u'6)dG(u; v), where
0

¢(;; p, 0) is the density function of N(y, o) and the G(u; v) is the distribution function of u.

The class of N/I distributions includes the f, the slash, the contaminated normal, and the La-
place distributions. All these distributions have heavier tails those of the normal distribution,
and can be used for robust inference. These distributions are described in S1 Appendix.
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4 Bayesian Robust Inference using N/l family for Differential Gene
Expression (BRIN/IDGE)

We consider two scenarios for modeling differential gene expression under N/I distributional
assumptions. One is for a two-sample case and the other introduces for a multiple-sample case.
LetY;,i=1,2,..,N;r=1,2,..,nsands=1,2, ..., k be the gene expression data for gene i
from replicate r in sample s.

4.1 Two-group case

The simplest method for model comparison of two samples is indirect comparison and oligo-
nucleotide arrays [2]. In this scenario, the model can be modified as follows: Y,, = u, +
€,,/\/ Uy, Wheree, | 1, ~ N(0,7.') and U, ~ gluiss vy).

In this scenario, p; = (41, 4i2) is modeled with a mixture of two normal distributions as fol-
lows:

,ui|‘5u,p ~ (1 - P)N(:uﬂ? O’ 1;112)1[;“‘1:/1,2]

- - (1)
+PN (13 0, T/tll)N(uiQ; 0, T/t;)l[uu##iz]’

where 7, = (7,1, T, Tu12)- Also, N(g,;5 0, 7,,) means that y;, follows a zero mean normal distri-
bution with variance ,},. The first component corresponds to the genes that are not differen-
tially expressed, e.g., ¢ = fi» so for particular gene i, the two groups share the same variance.
Likewise, the second component corresponds to those genes that are differentially expressed,
e.g., i1 7 Wir S0 we assume independent normal priors with different variances for these two
components. The Bayesian framework offers the flexibility required to specify the range of N/I
distributions introduced in the previous section.

Therefore, in this content, the null and alternative hypothesis tests for the i” gene are de-
fined as Hj, : p, = p,, versus Hj : fi; # [i;y.

We have used a Bayesian structure for the above mentioned model. To carry out Bayesian
inference, the specification prior distributions for the unknown parameters is necessary. The
prior distributions are given as 7.; ~ I'(1,0.005), p ~ Dirichlet(w); w = (1,1)’, 7,1, T2, Tp12 ~
I'(1,0.005), i = 1, 2,. . ., n. To obtain the t distribution, U,, ~ I'(},%) and the prior distribution
for v; is U(0,100). For the contaminated normal distribution, A;, y; ~ U(0, 1). For the slash dis-
tribution, U;, ~ Beta(v;1) and the prior distribution for v; is I'(1, 0.005). Finally, for the La-
place distribution, U_' ~ exp(v,) and v; ~ I'(1, 0.005). All the priors are chosen to be low-

isr

informative.

4.2 Multiple-group case

Sometimes there are more than two samples and identifying differences in the expression of
the same gene between more than two samples may be of interest. Let there be k samples in the
study; for example, in the BRCA data, there are three groups: BRCA1, BRCA2 and

sporadic cases.

In some situations, tests for complicated null hypotheses can be developed from tests for
simpler null hypotheses. The union-intersection method [22] of test construction might be useful
when the null hypothesis is conveniently expressed as an intersection, say Hy: 8 € [, < r©,,
when I' is an arbitrary index set that may be finite or infinite.
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In the analysis of the gene expression data, the main null hypothesis for three groups is
given by H) : i, = i, = W;;. This null hypothesis can be considered as the following union-in-
tersection test:

HriJ Sy = ) N (g = Hiz) N (i = Wig)- (2)

Therefore, having defined this hypothesis, one can implement all of the pairwise hypothesis
tests. A gene is differentially expressed if at least one of the following hypothesis tests is re-

; i), — i@, i® ., _
jected: Ho( My = My, Hy : i = Higs H]( ¥ Hig = Hiz-

(
Now let there be k samples in the study. The main null hypothesis for k sample is given by
Hyt py = oy = oo = [y
This null hypothesis can be considered as the following union-intersection test: H) : (y, =

W) N (= ) Moo O (15 = py). Therefore, having defined this hypothesis, one can im-

plement all of the ®1 pairwise hypothesis tests. A gene is differentially expressed if at least

2
b, — i(2) . —
Sy = M, HY Uy = gy s

HS(@) : Hiy_y = My In order to address the problem of multiple comparisons when per-
k(k=1)
2
means reducing the significance level at which each test is performed from the 5% level to 1%

or even 0.1%.

Thus, in this context the structure of each hypothesis test is considered to be the same as in
the two-group case. The prior distributions are the same as those which were considered in
Section 4.1 and all the priors are chosen to be low-informative. The definition of Bayesian false
discovery rate is given in S2 Appendix.

one of the following hypothesis tests is rejected: H(i,(

forming pairwise tests of hypothesis, one could apply the Bonferroni correction. This

5 Applications
5.1 The Golub data

For detecting the differentially expressed genes, model (1) under the N/I distributional assump-
tion is applied. In the Bayesian approach, two parallel MCMC chains with different initial val-
ues are run for 20,000 iterations each. Then, we have discarded the first 15,000 iterations as
pre-convergence burn-in and retained 5,000 for the posterior inference. For checking conver-
gence of the MCMC chains, the Gelman-Rubin diagnostic test [23] is used.

Table 1 shows the results for the Golub data. In this table, and other tables in this paper, N,
T, SL, CN and Lap are used as abbreviations for the normal, the Student’s t, the slash, the con-
taminated normal and the Laplace distributions, respectively. A diagnostic tool to identify dif-
ferentially expressed genes is to compute the posterior probabilities of y;; — i #0,i=1,2, ...,
N. Table 1 shows that the model which assumes a Laplace distribution detects more genes, 983,
than models with other distributional assumptions at the x = 0.5 posterior threshold [P(u; #
yz|Data) > x]. At this threshold, bFDR, bFNR and bTNR of the model under the Laplace
distributional assumption are smaller than those for the models assuming other distributions.
At posterior thresholds 0.7, 0.9 and 0.95, although bFDR for the model under the Laplace
distributional assumption is the smallest one, the best fitting model based on bTNR and bFNR
is the model which assumes the t distribution. Therefore, a more conservative conclusion
would be to choose the t distribution.

An ROC curve can be plotted using bFPR versus bTPR for the possible posterior threshold
k. The values of bFPR and bTPR, using Eqs (1)-(3) in S1 Appendix, can be estimated using the
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Table 1. Number of differentially expressed genes, bFDR, bTNR and bFNR in the Golub data. The values of bFDR, bTNR and bFNR for the best model
are highlighted in bold.

K Model No. bFDR bTNR bFNR
0.50 N 880 0.1533 0.8328 0.1572
CN 919 0.1502 0.8340 0.1597
Lap 983 0.1330 0.8510 0.1489
SL 820 0.1539 0.8498 0.1501
T 814 0.1504 0.8503 0.1495
0.70 N 682 0.0801 0.7971 0.2028
CN 695 0.0700 0.7935 0.2016
Lap 783 0.0632 0.8107 0.1893
SL 630 0.0775 0.8150 0.1849
T 634 0.0777 0.8189 0.1810
0.90 N 459 0.0243 0.7452 0.2547
CN 499 0.0216 0.7429 0.2418
Lap 576 0.0139 0.7596 0.2403
SL 432 0.0224 0.7684 0.2315
T 429 0.0211 0.7702 0.2297
0.95 N 360 0.0110 0.7205 0.2794
CN 405 0.0097 0.7203 0.2722
Lap 503 0.0057 0.7398 0.2601
SL 350 0.0104 0.7473 0.2526
T 358 0.0113 0.7518 0.2481

doi:10.1371/journal.pone.0123791.t001

following formulae:

> PO, € Oy, 5 ()15, (7:)

BFPR(r4) = — , (3)
ZP(Hi €0y, 16, )

i

> PO, € Oy, 15, (7))rs, ()

bTPR(ry ) = : . (4)
ZP(Q‘ €0y, "o, )

i

This curve usually has a concave shape connecting the points (0,0) and (1,1).

Fig 3 shows the ROC curves under different distributional assumptions. This figure shows
that the ROC curve for the model under the Laplace distribution is higher than the ROC curve
for the models under the other distributional assumptions. Also, in this figure the area under
the curve (AUC) for each distribution is reported. This criterion shows that the model under
the Laplace distributional assumption (with the highest AUC = 0.9239) is the best
fitting model.

Also, Fig 4 summarizes the posterior probabilities from the BRIN/IDGE method using dif-
ferent distributional assumptions for the errors. This figure plots the posterior probabilities of
Y1 — Uz # 0 versus the posterior difference between the mean of the two groups. This figure

PLOS ONE | DOI:10.1371/journal.pone.0123791  April 24,2015 8/19



@ PLOS | one

Robust Modeling of Differential Gene Expression Data

BTPR

10

0.8

086

04

0.2

00

ROC Curve

— Normal distribution (AUC=0.8899)
- —- Student's t distribution (AUC=0.9046)

Laplace distribution (AUC=0.9239)
Contaminated normal dis. (AUC=0.9031)
Slash distribution (AUC=0.9002)

0.2

T T T |
0.4 06 0.8 1.0

BFPR

Fig 3. ROC curve and the area under the curve (AUC) under different distributional assumptions for the Golub data.

doi:10.1371/journal.pone.0123791.g003

shows that y;—p,s are shrinking towards zero and hence the genes with small values of 1, -y,
have very low posterior probabilities of differential expression.

Fig 5 shows the heatmap of the 983 genes that were best differentiated between the two
types of tumor as determined by the Laplace distributional assumption for the errors at the 0.5
posterior threshold. This figure indicates that the detected genes may be divided in to two clus-
ters, such that, some of the detected genes have higher levels of gene expression in the ALL
sample and some of the detected genes have higher levels of gene expression in the AML sam-
ple. In comparison with existing methods, we use t-tests and Bonferroni-adjusted t-tests to de-
tect the number of differentially expressed genes in the Golub data. The results show that, for
the t-test, 1045 p-values are less than 0.05. The number of detected genes in the Bonferroni-ad-
justed t-tests is 98.
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Significance Analysis of Microarrays (SAM) is a statistical method that has been developed
by [7] for detecting differentially expressed genes. This method performs a two-class analysis
using either a modified t-statistic or a (standardized) Wilcoxon rank statistic, and a multiclass
analysis using a modified F-statistic. SAM uses regularized t-tests where the estimate of the
standard deviation is regularized with a common estimate of the standard deviation and con-
trols an estimate of the FDR value.

LetXj,j=1,...,Jand Yy, k=1,...,K,i=1,2,..., n be the expression level of gene i under
experimental conditions 1 and 2, respectively. In Table 2, the total number of genes declared

X7,

significant is #{i :| d, — d , |> A}, whered, = R X, and Y, are the averages of
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Fig 5. Heatmap of intensities of genes that were best differentiated between the two types of tumor for the Golub data.

doi:10.1371/journal.pone.0123791.g005

Table 2. The results of applying SAM to the Golub data. “False” is the number of falsely called genes,
“Called” is the number of genes called differentially expressed and FDR is the estimated FDR.

A False Called FDR

1 0.1 242477 2739 0.44276
2 0.7 262.21 1248 0.10508
) 1.3 12.11 507 0.01195
4 1.8 0.74 210 0.00176
5 24 0.01 76 6.58e-05
6 3.0 0 15 0

7 3.6 0 5 0

8 41 0 2 0

9 47 0 2 0

10 5.3 0 0 0

doi:10.1371/journal.pone.0123791.t002
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Table 3. The results of applying Efron’s empirical model to the Golub data.

1-a Number FDR
1 0.5 1466 0.1593
2 0.7 1131 0.0885
3 0.9 698 0.0274
4 0.95 539 0.0142

doi:10.1371/journal.pone.0123791.t003

expression level for gene i under experimental conditions 1 and 2. Also,

s(i) = \/a{zjl.zl (X; — X"+ 3 (Y — Y)Y a= (/] + 1/K)/(J + K - 2). The constant s,
is chosen to minimize the coefficient of variation of d;), i = 1, 2, .. ., n (see [24], for more de-
tails). The results for this method are given in Table 2. In this table, “False” is the number of
falsely called genes [7], “Called” is the number of genes called differentially expressed and FDR
is the estimated FDR. In the SAM method, one has to choose the A value that is able to give the
best compromise in terms of called genes, false genes and False Discovery Rate (FDR). In mi-
croarray analysis, it is very important to have statistically robust results, but we have to keep in
mind that too small sized results are not able to describe the biological meaning of the experi-
ment. In general, the choice of cut-off is subjective and there is no definition way of

choosing it.

The results show that, under 0.44276 for FDR, 2739 genes are detected as being differentially
expressed (the results of using this method are obtained by using the SAM package in R). In
our proposed method, the largest value for Bayesian FDR is 0.1330. As shown in Table 1, the
number of differentially expressed genes in this case is 983. Thus, in Table 2, a more realistic
FDR is 0.10508 with a A of 0.7 which results in 1248 genes being detected as differentially ex-
pressed genes. When the FDR is reduced further, A and the number of differentially expressed
genes increased to 1248.

In Efron’s empirical model, a gene will be called differentially expressed if its posterior prob-
ability of being differentially expressed is larger than or equal to 1 — o. The results are shown in
Table 3 and are obtained by using the SAM package in R. When 1 — o= 0.5, a FDR 0f 0.1593
results in 1466 genes being defined as differentially expressed. A more realistic FDR of 0.08855
(when 1-o = 0.7) results in 1131 genes being identified as differentially expressed. Also, the
empirical Bayes lognormal-normal and gamma-gamma models, controlling the FDR at 10%,
detect 650 and 861 genes, respectively. The results are obtained by using the EBarrays package
inR.

5.2 The BRCA data

In this section, we analyzed the BRCA data using the model described in Section 4.2. For de-
tecting differentially expressed genes, we have applied the union-intersection test using the
BRIN/IDGE method.

The model comparison for this data set can be found in Table 4. This shows that different
criteria, bFDR, bTNR and bENR, for each k value, have nearly the same number of differential-
ly expressed genes. We conclude that, for the BRCA data, there is little to choose between the
range of models making different distributional assumptions. Fig 6 shows the ROC curves and
the AUC:s for the models fitted under different distributional assumptions. This figure shows
that all the models perform similarly well.

PLOS ONE | DOI:10.1371/journal.pone.0123791  April 24,2015 12/19



@'PLOS ‘ ONE

Robust Modeling of Differential Gene Expression Data

Table 4. Number of differentially expressed genes, bFDR, bTNR and bFNR in the BRCA data set. The values of bFDR, bTNR and bFNR for the best
model are highlighted in bold.

K

0.50

0.70

0.90

0.95

Model

N
CN
Lap
SL
T

N
CN
Lap
SL
T

N
CN
Lap
SL
T

N
CN
Lap
SL
T

doi:10.1371/journal.pone.0123791.1004

No. bFDR bTNR bFNR

685 0.2571 0.7865 0.2134
666 0.2515 0.7868 0.2331
685 0.2563 0.7865 0.2134
694 0.2607 0.7859 0.2141
692 0.2569 0.7867 0.2132
378 0.1341 0.7458 0.2541
369 0.1244 0.7476 0.2524
380 0.1341 0.7460 0.2539
376 0.1352 0.7439 0.2561
375 0.1288 0.7447 0.2552
163 0.0406 0.7078 0.2921
166 0.0349 0.7111 0.2888
164 0.0406 0.7079 0.2921
158 0.0397 0.7055 0.2944
162 0.0371 0.7067 0.2932
101 0.0187 0.6953 0.3047
110 0.0147 0.6996 0.3003
101 0.0185 0.6951 0.3048
99 0.0195 0.6936 0.3063
102 0.0159 0.6946 0.3054

Table 5 shows the estimates of the mixing probabilities for the five patterns of gene expres-
sion. This table indicates that all the models produce nearly the same probabilities p; s,
i=12,..5.

Fig 7 presents the posterior probabilities from the BRIN/IDGE method for each test using
different distributional assumptions for the errors. This figure shows that differences in the
mean have shrunk towards zero and hence have very low posterior probability of differential
gene expression. This figure also shows that, the larger the difference in means y;—u, the larger
are the posterior probabilities.

6 Simulation Studies

In this section, some simulation studies are conducted in order to illustrate the performance of
our proposed methodology. In each simulation study, N simulated genes are generated and M
iterations are performed.

To record a case identified by posterior probabilities as being differentially expressed, we de-

0 u;=u
fine the following indicator variables: I}/ = { . 1 * such that I} — 1 if P(;; #
0.w.
dialy) > 0.5.Fori=1,2,...,Nandk=1,2, ..., M, also, for the real situation
el 0wy =p,
et — (5)
1 0.W.

In the generated data set, we let 100p% of data have different means and 100(1 — p)% of the
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ROC Curve
— Normal distribution (AUC=0.8286)
o= - —- Student'st distribution (AUC=0.8278)
----- Laplace distribution (AUC=0.8289)
-—-= Contaminated normal dis. (AUC=0.8291)
& | —— slash distribution (AUC=0.8274)

T T T T T
0.0 0.2 04 06 08 1.0
BFPR
Fig 6. ROC curve and the area under the curve (AUC) under different distributional assumptions for the BRCA data.

doi:10.1371/journal.pone.0123791.9006

Table 5. Estimates of the mixing probabilities for the five patterns of gene expression for the BRCA data set. p4 : y = o = iz, P2 : U1 = o # U3, P3* o
# 1= U3, Pa 1 # P2 = 3, Ps : Hh # Uz # Ya.

Model P1 P2 P3 Pa Ps

N 0.7876 0.0216 0.0006 0.1856 0.0040
CN 0.7935 0.0257 0.0000 0.1766 0.0040
Lap 0.7876 0.0220 0.0006 0.1857 0.0040
SL 0.7849 0.0236 0.0003 0.1872 0.0040
T 0.7877 0.0217 0.0006 0.1557 0.0043

doi:10.1371/journal.pone.0123791.t005
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Fig 7. Posterior probabilities against the posterior differences between u, and u, from the model with different distributional assumptions for the
BRCA data.

doi:10.1371/journal.pone.0123791.g007
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generated data have the same means (see subsections 6.1 and 6.2 for more details). So, let p be
the proportion of differentially expressed genes. The true positive rate (TPR), the false positive
rate (FPR) and true discovery rate (TDR) for the k™ iteration can be calculated as follows:
N ea etno.
S, Faiptted

TPR, = Ni—xp’ (6)

ZN (1 _ Ilglz(eal) Ilg\k/[erhod

FPR, = ==L , 7
N
! LReul IMethad
TDR, = —E,le e (8)
> i

Averaging across all iterations, we have:

_ 1 &
TPR = — TPR, (9)

Mk:l

_ 1 E
FPR = —> FPR, (10)

Mk:l

_ 1E
TDR = — TDR,. (11)

Mk:l

A receiver operating characteristic (ROC) curve is a plot of FPR versus TPR for the possible
cutoffs & [P(u;1 # pin|y) > x]. An ROC curve is a two-dimensional depiction of classifier per-
formance [25]. A common method of comparing the classifiers is the area under the ROC
curve (often referred to as the AUC). In our simulation study, we calculate AUC,, k=1,2, ...,
M for each iteration and we report AUC = + S AUC,. AUC and (consequently AUC) is a
portion of the area of the unit square; its value will always lie between 0 and 1. The larger the
value of AUC, the better is the performance of the classifier.

In order to perform a Bayesian analysis, we need a number of iterations for each gene in-
cluding a number for pre-convergence burn-in. In this simulation study, the MCMC chains are
run for 15,000 iterations each. Then, we discarded the first 10,000 iterations as pre-convergence
burn-in and retained 5,000 for the posterior inference. More details of the approaches can be
found in the following sub-sections.

6.1 Simulation study 1

In this section, a simulation study is conducted to check the performance of the proposed
BRIN/IDGE method, when the real distribution of the gene expression is the contaminated
normal distribution. This distribution has a bimodal form which is commonly found in gene
expression data. For this purpose, a sample with N = 1000 genes is evaluated and M = 100 itera-
tions are performed. We consider the model Y;, = p;s + £, such that £;, ~ CN(0, 0, v;), r = 1,
2,...,ngand s = 1, 2. To generate the simulated data sets, we fix y;; = 14, 0;= 1 and v; = (4;, 73)',
A;=0.1 and the two values for y;: 0.10 and 0.25. Also, n; = 27 and n, = 11 are considered.

To verify how the method behaves when the control group moves away from the treatment
group, we choose randomly 5% of the genes in the first group. These observations are generat-
ed by the location parameter y;; + 6 where 6 € {3, 5}.
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Table 6. Results of simulation study for ny = 27 and n, = 11. Data are generated by the contaminated normal distributional assumption for the errors. The
values of AUC for the best model are highlighted in bold.

0.10 N
CN
Lap
SL
T

0.25 N
CN
Lap
SL
T

6=3

TPR

0.2750
0.9952
0.8551
0.9599
0.9801
0.0714
0.8952
0.3571
0.8238
0.8476

doi:10.1371/journal.pone.0123791.t006

5=5

FPR TDR AUC TPR FPR TDR AUC

0.0000 1.0000 0.7013 0.7299 0.0005 0.9928 0.9276
0.0033 0.9727 0.9988 1.0000 0.0016 0.9863 0.9994
0.0033 0.9708 0.9027 0.9951 0.0016 0.9863 0.9994
0.0022 0.9813 0.9773 0.9851 0.0027 0.9772 0.9979
0.0044 0.9643 0.9826 1.0000 0.0038 0.9689 0.9983
0.0000 0.3181 0.3751 0.3052 0.0005 0.7819 0.7915
0.0010 0.9909 0.9659 0.9947 0.0029 0.9768 0.9982
0.0005 0.9920 0.6351 0.8947 0.0011 0.9893 0.9564
0.0021 0.9829 0.9108 0.9157 0.0029 0.9750 0.9864
0.0010 0.9909 0.9364 0.9842 0.0005 0.9952 0.9947

The results of this simulation study are reported in Table 6. This table presents the results of
TPR, FPR, TDR and AU C under different distributional assumptions. These results show the
good performance of the robust models, in particular the model which assumes the contami-
nated normal distribution for the errors. This table shows that the normal distribution is not
able to detect the differentiated genes. Also, as § is increased from 3 to 5, the ability of all distri-
butions to detect differentiated genes is improved, although the reliability of the robust distri-
butions is greater than that of the normal one. The results show that, as y is increased from y =
0.1 to ¥ = 0.25, most of the comparison criteria (TPR, TDR and AU C) for the normal distribu-
tion are severely reduced in value, but the robust distributions have better ability to detect dif-
ferentially expressed genes.

6.2 Simulation study 2

In this subsection, as in subsection 7.1, a simulation study is conducted to check the perfor-

mance of the BRIN/IDGE, method as well as the usual normal model, when data are generated

from the symmetric t distribution. For this purpose, the model defined in Section 4.1, with

gisr ~ 10, 05, v;), 0; =1 and v; = 2, is used. As in Section 7.1, y;; = 14 (6 € {3, 5}) is considered.
The results of this simulation study are summarized in Table 7. These results show that the

performance of the robust models for detecting differentially expressed genes is better than

Table 7. Results of simulation study for n, = 27 and n, = 11. Data are generated by t distributional assumption for the errors. The values of AUC for the
best model are highlighted in bold.

TPR
N 0.6667
CN 0.7555
Lap 0.8444
SL 0.7111
T 0.7556

FPR

0.0158
0.0152
0.0081
0.0105
0.0175

doi:10.1371/journal.pone.0123791.t007

6=3 o0=5
TDR AUC TPR FPR TDR AUC
0.7470 0.8348 0.9556 0.0181 0.7802 0.9548
0.7515 0.8412 0.9777 0.0198 0.7367 0.9653
0.8522 0.8832 0.9556 0.0152 0.7879 0.9674
0.8018 0.9204 0.9777 0.0175 0.7705 0.9679
0.7010 0.8732 1.0000 0.0140 0.8022 0.9892
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that of the normal one. Also, as § is increased from 3 to 5, the ability of the distributions to de-
tect differentially expressed genes has improved. The results show that, when & = 3, the slash
distributional assumption for the error provides the best performance among the models but,
for 6 = 5, the Student’s t distribution, performs the best.

7 Conclusion

In this paper, we have proposed the use of robust models for detecting differentially expressed
genes. For this purpose, some powerful distributions that are known as normal/independent
(N/I) distributions are used. These distributions include the Student’s t, the slash, the contami-
nated normal and the Laplace distributions. We have applied our proposed approach in two-
group and multiple-group scenarios. A union-intersection test is used for detecting differential
gene expression in the multiple-group case. The source code written in R (R20penBUGS pack-
age) is available on “bs.ipm.ac.ir/softwares/BRIN/index.jsp”.

To investigate the performance of our proposed approach, some simulation studies have
been performed. Also, two real data sets have been analyzed where the models have been com-
pared using bFDR, bTNR, bFNR and area under the ROC curve. We have demonstrated the
flexibility of robust models in identifying differentially expressed genes. In other words, a well
performing model in the class of N/I models should be identified in the light of the data. As an
extension, one may consider the use of the skew-normal/independent family of mdels [26] to
analyze gene expression data.
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