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a b s t r a c t

In the aftermath of the COVID-19 pandemic, supply chains experienced an unprecedented challenge
to fulfill consumers’ demand. As a vital operational component, manual order picking operations are
highly prone to infection spread among the workers, and thus, susceptible to interruption. This study
revisits the well-known order batching problem by considering a new overlap objective that measures
the time pickers work in close vicinity of each other and acts as a proxy of infection spread risk. For
this purpose, a multi-objective optimization model and three multi-objective metaheuristics with an
effective seeding procedure are proposed and are tested on the data obtained from a major US-based
logistics company. Through extensive numerical experiments and comparison with the company’s
current practices, the results are discussed, and some managerial insights are offered. It is found that
the picking capacity can have a determining impact on reducing the risk of infection spread through
minimizing the picking overlap.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

In December 2019, a novel coronavirus named COVID-19
SARS-CoV-2) was first documented in Wuhan, China. By early
arch 2020, 114 countries reported cases of the virus contrac-

ions, and the World Health Organization declared the rapidly
preading outbreak a pandemic. While writing this article, there
re more than 10,000,000 reported confirmed cases of the infec-
ion worldwide [1], and current projections anticipate approxi-
ately 175,000 deaths by the end of August 2020 in the US [2].
romptly after the outbreak, it became evident that the supply
hains will be severely disrupted, and depending on the outbreak
ize, demand disruption, and recovery synchronicity of the firms,
he performance of the supply chains will be proportionally
eteriorated [3].
In the context of supply chains, epidemic outbreaks are a

orm of disruption risk that impacts operational performance
easures. Operational activities ordinarily involve humans and
re prone to interruption if the employees are in close physical
ontact. Physical distancing is advocated by epidemiologists as an
nfection spread mitigation strategy [4–6], and can be adapted to
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labor-intensive operational tasks for minimizing the likelihood of
personnel contracting the infection, and hence, maintaining the
performance.

Manual order picking operations are highly labor-intensive,
and due to their criticality, cannot be suspended during a crisis.
Furthermore, since the pickers may work in close vicinity, an
order picking environment may bring about an elevated risk of
virus transmission among the personnel. Thus, physical distanc-
ing policies can be utilized to reduce the likelihood of virus
propagation among the pickers. Depending on the type of picking
environment, such policies may have different consequences and
must be selected in accordance with parameters such as pick-
ing objectives and warehouse design. For example, a warehouse
whose operations are centered around wave picking may need
to implement physical distancing practices that have the least
conflict with its picking makespan.

The objective of this paper is to revisit the well-known or-
der picking problem in manual order picking warehouse while
considering physical distancing practices and aims to investigate
the performance and managerial implications of implementing
such practices. For this purpose, a tri-objective formulation of
the order picking problem is proposed where the total picking
time, makespan, and the time over which the workers are picking
closer than a minimum physical distance are to be minimized.
The third objective, henceforth referred to as picking overlap, is
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omputed by measuring the time each pair of pickers are sta-
ioned at the proximity of each other as controlled by a distance
arameter∆. Thus, a more substantial overlap must be calculated

if more than two pickers are positioned close to each other during
picking. Indeed, a more congested area has a higher infection
transmission potential. As defined in this study, picking overlap
is mainly concerned with the picking time when the pickers have
limited motions due to their physical position in relation to the
pick locations. One has to draw a distinction between the picking
overlap and walking overlap where at least one picker is walking.
This study is primarily concerned with the picking overlap. Thus,
walking pickers are exempt from the overlap computations. This
assumption works best for many warehouses where the picking
aisles are wide enough for the pickers to respect a physical
distance while passing by each other. It is noteworthy that the
picking overlap can provide the decision-makers with a proxy
measure of the picking plus walking overlap. Thus, it can be uti-
lized in warehouses with narrow aisles where the aisles’ distance
does not allow for physical distancing. Additionally, the problem
is parametrized by a distance constant ∆ that can be adjusted to
avor the situations where it is preferred to have a single picker
n an aisle.

This study is modeled after the warehouse operations of a
ajor logistics company located in the US and uses the order level
ata provided by the company. Moreover, the company’s order
icking practices are assessed to draw a comparison between the
urrent state of affairs and solutions that acknowledge physical
istancing. The company’s current order picking operations are
ighly geared towards minimizing the total picking time, and
s will be illustrated, improving the physical distancing measure
hile maintaining the status quo’s level of picking efficiency

s possible. In fact, there seems to be some degree of positive
ynergy among picking overlap and total picking time objectives.
owever, makespan demonstrates intense conflict with the other
wo objectives. This observation has unpropitious implications
or wave picking environments, where makespan is typically
rioritized. In other words, physical distancing practices seem to
e more challenging to implement in wave picking warehouses
hen compared to the warehouses, where the objective is to
inimize the total picking time.
Conventionally, Order picking problems consist of several sub-

roblems. In order picking with physical distancing (OPPD) con-
iderations, one is interested in batching a set of orders and
evising a picking route for each batch to optimize a set of
redefined objectives while minimizing picking overlap amid the
tationary pickers. The warehouse of this study utilizes the S-
hape routing policy. Thus, the main results are derived using the
ame procedure. However, to explore the effect of routing policy
n the results, the Midpoint policy is assessed in the numerical
xperiment section as well. While some evidence shows that
he S-shape routing policy has anti-congestion properties [7,8],
he results of applying the Midpoint policy in the context of the
resented problem, does not confirm this hypothesis.
As previously shown in the literature, order batching is NP-

ard and challenging to solve for large instances using exact
ethods [9]. This challenge is more amplified when multiple
bjectives are considered. This study proposes a mathematical
ri-objective model along with three evolutionary algorithms,
amely, Non-dominated Sorting GA-II (NSGAII) [10], strength
areto evolutionary algorithm (SPEA2) [11], and Non-dominated
orting GA-III (NSGAIII) [12], to tackle the problem. The primary
otivation for using three evolutionary metaheuristics comes

rom some earlier evidence in the literature where evolutionary
ethods have yielded promising results for multi-objective order
icking problems [13,14]. Thus, this study will delve deeper into

ssessing evolutionary algorithms’ applications in such problems

2

as a side objective. There are numerous well-known approaches
within the realm of multi-objective evolutionary methods, each
utilizing a different strategy. While being far from being an ex-
haustive list of algorithms, NSGAII (with a non-dominated sorting
strategy), NSGAIII (with a reference-point-based procedure), and
SPEA2 (with a density estimation technique) represent three
important approaches in multi-objective metaheuristics. Thus,
evaluating these methods can potentially guide future direction
on using multi-objective techniques in order picking. In this
study, the company’s order batching method is utilized to seed
the proposed metaheuristics and significantly improve the re-
sults. The proposed methods’ solutions are compared against the
current practices of the studied company to draw managerial in-
sights. This study contributes to the current body of the literature
by considering a picking overlap objective whose utilization can
mitigate the risk of infectious disease spread, such as the one
caused by COVID-19. Additionally, this study’s methods can be
applied to order picking operations during flu seasons to avoid
downtime in the warehouses due to personnel sickness.

The remainder of this paper is structured as follows. In Sec-
tion 2, related literature is reviewed. In Section 3, the structure
of the problem is explained. Section 4 outlines the proposed
optimization model. In Section 5, the order batching method of
the case study’s company and the proposed metaheuristics are
introduced. Section 6 is dedicated to the numerical experiments.
Section 7 discusses the managerial implications of the findings,
and finally in Section 8 overall conclusion is stated.

2. Literature review

The presented study’s central contribution revolves around
mitigating the risk of contracting infectious diseases in ware-
houses by reevaluating the order picking problems and incorpo-
rating a picking overlap objective. The rationale behind the pick-
ing overlap objective is that being positioned reasonably apart
while picking, abates the chance of infection spread. However,
the extent of order picking performance deterioration, if any, in
the presence of physical distancing is not fully investigated in
the literature. Furthermore, to the best of authors’ knowledge,
picking overlap has not been recognized as an independent objec-
tive previously. This section examines the existing order picking
literature that is most relevant to the subject of this study.

Structurally, and from an operational standpoint, order picking
problems are composed of four sub-problems of order batching,
batch assignment, batch sequencing, and picker routing [15–17],
among which order batching and picker routing are the subjects
of this study. Order batching is primarily revolving around group-
ing a set of customer orders in such a manner to achieve a set of
operational objectives such as total travel time or tardiness min-
imization [18–20]. Typically, batching alone is not sufficient to
accomplish the objectives, and typically is accompanied by a rout-
ing decision. The literature offers some evidence of performance
independence between batching and routing sub-problems in
particular cases [21]. However, an advantageous bilateral effect
between these two sub-problems has been observed in several
instances [8,15,22,23].

In the picker routing problem, the objective is to form the
shortest possible path for picking the batches. Warehouse routing
problems are usually modeled as a special case of the travel-
ing salesman problem (TSP), known as Steiner TSP, where each
visiting node has a maximum degree of four [17]. Since it was
shown that Steiner TSPs encountered in rectangular warehouses
with two cross-aisles are solvable in polynomial time [24], several
solvable cases of warehouse TSPs have been introduced, and ef-
ficient methodologies are developed for more general warehouse
architectures [25–27]. A major disadvantage of exact routing
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ethods is the complexity of their produced paths for pickers to
ollow [8]. Thus, warehouses prefer to employ heuristic methods
hat generate paths with predictable patterns. The most widely
sed routing policies in the warehouses are S-shape, midpoint,
eturn, and largest gap [28]. Besides exact and heuristic ap-
roaches, some studies have utilized metaheuristic methods for
outing [16,29–31].

When integrated, order batching and picker routing can re-
ult in significant efficiency gains [15]. However, the integrated
roblem poses computational challenges. To this end, exact and
calable (both exact and heuristic) methods of order batching
nd picker routing are extensively studied [67,68]. To tame the
omplexity of the integrated problem, and replicate a more re-
listic scenario, some studies have concentrated on exact batch-
ng solutions in the presence of heuristic routing policies [7,9,
1,61]. On the other hand, some studies have exclusively ap-
lied heuristics and metaheuristics [29,30,46,47,57,62,69], or a
ifferent combination of exact and heuristic approaches [17].
From a methodological point of view, the literature on multi-

bjective order picking problems is limited [68], and few studies
ackle two objectives [13,14,39,70–74]. To the best of the authors’
nowledge, with the exception of NSGAII [13,14], SPEA2 and
SGAIII have not been applied to multi-objective manual order
icking problems before. Moreover, as discussed earlier, these
hree methods represent three notable approaches (i.e., non-
ominated sorting, reference points, and density estimation) in
he multi-objective evolutionary algorithms. Thus, their applica-
ion in the context of the proposed tri-objective model and the
esults of numerical experiments can offer an initial investigation
f utilizing these multi-objective methods in the manual order
icking literature.
One distinctive feature of order picking problems is their

hoice of the objective function. Three objectives of total travel
ime, tardiness, and makespan are the most frequently utilized
bjectives in the literature, among which total travel time and
akespan are the most and least regularly considered objec-

ives [17]. While at least one of these objectives seem to fulfill
he requirements of any warehouse, the recent supply chain
isruptions pertaining to coronavirus outbreak (COVID-19/SARS-
oV-2) pandemic points to a possible gap in the order picking
perational objectives. In a practical context, it is essential to
rotect the pickers from infectious diseases by assigning them
icking tours that have less overlap and are more compliant with
hysical distancing recommendations. This study addresses the
xisting literature gap by introducing an overlap objective that
cts as a measure of physical distancing practices in conjunction
ith total travel time and makespan objectives. This research

ntends to shed light on the performance implications of the over-
ap objective in a real setting by utilizing efficient metaheuristic
esigns.
There is a vast literature on order batching and picker routing,

nd this study does not intend to examine the existing body of
esearch fully. Thus an interested reader is referred to [8,75,76],
nd Table 1 in which some of the most notable order batching
nd picker routing studies, sub-problems they have considered,
ethods applied, and the objectives utilized are summarized.

. Problem statement

This study’s warehouse is modeled after a real warehouse
elonging to a well-known logistics company in the USA. The
arehouse operates in a wave picking setting where the profile of
he next wave is known beforehand. Waves are ordinarily large,
nd each day is dedicated to picking a single wave. Warehouse’s
hape is rectangular with multiple parallel aisles, and two front
nd rear cross aisles. The walking speed of pickers is assumed
3

constant, and the crossing time between two sides of an aisle
is negligible. Each shelf can hold multiple products, and each
product is located on only one shelf. There are N orders, each
consisting of multiple products, to be picked. The warehouse
stocks M different products, and there are a sufficient number
of pickers to pick the orders. Picking commences with batching
the orders and retrieving their products using S-shape routing
policy starting from origin v0. Each picker is assigned a single
batch, and there are a sufficient number of pickers to manage
all batches. All tours begin simultaneously and at time 0. Orders
cannot split among multiple picking tours, and orders assigned to
a batch must not exceed pickers’ capacity Q . Following physical
distancing practices, pickers are preferred to be positioned less
than ∆ (i.e., minimum social distance) units of a length away
while in picking position. Thus, physical distancing considerations
are only applied to stationary pickers. Products’ dimensions are
reasonably similar (i.e., there is no unusually large/small product),
and instead of total volume, the capacity is determined as the
number of items that a picker can handle. All products are located
within reach of the pickers, and therefore, vertical distance is
insignificant. Picking time at a location comprises the duration
of searching, picking, and checking, and is estimated based on
the number of units picked at the location. Fig. 1 depicts the
order of operations in OPPD, in which initially a list of orders,
each containing multiple items, is received and compiled. Next,
the orders are grouped into batches. Finally, each batch is picked
by traversing a route through the warehouse and by a picker. As
presented in Fig. 1, routing depends on batching decisions, and
these two create an intertwined problem.

While the presented study is primarily designed based on the
logistics’ company warehouse, it can be extended to other manual
order picking environments as well. This extension is mainly
viable due to the structure of the overlap objective function,
which is based on the time pickers operate in proximity to each
other. Almost in every manual order picking system, the pickers
are bound to work close to each other occasionally and, thus,
are prone to the risk of infection spread. Considering the pick
overlap as an assessable picking performance that estimates the
time pickers are closer than a minimum physical distance, it can
be universally applied to different settings in the manual order
picking literature.

4. Model

In order picking, warehouse graph representation is a cen-
tral modeling component. Depending on the routing policy, it is
possible to exploit the warehouse graph for obtaining optimum
routing. For example, if an exact routing policy is of interest, it
suffices to consider the picking locations solely, and the distance
between two picking nodes will be the shortest distance between
the nodes. In this manner, the warehouse graph will be reduced
to a considerably smaller graph that is more convenient to be ma-
nipulated by exact methods [24]. Furthermore, warehouse graphs
lend them to efficient valid inequalities that are demonstrated
to be highly effective for modeling order picking problems [61].
When using heuristic routing policies, it is not necessary to solve
for the sequence of the picking nodes, and thus, a model does not
need to obtain the nodes’ enter and exit times and hence, a less
complicated model [7].

When modeling OPPD with an S-shape routing policy, the
traversed distance between two nodes is not necessarily the
shortest. Thus, the problem’s graph cannot be treated as in the
exact methods. On the other hand, the entrance and the exit times
of each picking location need to be accurately determined in the
model to calculate the picking overlap. Therefore, the benefits of
sequence-less models cannot be utilized. This structure of OPPD
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Table 1
Related studies.
Study Assignment Batching Routing Sequencing Methods Objective(s)

[24] � Dynamic programming Total distance/time
[32] � Branch and bound Makespan
[33] � Dynamic programming Total distance/time
[34] � Heuristics Total distance/time
[35] � Cluster analysis Order similarity
[36] � Association rule mining Order similarity
[9] � Column generation Total distance/time
[37] � � Heuristic Response time
[38] � Heuristic Total distance/time
[21] � � Heuristic Total distance/time
[39] � � Multiple genetic algorithm Total distance

time and due date
[40] � Variable neighborhood search Total distance/time
[41] � � K-means

self-organizing map
Total distance/time
Picking vehicle utility

[42] � Heuristic Makespan
[43] � Hill climbing

Tabu search
Total distance/time

[44] � Heuristic Total distance/time
[45] � � Tabu search Total distance/time
[46] � � Association rule mining

Genetic algorithm
Total tardiness

[47] � � Heuristic Total tardiness
[48] � Heuristic Total distance/time
[49] � � A*-algorithm

simulated annealing
Total distance/time

[31] � � � Genetic algorithm
Ant colony optimization

Total tardiness

[30] � � Particle swarm optimization
Ant colony optimization

Total tardiness

[50] � � Variable neighborhood search Total tardiness
[51] � � Column Generation Travel cost
[7] � Heuristic

Tabu Search
Total distance/time

[52] � Group genetic algorithm Workload balance
[53] � Heuristic Total distance/time
[54] � � Particle swarm optimization Total distance/time
[55] � Heuristic Total distance/time

U-turns
[14] � � NSGA-II Total distance/time
[56] � Variable neighborhood search Total distance/time
[57] � Tabu search Total distance/time
[23] � � Ant colony optimization Total distance/time
[58] � � Variable neighborhood search Total tardiness
[19] � Variable neighborhood search Total distance/time
[59] � � Parallel Variable neighborhood search Batch retrieval time
[26] � Dynamic programming Total distance/time
[15] � � � � Variable neighborhood search Total tardiness
[60] � Genetic algorithm Total distance/time
[61] � � Branch & bound Total distance/time
[16] � � � Lagrangian decomposition-particle

swarm optimization
Parallel simulated annealing-ant
colony optimization

Makespan

[62] � A Memetic Algorithm
Simulated annealing

Total time

[63] � Branch & bound Makespan
[64] � � Heuristic Total tardiness
[18] � Variable neighborhood search

Tabu search
Total distance/time

[65] � Heuristic Makespan
delivery cost

[66] � � � Heuristic Total distance/time
[17] � � � Exact/Heuristic Makespan
[13] � � � Genetic algorithm

Coevolutionary genetic algorithm
Archived multi-objective simulated annealing

Total distance/time
Makespan
formulation poses a unique challenge: determining the entry
times of each picking node while traversing a path that is not
necessarily the shortest. To resolve this issue, it is necessary to
ascertain the entry times of all intermediary nodes where no
picking takes place. This necessity itself poses a new challenge.
4

If the entry times of each node (intermediary and picking) are to
be determined, then the typical sub-tour elimination constraints
cannot be applied because some nodes are visited more than
once. Fig. 2 depicts an S-shape picking tour where some nodes
are visited twice. Typical sub-tour elimination constraints cannot
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Fig. 1. Order of operations in OPPD.
Fig. 2. An example of a tour with nodes that are visited more than once.
Fig. 3. Transforming a tour to visit each location at most once.
o
R
l
a
F

handle the situations where a location is visited more than once.
Thus, the Steiner graph of a warehouse is inadequate for modeling
OPPD.

To overcome the problem of multiple location visits and im-
plement sub-tour elimination constraints, multiple connected
replications of the Steiner graph, henceforth referred to as ex-
tended Steiner graph (or extended graph in short), must be
utilized. In the example of Fig. 2, an extended graph where
sub-tour elimination constraints are fulfilled can be obtained
by connecting two replicas of a Steiner graph. In this regard,
each node in the original Steiner graph is associated with two
nodes (replicas) in the extended graph. The distance between
the replicas of a node in the extended graph is assumed to be
0, to preserve the length of a tour. The new higher dimensional,
extended graph can be used to create a tour where each node
is visited at most once, and sub-tour elimination constraints can
5

be implemented. Fig. 3 illustrates how to utilize an extended
Steiner graph to transform the tour of Fig. 2 with two replicas
r1 and r2 for each node and visit each location at most once. In
Fig. 3, instead of backtracking the tour, and for avoiding a location
revisitation, the tour stretches to another replica of the Steiner
graph in the extended graph. Since this lateral transition has no
time associated with it, it does not alter the primary duration of
the tour.

Considering the extended Steiner graph representation intro-
duced earlier, the warehouse of this study can be modeled as a
graph G = (V, E), where V and E are the sets of nodes, and edges
f the graph. Each node v ∈ V has R replicas, corresponding to
Steiner graphs. Storage node of the jth product is denoted by

(j). In other words, l acts as a function whose input is a product
nd outputs a storage node in the Steiner graph (i.e., l : M → V).
unction a : M → K associates the location of each product
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Fig. 4. A chromosome and its batch choices for seven orders (i.e., N = B = 7).

Table 2
Parameters and their levels for NSGAII, SPEA2, and NSGAIII.
Parameter Level 1 Level 2 Level 3

pc 0.60 0.70 0.80
pm 0.05 0.10 0.15
pg 0.25 0.50 0.75
µ+λ 50+150 100+100 150+50

j ∈ M to an aisle k ∈ K. In the proposed model, functions l
and a is separated from indices by a comma to avoid confusion.
Characteristic function q̄ : N × M → {0, 1} outputs 1 if order
i ∈ N contains product j ∈ M, otherwise outputs 0. Characteristic
function δ∆ : V × V → {0, 1} determines whether the distance
between two nodes v1 and v2 is less than the minimum accept-
able physical distance ∆ or not. Note that in this study, the terms
‘node’ and ‘location’ are often used interchangeably, and when a
physical site is intended, the term physical location is preferred.
The indices, parameters/functions, and decision variables of the
model are defined as follows:

Indices:

i ∈ N = {1, 2, . . . ,N} : orders
j ∈ M = {1, 2, . . . ,M} : products
k ∈ K = {1, 2, . . . , K } : aisles
b ∈ B = {1, 2, . . . , B} : batches
v ∈ V = {1, 2, . . . , V } : nodes in the Steiner graph
r ∈ R = {1, 2, . . . , R} : node visit (in this study R = 2)

Parameters/Functions:

∆ : walking time of the minimum physical distance
dv1v2 : travel time between nodes v1 and v2
qij : units of product j in order i
Q : picking capacity
T : picking time of a unit of a product
Λ : A sufficiently large number
l(j) : location of product j in the Steiner graph
a(v) : aisle of node v
q̄ij : 1 if order i contains product j, otherwise 0
δ∆(v1, v2) : 1 if dv1v2 < ∆, 0 otherwise
 o

6

Decision Variables:
xbi : 1 if order i is assigned to batch b, otherwise 0
ybr1r2v1v2 : 1 if in batch b, node v2 is visited for the r2th time

right after node v1 is visited for the r1th time,
otherwise 0

ubk : 1 if aisle k is visited in batch b, otherwise 0
pbk : 1 if aisle k is the rightmost aisle visited in batch

b, otherwise 0
τbv : picking time spent on node v in batch b
t+bvr : time of entering node v for the rth time in batch

b
t−bvr : time of exiting node v for the rth time in batch b
fb : finishing time of batch b
Cmax : makespan
α
b1b2
v1v2 : earliest time of exiting node v1 in batch b1 or

node v2 in batch b2
β

b1b2
v1v2 : latest time of entering node v1 in batch b1 or

node v2 in batch b2
φ

b1b2
v1v2 : picking time overlap between node v1 in batch b1

and node v2 in batch b2
The proposed model P is formulated as follows:

in F =

∑
b∈B

fb (1)

in Cmax (2)

in Φ =

∑
b1∈B

∑
b2 ̸=b1
b2∈B

∑
v1∈V

∑
v2∈V

φb1b2
v1v2

(3)

ubject to Eqs. (4)–(35) which are given in Box I.
In model P , (1) to (3) measure the total travel time, makespan

nd the total overlap, respectively. Constraint (4) assigns each
rder to exactly one batch and in order to break solution sym-
etries, it assigns order i1 to batch b1, order i2 to either batch

1 or batch b2, and so forth [61]. Batch capacity is imposed in
onstraint (5). Constraint (6) ensures that picking activities take
lace when the first replica of a picking node is visited. Constraint
7) limits the number of nodal visits to one. Constraint (8) makes
he caps the number of visiting origin node to one. Constraint (9)
quates the number of entries and exits for all nodes replicas.
onstraints (10) and (11) guarantee that there is no reversal
nd double traversal on the back aisle’s edges. Constraints (12)
llows a movement reversal only on the rightmost aisle of each
atch. Constraints (13) to (18) determine the visiting and right-
ost aisles of each batch. Constraint (19) calculates the picking

ime on each node. Constraints (20) to (22) specifies the entry
nd exit time of each node and eliminates the sub-tours. Con-
traint (23) measures the finishing time of each batch. Constraint
24) determines the makespan, and constraints (25)–(27) deter-
ine the overlap among nodes across different batches. Finally,
onstraints (28) to (31) specify the type and domain of each
ecision variable. As can be observed, constraints (25) to (27) in
odel P are non-linear. However, linearizing these constraints
re quite straightforward and commercial solvers such as Gurobi
utomatically handles them.

. Methodology

In this section, the company’s order batching method is de-
cribed. Moreover, the application of three metaheuristics,
amely, NSGAII, SPEA2, and NSGAIII, in solving the proposed
odel, P , is explained. The proposed metaheuristics use the
ompany’s order batching schema as a seeding procedure for
nitializing the evolution process. As will be illustrated later, using
his seeding procedure improves the results significantly. Finally,
full factorial experiment is conducted to determine the best set
f parameters for each metaheuristic.
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∑
b∈{b′∈B:b′≤i}

xbi = 1 ∀i ∈ N (4)

∑
i∈N

∑
j∈M

xbiqij ≤ Q ∀b ∈ B (5)

∑
v1∈R

(v1 ,l(j))∈E

yb11v1,l(j) ≥ xbiq̄ij ∀b ∈ B; i ∈ N ; j ∈ M, q̄ij = 1 (6)

∑
r1∈R

∑
v1∈R

(v1 ,v2)∈E

ybr1r2v1v2
≤ 1 ∀b ∈ B; v2 ∈ V; r2 ∈ R (7)

∑
r1∈R

∑
r2∈R

∑
v1∈R

(v1 ,0)∈E

ybr1r2v10 ≤ 1 ∀b ∈ B (8)

∑
r1∈R

∑
v2∈E

(v1 ,v2)∈E

ybr1r2v1v2
−

∑
r3∈R

∑
v2∈E

(v2 ,v3)∈E

ybr2r3v2v3
= 0 ∀b ∈ B; v2 ∈ V; r2 ∈ R (9)

∑
r1∈R

∑
r2∈R

ybr1r2v1v2
= 0 ∀b ∈ B; (v1, v2) on back aisle, v2 < v1 (10)

∑
r1∈R

∑
r2∈R

ybr1r2v1v2
≤ 1 ∀b ∈ B; (v1, v2) on back aisle, v2 > v1 (11)

∑
r1∈R

∑
r2∈R

ybr1r2v1v2
+

∑
r2∈R

∑
r1∈R

ybr2r1v2v1
≤ 1 + pb,a(v1) ∀b ∈ B; (v1, v2) ∈ E, a(v1) = a(v2) (12)

ybr1r2v1v2
≤ ub,a(v2) ∀b ∈ B; (v1, v2) ∈ E, v2 not on cross-aisles; r1, r2 ∈ R (13)

xbiq̄ij ≤ ub,a(l(j)) ∀b ∈ B; i ∈ N ; j ∈ M, q̄ij = 1 (14)∑
i∈N

∑
j∈M

a(l(j))=k

xbiq̄ij ≥ ubk ∀b ∈ B; k ∈ K (15)

ubk −

∑
k′∈{k′′∈K:k′′≥k+1}

ubk′ ≤ pbk ∀b ∈ B; k ∈ K (16)

pbk ≤ ubk ∀b ∈ B; k ∈ K (17)∑
k∈K

pbk = 1 ∀b ∈ B (18)

∑
i∈N

∑
j∈M
l(j)=v

Txbiqij = τbv ∀b ∈ B; v ∈ V (19)

t+bv1 + τbv = t−bv1 ∀b ∈ B; v ∈ V \ {v0} (20)

t+bvr = t−bvr ∀b ∈ B; v ∈ V \ {v0}; r ∈ R \ {1} (21)

t−bv1r1 + dv1v2 −Λ(1 − ybr1r2v1v2
) ≤ t+bv2r2 ∀b ∈ B; (v1, v2) ∈ E; r1, r2 ∈ R (22)

t+bvr ≤ fb ∀b ∈ B; v ∈ V; r ∈ R (23)

Cmax ≥ fb ∀b ∈ B (24)

min(t−b1v11, t
−

b2v21) = αb1b2
v1v2

∀b1, b2 ∈ B, b1 ̸= b2; v1, v2 ∈ V (25)

max(t+b1v11, t
+

b2v21) = βb1b2
v1v2

∀b1, b2 ∈ B, b1 ̸= b2; v1, v2 ∈ V (26)

max(αb1b2
v1v2

− βb1b2
v1v2

, 0) = φb1b2
v1v2

∀b1, b2 ∈ B, b1 ̸= b2; v1, v2 ∈ V, δ∆(v1, v2) = 1 (27)

xbi ∈ {0, 1} ∀b ∈ B; i ∈ N (28)

ybr1r2v1v2
∈ {0, 1} ∀b ∈ B; (v1, v2) ∈ E; r1, r2 ∈ R (29)

ubk, pbk ∈ {0, 1} ∀b ∈ B; k ∈ K (30)

τbv ∈ R≥0 ∀b ∈ B; v ∈ V (31)

t+bv, t
−

bv ∈ R≥0 ∀b ∈ B; v ∈ V; r ∈ R (32)

Box I.
7
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αb1b2
v1v2

, βb1b2
v1v2

, φb1b2
v1v2

∈ R≥0 ∀b1, b2 ∈ B, b1 ̸= b2; v1, v2 ∈ V (33)

fb ∈ R≥0 ∀b ∈ B (34)

Cmax ∈ R≥0 (35)

Box I. (continued).
t
e
e
o
c
b
c
f

5.1. Company’s order batching heuristic and seeding

The company’s order batching heuristic forms a single batch
at each step. For this purpose, it starts with determining the
most visited aisle by all unassigned orders. Then, it proceeds with
selecting the orders that require a minimum extra distance to be
traversed if selected into the batch. Selecting new orders is con-
trolled through a penalty parameter that is updated every time a
new order is added to the batch. The structure of this heuristic
is designed with S-shape routing policy in mind. Parameters and
variables used by the company’s order batching heuristic are as
follows:

i ∈ N =

{1, 2, . . . ,N}

: orders

k ∈ K =

{1, 2, . . . , K }

: aisles

L : aisle length
H : distance between the center of two

neighbor aisles
n : number of bays per aisle
N− : set of unassigned orders in the order pool
i′ : a pseudo order for generating a batch
vik : 1 if order i visits aisle k; otherwise 0
v′

k : 1 if a batch visits aisle k; otherwise 0
kmax : index for the most visited aisle by all

unassigned orders
ΨK =

(ψ1, ψ2, . . . , ψK )
: Calibration vector where ψk is the penalty
for visiting aisle k by a new order

ibest : order with least penalty
si : total penalty of order i
kleft : index of the most left aisle that a batch

visits
kright : index of the most right aisle that a batch

visits

Algorithm 1 outlines the company’s order batching steps.
Batches formed by Algorithm 1 create a solution that will be used
as a seed in the proposed metaheuristics. As will be discussed
later, this type of seeding has a significant positive performance
effect on all proposed metaheuristics.

5.2. NSGAII, SPEA2 and NSGAIII

The core components of evolutionary algorithms are its so-
lution representation (i.e., chromosome), fitness function, and
crossover, mutation, and selection operators. [77,78]. In this sec-
tion, elements of the proposed NSGAII, SPEA2, and NSGAIII are
introduced.

5.2.1. Solution representation and fitness function
A widely-used approach to define a chromosome is by uti-

lizing a binary matrix whose arrays show the assignment of
orders to catches. However, matrix representation has two main
drawbacks. First, since each order is assigned to precisely one
batch, the assignment matrix will be a sizeable sparse matrix and
8

Table 3
Results of company’s current method.
N Q ∆ F Cmax Φ CPU (s)

10 50 0 1310 780 0 0.10
10 50 10 1310 780 20 0.09
10 50 30 1310 780 200 0.10
10 100 0 1080 1080 0 0.09
10 100 10 1080 1080 0 0.09
10 100 30 1080 1080 0 0.10
25 50 0 2370 820 0 0.21
25 50 10 2370 820 420 0.21
25 50 30 2370 820 500 0.21
25 100 0 2100 1280 0 0.21
25 100 10 2100 1280 0 0.21
25 100 30 2100 1280 20 0.21
50 50 0 6190 860 0 0.43
50 50 10 6190 860 3330 0.41
50 50 30 6190 860 7270 0.41
50 100 0 4960 1350 0 0.41
50 100 10 4960 1350 2760 0.40
50 100 30 4960 1350 6000 0.41
100 50 0 12160 870 0 0.82
100 50 10 12160 870 12820 0.86
100 50 30 12160 870 22670 0.83
100 100 0 9950 1360 0 0.83
100 100 10 9950 1360 8680 0.85
100 100 30 9950 1360 13390 0.82
200 50 0 13460 850 0 1.64
200 50 10 13460 850 17360 1.63
200 50 30 13460 850 29590 1.62
200 100 0 11660 1350 0 1.62
200 100 10 11660 1350 7510 1.62
200 100 30 11660 1350 12780 1.63
500 50 0 36430 860 0 4.56
500 50 10 36430 860 137960 4.58
500 50 30 36430 860 250140 4.58
500 100 0 31250 1370 0 4.54
500 100 10 31250 1370 64270 4.57
500 100 30 31250 1370 120190 4.55

inefficient in terms of memory consumption. Second, assignment
matrices can introduce symmetry and, subsequently, degenerate
solutions. For example, the batches assigned to two pickers can be
exchanged without altering the objective function’s value. Having
degenerate solutions can create numerous optimal regions in
the search space and delay the convergence of algorithms. This
study utilizes a vector structure for chromosomes to evade these
impediments. For this purpose, the set of chromosomes is defined
as Ω = {Ω = (ω1, ω2, . . . , ωN ) : ωi ∈ Bi,∀i ∈ N } where
Bi = {b : b ∈ B, b ≤ i}. Each component of chromosome Ω
corresponds to an order i ∈ N while its value is a batch number
b ∈ Bi. Thus, the first order i1 can only be assigned to the batch b1
while the last order iN can be assigned to any of the batches. For
his representation to function properly, it is necessary to have an
qual number of batches and orders, i.e., B = N . Moreover, this
quality is necessary to satisfy the capacity constraint in case each
rder occupies a single batch. Fig. 4 illustrates a chromosome
onsisting of seven orders and the batches to which each order
elongs. Additionally, Fig. 4 depicts the batch choices that each
hromosome element, associated with an order, can have. While
orming the initial population, each chromosome is generated in
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able 4
est objective values and CPU times obtained by Gurobi, NSGAII, SPEA2, and NSGAIII.

Problem Gurobi NSGAII SPEA2 NSGAIII

N Q ∆ F Cmax Φ CPU (s) F Cmax Φ CPU (s) F Cmax Φ CPU (s) F Cmax Φ CPU (s)

10 50 0 1230 530 0 3600 1230 530 0 82.42 1230 530 0 239.01 1230 530 0 112.95
10 50 10 1230 530 0 3600 1230 530 0 88.31 1230 530 0 209.85 1230 530 0 113.89
10 50 30 1230 530 0 3600 1230 530 0 96.37 1230 530 0 191.58 1230 530 0 113.33
10 100 0 1080 530 0 3600 1080 530 0 82.93 1080 530 0 211.05 1080 530 0 113.31
10 100 10 1080 530 0 3600 1080 530 0 90.27 1080 530 0 192.91 1080 530 0 111.34
10 100 30 1080 530 0 3600 1080 530 0 87.23 1080 530 0 182.75 1080 530 0 110.45
25 50 0 NA NA NA 3600 2350 820 0 93.49 2350 820 0 372.61 2350 820 0 123.33
25 50 10 NA NA NA 3600 2350 820 120 94.51 2350 820 100 302.30 2350 820 100 128.55
25 50 30 NA NA NA 3600 2350 820 200 93.87 2350 820 130 227.53 2350 820 180 128.09
25 100 0 NA NA NA 3600 2050 820 0 96.96 2100 820 0 198.13 2100 820 0 128.90
25 100 10 NA NA NA 3600 2050 820 0 100.53 2050 820 0 186.52 2050 820 0 132.12
25 100 30 NA NA NA 3600 2100 820 20 101.28 2100 820 20 173.60 2100 820 20 130.85
50 50 0 NA NA NA 3600 6090 700 0 106.05 6110 700 0 254.14 6120 700 0 145.35
50 50 10 NA NA NA 3600 6090 700 2140 113.94 6070 700 2080 187.57 6070 700 2220 147.11
50 50 30 NA NA NA 3600 6060 700 5050 113.39 6050 700 5370 195.32 6050 700 5160 151.78
50 100 0 NA NA NA 3600 4920 700 0 107.71 4920 700 0 186.37 4920 700 0 140.30
50 100 10 NA NA NA 3600 4960 700 670 118.70 4920 700 450 190.12 4920 700 480 145.43
50 100 30 NA NA NA 3600 4920 700 2260 120.15 4920 700 1930 188.10 4960 700 2310 146.98
100 50 0 NA NA NA 3600 12110 820 0 141.03 12150 820 0 312.13 12110 820 0 183.39
100 50 10 NA NA NA 3600 12070 820 10260 155.74 11960 820 10350 242.68 12070 820 10420 192.68
100 50 30 NA NA NA 3600 12070 820 20140 158.17 12010 820 20030 252.27 12000 820 19840 192.95
100 100 0 NA NA NA 3600 9950 820 0 140.15 9910 820 0 208.68 9950 820 0 179.05
100 100 10 NA NA NA 3600 9950 820 4240 162.50 9910 820 4520 233.37 9950 820 4750 194.00
100 100 30 NA NA NA 3600 9950 820 9330 164.99 9890 820 9050 233.95 9950 820 9130 197.86
200 50 0 NA NA NA 3600 13400 740 0 213.27 13460 740 0 380.41 13410 740 0 267.37
200 50 10 NA NA NA 3600 13460 740 15850 245.72 13460 740 15860 353.61 13460 740 16050 294.82
200 50 30 NA NA NA 3600 13450 740 27180 233.81 13460 740 27390 378.01 13410 740 26960 284.34
200 100 0 NA NA NA 3600 11660 740 0 212.36 11660 740 0 291.66 11650 740 0 262.82
200 100 10 NA NA NA 3600 11660 740 5590 248.58 11660 740 5820 319.38 11660 740 5760 296.07
200 100 30 NA NA NA 3600 11660 740 11640 249.07 11660 740 11720 322.02 11660 740 11710 297.65
500 50 0 NA NA NA 3600 36430 770 0 607.46 36420 770 0 801.40 36350 770 0 681.27
500 50 10 NA NA NA 3600 36430 770 131490 702.39 36380 770 132440 831.20 36430 770 132170 724.33
500 50 30 NA NA NA 3600 36430 770 241880 736.88 36350 770 242910 849.76 36430 770 242800 723.90
500 100 0 NA NA NA 3600 31250 770 0 605.30 31250 770 0 789.48 31250 770 0 663.50
500 100 10 NA NA NA 3600 31250 770 59870 759.21 31250 770 60350 850.58 31250 770 60370 811.70
500 100 30 NA NA NA 3600 31250 770 116350 763.66 31250 770 116370 951.07 31250 770 115950 868.10
Fig. 5. Standardized effect of parameters on Hypervolume and CPU time for NSGAII with N = 50, Q = 50, and ∆ = 30.
uch a way to ensure feasibility. Each chromosome’s fitness value
s computed by measuring its total travel time, makespan, and
otal overlap using the S-shape routing policy. Remember that
n this study, it is assumed that there are a sufficient number
f pickers to pick the batches, and each batch is assigned to a
eparate picker.
9

5.2.2. Crossover, mutation, and selection
In this study, a standard two-point crossover is utilized. It

is noteworthy that the two-point crossover does not violate the
structure of a chromosome. Thus, after crossover, for each chro-
mosome component ωi we have ωi ∈ Bi where Bi = {b : b ∈

B, b ≤ i}. In other words, each order is assigned to a batch
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Fig. 6. Company’s current practices vs. the Pareto frontier obtained by NSGAII for six problem instances.

Fig. 7. Log HV convergence plot of NSGAII, SPEA2, and NSGAIII with seeded and not seeded initialization (instance N = 100,Q = 50,∆ = 30).

10
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og hypervolume and CPU times of Gurobi, NSGAII, SPEA2, and NSGAIII.
Problem Gurobi NSGAII SPEA2 NSGAIII

N Q ∆ logHV CPU (s) logHV CPU (s) logHV CPU (s) logHV CPU (s)

10 50 0 15.8191727 3600 15.8253209 89.60 15.8253241 255.09 15.8253204 117.99
10 50 10 15.8182753 3600 15.8253109 94.79 15.8253242 222.81 15.8253242 119.06
10 50 30 15.8187047 3600 15.8253203 98.50 15.8253175 202.58 15.8253142 117.05
10 100 0 15.8172561 3600 15.8254391 93.79 15.8254392 218.92 15.8254387 120.85
10 100 10 15.8226942 3600 15.8254392 97.60 15.8254391 210.99 15.8254393 116.18
10 100 30 15.8190604 3600 15.8254391 94.42 15.8254391 195.94 15.8254393 116.21
25 50 0 NA 3600 15.7952111 103.28 15.7952181 381.96 15.7952111 128.27
25 50 10 NA 3600 15.7952018 101.69 15.7952065 330.64 15.7952065 131.39
25 50 30 NA 3600 15.7951908 101.12 15.7951952 309.60 15.7951937 132.02
25 100 0 NA 3600 15.7954343 102.35 15.7954271 221.98 15.7954236 133.46
25 100 10 NA 3600 15.7954434 105.54 15.7954360 192.49 15.7954367 134.71
25 100 30 NA 3600 15.7954247 109.00 15.7954254 186.49 15.7954253 134.64
50 50 0 NA 3600 15.8042021 110.50 15.8041769 302.37 15.8041647 148.79
50 50 10 NA 3600 15.8038670 120.11 15.8038729 203.25 15.8038628 150.87
50 50 30 NA 3600 15.8034525 121.19 15.8034051 206.46 15.8034147 154.32
50 100 0 NA 3600 15.8051488 110.68 15.8051700 196.02 15.8050592 143.38
50 100 10 NA 3600 15.8049673 121.70 15.8050502 193.39 15.8050272 148.63
50 100 30 NA 3600 15.8047441 125.80 15.8047962 193.45 15.8047428 152.21
100 50 0 NA 3600 15.7865895 144.63 15.7865725 352.66 15.7865850 185.14
100 50 10 NA 3600 15.7850301 157.79 15.7851035 262.64 15.7850668 195.59
100 50 30 NA 3600 15.7836593 162.96 15.7837096 262.75 15.7836866 202.55
100 100 0 NA 3600 15.7865373 146.74 15.7883620 215.66 15.7876362 181.68
100 100 10 NA 3600 15.7873039 166.32 15.7875933 239.52 15.7873425 197.42
100 100 30 NA 3600 15.7867690 167.51 15.7868749 238.80 15.7866130 202.26
200 50 0 NA 3600 15.7936651 219.02 15.7936348 414.61 15.7936373 270.96
200 50 10 NA 3600 15.7913076 250.77 15.7912973 378.19 15.7912801 297.72
200 50 30 NA 3600 15.7896198 248.07 15.7896268 395.48 15.7896164 300.49
200 100 0 NA 3600 15.7945664 221.31 15.7948829 296.14 15.7942809 269.21
200 100 10 NA 3600 15.7936919 257.19 15.7938265 321.07 15.7937663 300.73
200 100 30 NA 3600 15.7927048 265.03 15.7929294 325.23 15.7928241 304.20
500 50 0 NA 3600 15.7695024 622.13 15.7695513 821.97 15.7694678 687.54
500 50 10 NA 3600 15.7499714 715.82 15.7498042 840.32 15.7498477 750.72
500 50 30 NA 3600 15.7328319 757.31 15.7327861 872.92 15.7327527 756.10
500 100 0 NA 3600 15.7711374 620.77 15.7726792 804.34 15.7707146 671.20
500 100 10 NA 3600 15.7621031 810.71 15.7625451 876.23 15.7625302 836.04
500 100 30 NA 3600 15.7527633 814.52 15.7534157 977.34 15.7536448 899.88
whose index is less than the order index to break the solutions’
symmetry. To ensure feasibility and in the case of generating
infeasible offspring, crossover operation is repeated up to five
times. If no feasible offspring is generated after the fifth time, the
crossover operation is aborted.

To perform a mutation, a chromosome’s component ωi is
randomly chosen, and its value is changed to a random value
ω′

i ∈ Bi. In case the mutant is infeasible, it is discarded, and a
new mutant is generated. Similar to the crossover, this process is
repeated up to a maximum of five times to find a feasible mutant,
and if no feasible solution is generated after the fifth time, muta-
tion operation is aborted. A distinctive feature of NSGAII, SPEA2,
and NSGAIII is their selection process. In this study, the works
of [10–12] are closely followed for implementing the selection
operator.

5.3. Parameter tuning

Parameters of the metaheuristics have a determining impact
on their performance. In this study, a full factorial method was
utilized for tuning the parameters of the metaheuristics. Tuning
parameters of the NSGAII, SPEA2, and NSGAIII include the prob-
ability of crossover pc , probability of mutation pm, probability of
altering a gene during mutation process pg , number of selected
individuals for the next generation µ, and number of offsprings
at each generation λ. Since a higher number of generations posi-
tively impacts the results, it was omitted from the tuning process
and was set to 200 for all experiments. For each parameter, three
levels were considered, as shown in Table 2, and all experiments

were conducted on a test problem with N = 50, Q = 50, and

11
∆ = 30. Two response factors of Pareto frontier Hypervolume
and CPU time were investigated.

The factorial experiments found no significant relationship be-
tween the parameters and their interaction with the performance
of the algorithms in terms of Hypervolume. However, a significant
relationship was observed when the CPU time was considered
as the response variable. Fig. 5 depicts the standardized effect
of parameters on Hypervolume and CPU time for NSGAII. As can
be observed, none of the parameters’ standardized effect reaches
the threshold to be considered significant for the Hypervolume.
However, three parameters and their interaction were deter-
mined significant when considered with the CPU time. Since no
performance difference was detected, the parameters were set to
minimize the CPU time (µ+ λ = 50 + 150, pc = 0.6, pm = 0.05,
and pg = 0.25).

6. Numerical experiments

This section presents the results of applying NSGAII, SPEA2,
and NSGAIII to a set of problems sampled from the order level
data of the studied logistics company, and compares them against
the company’s current practices. On average, each order contains
4.32 units of products. In the less frequent instances of orders
containing unusually large numbers (i.e., larger than capacity),
they are modified to fit the batches’ capacity. This modification
was deemed essential to investigate the effect of batch size on
the solutions. Number of orders in each problem is selected from
{10, 25, 50, 100, 200, 500}. Capacity Q and minimum physical
distance ∆ are chosen from {50, 100} and {0, 10, 30}, respec-
tively. The maximum allowed CPU time for all instances is set to

3600 s. The warehouse structure used for numerical experiments
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PS, MID, SNS, and RAS obtained by Gurobi, NSGAII, SPEA2, and NSGAIII.

Problem Gurobi NSGAII SPEA2 NSGAIII

N Q ∆ NPS MID SNS RAS NPS MID SNS RAS NPS MID SNS RAS NPS MID SNS RAS

10 50 0 3 1500 67 1977 4.6 1482.1 67.5 1961.6 4.6 1480.3 67.8 1963.1 4.6 1494.3 73.9 1976.7
10 50 10 3 1538 86 1706 6.8 1539.1 88.7 1447.2 7.4 1533.3 97.9 1747.5 7.4 1528.4 95.2 1697.4
10 50 30 3 1581 83 564 19.0 1582.3 84.1 581.4 17.8 1576.5 75.8 548.0 16.8 1579.3 78.2 554.1
10 100 0 3 1506 66 2043 6.0 1501.1 67.5 2033.7 6.4 1500.3 65.4 2030.0 6.4 1506.0 67.2 2036.8
10 100 10 3 1540 77 1805 9.0 1529.2 79.0 1698.4 9.0 1532.5 83.3 1827.6 9.4 1534.3 84.5 1796.9
10 100 30 3 1575 86 704 19.4 1578.3 88.5 636.9 21.4 1574.9 73.7 683.3 21.4 1571.4 73.0 696.6
25 50 0 NA NA NA NA 1.2 2502.5 2.2 3182.0 1.0 2492.7 NA 3171.0 1.0 2500.3 NA 3179.0
25 50 10 NA NA NA NA 5.6 2593.5 109.4 10.8 7.0 2618.7 128.2 14.1 7.8 2606.6 126.3 13.5
25 50 30 NA NA NA NA 6.2 2629.9 128.2 7.6 13.4 2687.6 132.4 8.9 8.8 2668.2 140.0 8.1
25 100 0 NA NA NA NA 8.6 2490.5 111.4 3253.1 11.0 2469.5 91.2 3234.6 10.0 2551.7 133.7 3312.2
25 100 10 NA NA NA NA 77.4 2666.3 205.1 344.5 102.6 2640.3 183.8 341.7 107.2 2648.4 189.1 347.8
25 100 30 NA NA NA NA 104.4 2716.3 252.0 37.8 118.6 2669.6 215.3 35.7 93.4 2624.2 184.1 37.3
50 50 0 NA NA NA NA 3.6 6310.9 148.8 6990.9 4.2 6398.9 205.6 7096.3 4.2 6365.3 179.9 7052.1
50 50 10 NA NA NA NA 60.6 7316.9 266.1 10.8 66.2 7106.5 203.8 10.2 57.0 7102.6 253.8 10.3
50 50 30 NA NA NA NA 80.2 9034.6 354.7 14.6 97.8 9037.8 343.7 14.9 75.4 8891.2 310.6 14.5
50 100 0 NA NA NA NA 17.8 6062.8 766.8 6939.0 21.8 5793.2 543.0 6684.3 16.4 6488.0 1148.3 7397.2
50 100 10 NA NA NA NA 149.2 6889.6 750.0 7.9 211.4 6531.0 745.0 7.4 167.6 6280.6 720.5 6.5
50 100 30 NA NA NA NA 167.4 8179.3 1396.3 10.7 215.6 7668.7 1134.2 9.6 194.0 7678.1 1033.4 9.6
100 50 0 NA NA NA NA 4.0 12631.1 391.2 13439.0 4.0 12505.7 303.9 13317.0 4.0 12710.4 605.9 13522.9
100 50 10 NA NA NA NA 52.2 17760.2 486.3 27.6 81.6 17342.6 384.1 26.9 48.4 17242.7 387.2 26.8
100 50 30 NA NA NA NA 59.2 25269.5 707.7 39.1 74.8 24983.6 664.7 38.5 79.4 24945.6 677.2 38.5
100 100 0 NA NA NA NA 21.8 12833.5 2117.0 13872.8 26.8 12024.0 1279.4 13007.7 19.0 13648.8 2913.9 14708.4
100 100 10 NA NA NA NA 153.4 15580.2 2397.7 18.7 242.2 14864.0 1958.4 17.7 181.6 14472.3 2193.7 16.9
100 100 30 NA NA NA NA 168.2 20131.9 3840.0 25.2 200.8 19092.2 3247.5 23.2 179.6 18979.9 3849.6 23.1
200 50 0 NA NA NA NA 7.2 14368.9 874.9 15132.3 7.0 14135.4 497.9 14897.4 7.2 15175.5 1498.9 15939.5
200 50 10 NA NA NA NA 72.2 22167.0 326.5 37.2 69.0 22159.8 361.9 37.3 64.4 22105.6 348.5 37.2
200 50 30 NA NA NA NA 50.0 32042.8 556.9 52.0 51.6 31892.0 484.3 51.6 74.0 31946.6 433.4 51.4
200 100 0 NA NA NA NA 27.4 16885.9 4090.6 17883.3 34.4 15281.6 2444.6 16228.8 24.0 18380.5 5143.5 19409.7
200 100 10 NA NA NA NA 122.0 21008.7 5263.3 28.4 172.2 19505.1 4607.1 25.6 152.2 19746.3 6125.0 26.0
200 100 30 NA NA NA NA 107.0 28731.3 9553.7 39.9 152.8 25403.6 6895.1 34.0 143.8 24855.1 8698.5 32.6
500 50 0 NA NA NA NA 6.4 40446.8 4041.6 41244.0 6.4 37934.5 1433.2 38729.5 6.2 43532.3 7228.9 44328.4
500 50 10 NA NA NA NA 73.4 140844.6 2695.4 208.7 74.4 141654.2 2755.1 210.3 78.4 141015.3 2847.5 209.0
500 50 30 NA NA NA NA 70.4 250776.8 4880.3 345.9 109.6 250908.2 3910.0 348.3 89.2 250810.2 4130.6 346.4
500 100 0 NA NA NA NA 26.4 49618.9 13637.6 50706.6 40.6 45427.5 9002.2 46453.4 22.2 50168.1 14510.3 51268.5
500 100 10 NA NA NA NA 106.2 119733.7 55042.9 154.0 131.0 114231.7 39596.5 145.3 128.4 113506.1 43919.1 143.8
500 100 30 NA NA NA NA 97.4 193834.3 86800.0 222.5 115.8 192825.9 63772.7 226.3 114.0 188492.5 75474.3 220.6
closely follows one of the company’s warehouses (i.e., rectangular
with parallel aisles and two cross-aisles). However, the dimen-
sions, number of aisles, and pick faces are modified to replicate a
more controlled experiment environment. Note that this modifi-
cation does not change the overall performance of the proposed
algorithms or the conclusions drawn from results. Each problem
is attempted five times, and the results detailed are based on the
overall performance of each algorithm over the total number of
trials for each problem. All algorithms are implemented in Python
3.7 and executed on a 64-bit Windows operating system with an
Intel Core i9-7940X CPU and 64 GB RAM.

6.1. Company’s method

Table 3 lists the total time F , makespan Cmax, and overlap Φ
obtained from applying the company’s method to the problems.
As will be shown later, these results are highly efficient in terms
of total travel time. However, the solutions it suggests are not
efficient in terms of overlap as they are designed with a single
total travel time objective in mind. As will be discussed in the
remainder of this section, it is possible to maintain or minimally
deteriorate the same level of total time efficiency while improv-
ing the overlap considerably. However, the same statement is
not necessarily applicable to the makespan due to its negative
correlation with both overlap and total travel time.

6.2. Proposed methods

Table 4 lists the best objective values and CPU times obtained
by Gurobi, NSGAII, SPEA2, and NSGAIII. As can be observed, even

for small instances with 25 orders, Gurobi is unable to find

12
any feasible solution in the allotted one hour. Compared to the
company’s method in Table 3, all proposed metaheuristics of
Table 4 find superior or equal solutions for all instances of the
problem. This higher quality is especially notable for makespan
and overlap.

The results of Table 4 demonstrate the extent to which each
metaheuristic has been able to improve the solutions. However,
it does not reveal any information on the relative performance
of the methods. A multi-objective algorithm can be examined on
several fronts. Some of the deciding performance measures of a
multi-objective method are the number, quality, and diversity of
the solutions it finds. The following metrics are utilized to com-
pare the performance of the proposed multi-objective algorithms
from various aspects [14,79,80]:

• Number of Pareto Solutions (NPS): counts the number of
non-dominated solutions found.

• Mean Ideal Distance (MID): is the average Euclidean distance
between Pareto frontier solutions and the ideal point (0,0),
and is measured as:

MID =

∑n
i=1 ci
n

(36)

where ci =

√
f 21i + f 22i + f 23i, and f 21i, f

2
2i and f 23i are the value of

the objective functions for the ith non-dominated solution.
• Spread of Non-dominated Solutions (SNS): assesses the di-

versity of the non-dominated solutions and is defined as:

SNS =

√∑n
i=1 (MID − ci)2

n − 1
(37)
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Fig. 8. Objectives’ correlation for different values of Q throughout NSGAII’s evolution process (N = 50,∆ = 30).
• Rate of Achievement Simultaneously to two objectives
(RAS): measures the quality of the non-dominated solutions
in relation with the minimum objective function, and is
computed as:

RAS =

∑n
i=1

[(
(f1i − Fi)

Fi
+

(f2i − Fi)
Fi

+
(f3i − Fi)

Fi

)]
n

(38)

where Fi = min{f1i, f2i, f3i}.
• Hypervolume (HV): represents both quality and diversity of

a set of solutions on a Pareto frontier (P) by calculating the
hypervolume of the Pareto front in regards with a reference
point, and is computed as follows:

HV (P) =

{⋃
A(xi) | ∀xi ∈ P

}
(39)
i=1

13
where xi is a solution in P , and A(xi) is the rectangular area
confined between the points xi and a reference point.

Table 5 shows the logarithm of hypervolume and CPU times
of Gurobi, NSGAII, SPEA2, and NSGAIII. Log hypervolume conveys
the same information as hypervolume. However, due to the large
size of hypervolume numbers, log hypervolume is used in Table 5.
A non-parametric Kruskal–Wallis test on the hypervolume ranks
of averages was conducted to compare the results of Gurobi,
NSGAII, SPEA2, and NSGAIII. At a 0.95 significance level, it was
found that there is no statistically meaningful difference in terms
of log HV among the metaheuristics. Due to its small sample
size, Gurobi was not involved in the test. However, a general
assessment of the Gurobi’s log HV results illustrates an inferior
performance compared to the other proposed methods. A similar
Kruskal–Wallis test was performed to compare the CPU times,
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Fig. 9. Pareto frontiers and the best fitted curve for different values of Q (N = 50,∆ = 30).
and a significant difference was observed. Subsequently, a Mann–
Whitney pairwise test with significance level 0.01 was conducted
to find the method with the lowest CPU time, and NSGAII was
determined as the fastest approach.

Table 6 tabulates the average NPS, MID, SNS, and RAS values
obtained by Gurobi, NSGAII, SPEA2, and NSGAIII rounded to the
nearest integer. Similar to the log HV value in Table 5, the per-
formance of the proposed metaheuristics was evaluated using a
non-parametric Kruskal–Wallis test, and it was found there is no
statistically significant difference between the algorithms. Thus,
the only differentiating parameter among the algorithms is their
CPU time in which NSGAII outperforms the other algorithms.
While there might be several reasons as to why a method such
14
as NSGAIII that is designed for a larger number of objectives
cannot outperform NSGAII and SPEA2, one possible explanation
may lie in the seeding procedure of algorithms. As was discussed
earlier, the seeding process provides high-quality solutions in
terms of total travel time. Thus, the algorithms find it easier to
explore the feasible space for solutions with lower makespan and
overlap at the start. In other words, the evolutionary force of the
algorithms is mostly concentrated on the makespan and overlap,
and a smaller feasible space needs to be examined. In a smaller
search space, the algorithms’ performance can converge easier,
and hence, equal solution quality.
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able A.7
est no-overlap objective values obtained by Gurobi, company’s batching algorithm, NSGAII, SPEA2, and NSGAIII using S-shape routing policy.

Problem Gurobi Company NSGAII SPEA2 NSGAIII

N Q ∆ F Cmax F Cmax F Cmax F Cmax F Cmax

10 50 0 1230 530 1310 780 1230 530 1230 530 1230 530
10 50 10 1230 530 1320 790 1230 530 1230 530 1230 530
10 50 30 1250 535 1395 780 1250 535 1230 535 1250 535
10 100 0 1080 530 1080 1080 1080 530 1080 530 1080 530
10 100 10 1080 530 1080 1080 1080 530 1080 530 1080 530
10 100 30 1080 535 1080 1080 1080 535 1080 535 1080 535
25 50 0 NA NA 2370 820 2370 820 2350 820 2350 820
25 50 10 NA NA 2630 990 2575 855 2585 855 2585 855
25 50 30 NA NA 2880 1130 2620 855 2615 855 2630 865
25 100 0 NA NA 2100 1280 2100 820 2100 820 2100 820
25 100 10 NA NA 2100 1280 2100 855 2100 855 2100 865
25 100 30 NA NA 2135 1285 2135 855 2135 855 2135 870
50 50 0 NA NA 6190 860 6100 700 6110 700 6190 700
50 50 10 NA NA 9335 1340 7800 1010 8500 1030 8630 1035
50 50 30 NA NA 14260 2240 11920 1850 11940 1850 10705 1850
50 100 0 NA NA 4960 1350 4920 700 4920 700 4920 700
50 100 10 NA NA 7750 2465 6015 1015 6630 1015 6590 1040
50 100 30 NA NA 9505 2615 7315 1850 6995 1850 7380 1850
100 50 0 NA NA 12160 870 12100 820 12100 820 12160 820
100 50 10 NA NA 23790 2075 21230 1830 20895 1830 21555 1830
100 50 30 NA NA 34210 3180 28755 2730 28305 2730 28300 2730
100 100 0 NA NA 9950 1360 9940 820 9950 820 9950 820
100 100 10 NA NA 19735 3155 15375 1830 15220 1830 15515 1830
100 100 30 NA NA 26625 4355 18580 2730 18540 2730 17735 2730
200 50 0 NA NA 13460 850 13410 740 13460 740 13460 740
200 50 10 NA NA 28295 2690 25430 2030 25565 2070 25455 2045
200 50 30 NA NA 37065 3650 31435 2890 31230 2890 31130 2890
200 100 0 NA NA 11660 1350 11660 740 11660 740 11660 740
200 100 10 NA NA 17385 2430 17195 2025 17185 2035 17105 2000
200 100 30 NA NA 22985 3845 20805 2890 20965 2890 20835 2890
500 50 0 NA NA 36430 860 36430 770 36430 770 36430 770
500 50 10 NA NA 129775 5415 120905 5140 118555 5015 117645 5290
500 50 30 NA NA 211780 8530 188835 8250 190885 8265 187060 8120
500 100 0 NA NA 31250 1370 31250 770 31250 770 31250 770
500 100 10 NA NA 91160 6160 84465 5995 85980 5830 83250 5945
500 100 30 NA NA 123035 8085 110560 7750 109665 7885 107235 7670
6.3. Comparison with company’s solution

In this section, the results of the proposed metaheuristics
re compared against the case study’s current practices. Fig. 6
epicts the current practices of the company against the Pareto
rontier obtained by NSGAII. As can be observed, NSGAII offers
more diverse array of solutions. As was argued earlier, the

ompany’s method is quite efficient in terms of total travel time.
owever, as Fig. 6 illustrates, there are many other possibilities
o choose from in order to have solutions with less overlap while
aintaining travel time efficiency. Further comparison of the
areto and company’s solutions reveals two intriguing trends.
irst, when picking capacity is low, there are more solutions with
he company’s level of total time efficiency and lower overlap to
elect from. For example, in the problem with N = 50, Q = 50,
nd ∆ = 30, one can sustain the company’s total travel time
nd improve the overlap by approximately 8.7%. Additionally, it
eems smaller waves have a higher chance of obtaining a better
verlap value for the same total travel time level. The second
bservation pertains to the relationship between overlap and
otal travel time. When the picking capacity increases, total travel
ime and overlap’s correlation increases. Thus, low travel time
olutions yield a lower overlap. This effect will be examined in
ore detail in the following sections.

.4. Case of no pick overlap

In some circumstances, one may be interested in no overlap
cenarios where the pickers avoid picking overlap by waiting

ntil the other pickers have cleared the shelf. In this case, no pick

15
overlap will translate into an increase in the total travel time, and
the overlap objective will be eliminated. Appendix A presents a
no pick overlap model P ′ along with the results of NSGAII, SPEA2,
and NSGAIII with no overlap considerations and S-shape routing
procedure. To implement the no overlap policy, a first-in-first-
out (FIFO) pick procedure is applied where the picker who has
arrived at a pick location earlier starts picking first. At the same
time, other pickers wait for the pick area to clear off. As can be
observed from Appendix A, the proposed metaheuristics are quite
competent for dealing with high overlap instances compared to
the company’s current practice. In fact, when no overlap is al-
lowed, the proposed metaheuristics tend to significantly improve
the company’s solutions compared to the cases where the overlap
is permitted. Notably, as the minimum physical distance increases
(and consequently waiting times increases), the percentage of
the company’s total travel time improvement obtained by the
metaheuristics also increases. This observation shows the supe-
rior performance of the proposed multi-objective methods when
dealing with no-overlap instances.

While the metaheuristics perform well on the no overlap
instances, it is noteworthy that accepting a certain level of pick
overlap may be preferred to zero overlap due to two reasons.
First, reducing overlap is one infection spread mitigation strat-
egy that must be considered in conjunction with the utilization
of appropriate personal protective equipment (PPE) and testing
procedures. In the presence of medical tests and PPE usage,
mandating zero overlaps may result in unnecessarily conservative
solutions with excessive total picking times. Second, a model
that requires zero overlaps may not be suitable for less severe

diseases. In model P , pick overlap is considered as an objective
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Algorithm 1 Company’s order batching algorithm

1: N−
= N

2: vi′k = 0 ∀k ∈ K
3: v′

k = 0 ∀k ∈ K
4: vi′kmax = 1
5: γ =

H
L/n

6: for k ∈ K do
7: if k ̸= kmax then
8: ΨK[k] = −(n + γ |k − kmax|)
9: else
0: ΨK[k] = 0
1: end if
2: end for
3: while batch capacity allows do
4: for i ∈ N− do
5: si = 0
6: for k ∈ K do
7: si = si + ΨK[k]

18: end for
19: end for
20: ibest = argmini si
1: N−

= N−
\ ibest

2: for k ∈ K do
3: if vibest k = 1 and v′

k = 0 then
4: v′

k = 1
5: end if
6: end for
7: determine kleft and kright
8: for k ∈ {1, 2, ..., kleft} do
9: ΨK[k] = −(n + γ |k − kleft |)
0: end for
1: for k ∈ {kleft , kleft + 1, ..., kright} do
2: if v′

k = 0 then
3: ΨK[k] = −n
4: end if
5: end for
6: for k ∈ {kright , kright + 1, ..., K } do
7: ΨK[k] = −(n + γ |k − kright |)
8: end for
9: end while

(soft constraint) so that depending on the severity of the disease,
the solutions can be adjusted. For example, during a less severe
flu season, it may be reasonable to emphasize total picking time
compared to overlap.

6.5. Effect of routing policy

Routing policy can impact the quality of solutions. Specifi-
ally, when an infection spread is of concern, one may prefer
o use a routing policy that decreases the risk of spread. The
odel and main results of this study are derived using the S-
hape policy as it is the current routing procedure of the study’s
arehouse. The S-shape policy is hypothesized to have anti-
ongestion properties [8], and since picker congestion can act
s an infection spread facilitator, it may be a suitable procedure
or the infection risk mitigation. On the other hand, there is
ome evidence that the S-shape policy may lead to excessively
ong travel times, which could be the result of both long travel
istances and frequent blocking and congestion [81]. To evaluate
he S-shape policy’s effectiveness for the problem of this study,
Midpoint policy was implemented. Conducting statistical tests
nd comparisons between the policies revealed that the S-shape
olicy does not hold any advantage over the Midpoint policy in
16
Table B.8
Company’s method using Midpoint policy.
N Q ∆ F Cmax Φ

10 50 0 1280 790 0
10 50 10 1280 790 0
10 50 30 1280 790 0
10 100 0 1060 1060 0
10 100 10 1060 1060 0
10 100 30 1060 1060 0
25 50 0 2350 810 0
25 50 10 2350 810 520
25 50 30 2350 810 560
25 100 0 2150 1340 0
25 100 10 2150 1340 10
25 100 30 2150 1340 70
50 50 0 6130 910 0
50 50 10 6130 910 3090
50 50 30 6130 910 5740
50 100 0 5010 1370 0
50 100 10 5010 1370 2510
50 100 30 5010 1370 3310
100 50 0 12230 900 0
100 50 10 12230 900 14860
100 50 30 12230 900 21840
100 100 0 10160 1380 0
100 100 10 10160 1380 8770
100 100 30 10160 1380 12160
200 50 0 13580 860 0
200 50 10 13580 860 19450
200 50 30 13580 860 26650
200 100 0 11800 1410 0
200 100 10 11800 1410 8890
200 100 30 11800 1410 10680
500 50 0 36580 880 0
500 50 10 36580 880 138240
500 50 30 36580 880 235030
500 100 0 31550 1390 0
500 100 10 31550 1390 66960
500 100 30 31550 1390 114240

terms of overlap. In fact, the Hypervolumes comparison showed
that the Midpoint policy offers a slightly better tradeoff between
the objectives. Finding the best routing policy that minimizes
the infection spread requires a comprehensive routing policy
comparison that falls beyond the current study’s scope. The de-
tails of the Midpoint policy results are tabulated in Appendix B.
Note that computational times are not reported in Appendix B
as no significant difference was observed between S-shape and
Midpoint policies in terms of CPU time. Moreover, since model
P is formulated based on the S-shape policy, no exact approach
result is reported in Appendix B.

6.6. Seeding and convergence

In this section, the effectiveness of the proposed seeding pro-
cedure is examined. Fig. 7 illustrates the convergence of NSGAII,
SPEA2, and NSGAIII in terms of log hypervolume over the first
200 generations. As observed, when seeded, all algorithms sig-
nificantly outperform their not seeded counterparts. The same
effect is observed for different values of Q and ∆. However, the
gap between the seeded and not seeded solutions seem to be
more prevalent for more constrained instances of the problem
(i.e., smaller Q ). This effect may be attributed to the difficulty
of finding high-quality feasible solutions in tightly constrained
search spaces, and the fact that seeding can bypass this difficulty.
Furthermore, the seeding procedure produces highly efficient
solutions in terms of total travel time, which have little room
for improvement. As a result, the proposed algorithms mostly
concentrate on enhancing makespan and overlap. In other words,
seeding with a superior solution in terms of one of the objectives,
functions as if the objective is relaxed and thus, the algorithm has
a more manageable feasible space to search.



E. Ardjmand, M. Singh, H. Shakeri et al. Applied Soft Computing Journal 100 (2021) 106953

T
B

c
e

m

o
I
o
t
i
o
c
o
t

able B.9
est objective values obtained by NSGAII, SPEA2, and NSGAIII using Midpoint routing policy.

Problem NSGAII SPEA2 NSGAIII

N Q ∆ F Cmax Φ F Cmax Φ F Cmax Φ

10 50 0 1210 490 0 1210 490 0 1210 490 0
10 50 10 1210 490 0 1210 490 0 1210 490 0
10 50 30 1210 490 0 1210 490 0 1210 490 0
10 100 0 1060 490 0 1060 490 0 1060 490 0
10 100 10 1060 490 0 1060 490 0 1060 490 0
10 100 30 1060 490 0 1060 490 0 1060 490 0
25 50 0 2330 810 0 2330 810 0 2330 810 0
25 50 10 2310 810 230 2350 810 100 2330 810 120
25 50 30 2330 810 310 2330 810 150 2330 810 250
25 100 0 2150 810 0 2150 810 0 2090 810 0
25 100 10 2150 810 10 2080 810 10 2080 810 0
25 100 30 2110 810 70 2080 810 70 2080 810 20
50 50 0 6080 700 0 6030 700 0 6080 700 0
50 50 10 5900 700 2120 6060 700 2070 6030 700 2170
50 50 30 6030 700 4790 5840 700 4640 6020 700 4750
50 100 0 4970 700 0 4970 700 0 4970 700 0
50 100 10 4980 700 630 4960 700 410 4980 700 550
50 100 30 5010 700 1920 4980 700 1950 4970 700 1770
100 50 0 12210 820 0 12210 820 0 12140 820 0
100 50 10 12210 820 12350 12140 820 11610 12200 820 11880
100 50 30 12140 820 19810 12210 820 19710 12170 820 19430
100 100 0 10150 820 0 10160 820 0 10160 820 0
100 100 10 10160 820 4450 10060 820 5500 10160 820 6250
100 100 30 10070 820 8990 10160 820 8950 10160 820 9150
200 50 0 13520 730 0 13580 730 0 13580 730 0
200 50 10 13580 730 16740 13510 730 17650 13570 730 16850
200 50 30 13580 730 24990 13560 730 25880 13580 730 25790
200 100 0 11790 730 0 11790 730 0 11800 730 0
200 100 10 11800 730 7980 11780 730 8020 11800 730 7710
200 100 30 11800 730 10250 11800 730 10280 11800 730 10280
500 50 0 36580 780 0 36580 780 0 36580 780 0
500 50 10 36510 780 133800 36580 780 135190 36580 780 135260
500 50 30 36580 780 229160 36580 780 231690 36580 780 231320
500 100 0 31550 780 0 31550 780 0 31540 780 0
500 100 10 31550 780 63080 31550 780 63370 31550 780 62620
500 100 30 31550 780 112540 31550 780 113240 31550 780 112550
s
t
s
v
t
i

7. Discussion

In this section, the managerial implications of the model and
onsidering overlap objective are discussed. As was illustrated
arlier, picking capacity Q is a determining factor in the rela-

tionship between the total travel time and overlap. To investigate
this observation further, the correlation between the three objec-
tives was measured throughout NSGAII’s evolution process. Fig. 8
depicts the Pearson correlation ρ between total travel time F ,
akespan Cmax, and overlapΦ for the best found solutions at each

generation of NSGAII and for various picking capacities. As can
be observed, correlations eventually converge for all instances.
However, the limit to which the correlations converge is different
for each picking capacity. When Q = 50, total travel time and
verlap correlation ρF ,Φ reaches converges to a negative value.
n other words, for tight picking capacities, total travel time and
verlap act as conflicting objectives. However, as Q increases,
he convergent correlation between total travel time and overlap
ncreases. A positive correlation between total travel time and
verlap suggests that the two objectives are cooperating, and one
an be improved by improving the other one. Another intriguing
bservation is the correlation between makespan and the other
wo objectives. As Q increases, makespan’s correlation with other
objectives points to a more conflicting state.

From a managerial standpoint, the aforementioned observa-
tions can be interpreted as follows. When a warehouse’s objective
is to minimize the total travel time, it may benefit from increasing
the picking capacity as it allows for reducing the overlap. In other
words, for warehouses to minimize total travel time, increasing
picking capacity helps with mitigating the risk of infection spread.
 s

17
This dynamic can be explained by considering that an increased
picking capacity means fewer batches and fewer walking pickers
to interact. Thus, increasing picking capacity contributes to lower
overlap by reducing the number of pickers that are required to
traverse the warehouse at a time.1

A second managerial lesson of this study originates from
the correlation between makespan and overlap. As observed in
Fig. 8, makespan always correlates with the other objectives
negatively. However, this correlation’s absolute value is smaller
for the lower values of the picking capacity Q . Thus, a lower
picking capacity provides a more favorable tradeoff between
overlap and makespan. Thus, warehouse environments where the
makespan is of significance, such as a wave-picking warehouse,
may benefit from reducing the picking capacity to control the
overlap and spread of infection. Remember that in this study,
each batch is picked by a separate picker. Therefore, lower picking
capacity translates into smaller waves, which means reducing the
wave size can help mitigate the risk of infection spread in wave
picking warehouses. It is noteworthy that reducing the wave size
can potentially eliminate the benefits of picking postponement.
Consequently, wave picking warehouses may find themselves at

1 A second explanation of this effect rises from the structure of optimum
olutions. In general, it is easier to find degenerate solutions with the same total
ravel time but different picking tours when the picking capacity is large. While
uch solutions have the same total travel time, they may have different overlap
alues, and thus, there is a higher chance of finding low overlap solutions among
he degenerate ones. It is noteworthy that in this context, the term degeneracy
s used with a more general purpose in mind, and the solutions that have the
ame value for one objective are also categorized as degenerate.
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able B.10
og hypervolume of NSGAII, SPEA2, and NSGAIII using Midpoint policy.
N Q ∆ NSGAII SPEA2 NSGAIII

10 50 0 15.8292108 15.8292109 15.8292104
10 50 10 15.8292105 15.8292110 15.8292109
10 50 30 15.8292074 15.8292110 15.8292104
10 100 0 15.8293241 15.8293259 15.8293236
10 100 10 15.8293256 15.8293252 15.8293254
10 100 30 15.8293252 15.8293255 15.8293258
25 50 0 15.7962663 15.7962663 15.7962698
25 50 10 15.7962411 15.7962428 15.7962364
25 50 30 15.7962249 15.7962300 15.7962225
25 100 0 15.7964191 15.7964194 15.7964249
25 100 10 15.7964186 15.7964316 15.7964310
25 100 30 15.7964166 15.7964330 15.7964329
50 50 0 15.8042284 15.8042312 15.8042252
50 50 10 15.8039280 15.8039163 15.8039128
50 50 30 15.8035199 15.8036067 15.8035184
50 100 0 15.8050989 15.8051151 15.8050104
50 100 10 15.8049318 15.8050142 15.8049783
50 100 30 15.8047398 15.8047735 15.8048077
100 50 0 15.7865143 15.7865107 15.7865229
100 50 10 15.7846663 15.7847199 15.7846971
100 50 30 15.7836004 15.7835981 15.7836278
100 100 0 15.7862847 15.7875388 15.7867881
100 100 10 15.7867374 15.7872334 15.7862651
100 100 30 15.7864145 15.7867042 15.7866721
200 50 0 15.7945433 15.7945408 15.7944954
200 50 10 15.7920349 15.7919416 15.7920052
200 50 30 15.7908413 15.7907606 15.7907689
200 100 0 15.7954581 15.7957586 15.7951220
200 100 10 15.7942315 15.7943641 15.7943298
200 100 30 15.7937532 15.7939827 15.7939300
500 50 0 15.7683191 15.7683776 15.7682822
500 50 10 15.7483181 15.7482213 15.7481996
500 50 30 15.7333490 15.7332081 15.7332045
500 100 0 15.7705533 15.7714877 15.7700123
500 100 10 15.7601920 15.7610085 15.7609468
500 100 30 15.7518709 15.7529691 15.7528894

a more challenging state of the tradeoff between makespan and
overlap.

Another managerial implication of this study pertains to the
radeoff patterns between the objectives. Fig. 9 depicts the Pareto
rontier of the instance with 50 orders (N = 50) and minimum
hysical distance’s walking time of 30 (∆ = 30) while picking
apacity Q varies from 50 to 400.2 As can be observed, the
radeoff between total travel time and makespan remains almost
inear for different values of Q . However, the tradeoff between
he makespan and overlap gradually shifts towards an exponen-
ial decay pattern with diminishing returns. From a managerial
erspective, this observation shows that there is a threshold
or larger picking capacities, after which reducing makespan re-
uires a much higher level of overlap. Thus, as was previously
emonstrated through the correlation analysis of the objectives,
akespan-driven warehouses may benefit from a lower pick-

ng capacity and a subsequent more favorable tradeoff between
akespan and overlap.

. Conclusion

Being a significant source of expenses in a supply chain, order
icking operations are not well-positioned to rise to pandemic
hallenges such as the ones posed by COVID-19. This inability
s mainly due to a cost-driven mindset in the order picking

2 To better visualize the Pareto front, a curve of the form Cmax = c1F +c2Φ+

3ec4F +c5ec6F +c7 is fit on the solutions of the front. This equation is adopted to
apture both linear and a common nonlinear form of tradeoffs in multi-objective
roblems. For each curve fit, the value of R2 is exhibited on the top right of the
igure.
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operations, which seems reasonable in a normal situation. This
study suggests that the risk of pickers contracting Coronavirus or
any other infectious disease must be taken into account in the
order picking problems. For this purpose, the well-known order
batching problem was revisited and reformulated by considering
the risk of infection spread due to workers picking orders in
close vicinity of each other. A tri-objective model was proposed
that aimed to simultaneously minimize the total travel time,
makespan, and picking overlap among the pickers. Furthermore,
three evolutionary methods, namely, NSGAII, SPEA2, and NSGAIII,
were proposed to solve the problem. The model and the proposed
methods were tested on the data of a major US-based logistics
company and compared against the company’s current practices.
It was found that while the company performs at an efficient level
of total travel time, their method is not well suited when the
pickers’ overlap is considered.

Through an extensive numerical experiment and comparison
with the company’s method, it was found that reducing the
picking overlap, as a proxy of infection spread, and minimizing
the total travel time are not necessarily conflicting objectives.
However, makespan was observed at odds with the overlap in all
experiments. This study has two key takeaways for practitioners
and managers. First, it is possible to maintain the order batching
solutions’ travel time efficiency while minimizing the overlap. In
fact, these two objectives seem to correlate positively. However,
for such a correlation to be realized, it is necessary to have a
sufficient picking capacity. This study showed that a low pick-
ing capacity could erode all the overlap cross-benefits obtained
as a result of minimizing the total travel time. Second, it was
found that minimizing the makespan has an adverse effect on
the overlap, and thus, some wave-picking warehouses may find
it more challenging to prepare for the pandemic situation. To
surmount this hurdle, a wave size reduction was suggested for
such warehouses.

The main limitation of the presented study pertains to the
stochastic nature of pickers’ travel times. When batching, one
typically assumes a constant picker speed and reliably uniform
picking times, which makes the calculation of the objectives
feasible. However, a decision-maker needs to consider the im-
pact of a non-uniform walking speed on calculations of overlap
and possibly equip the batching method with simple heuristics
that regulate how pickers should behave in case of overlaps
occurrence. One possible strategy to mitigate the effect of travel
time uncertainty on the overlap calculation is to increase the
minimum physical distance to overemphasize the importance of
overlap when constructing solutions. However, this may lead to
sub-optimal solutions in terms of makespan or total travel time.
Thus, a robust or stochastic oriented approach to reduce the pick
overlap remains an important future research direction.

Incorporation of infection risk considerations in order pick-
ing problems poses a new set of challenges in the operational
level of supply chains. In this context, two future research di-
rections are suggested. First, virtually all order picking problems
can be revisited with a pandemic lens of investigation to ensure
a safe environment for the pickers. Second, there are tactical
problems that are directly affected by the pandemic. For ex-
ample, warehouses typically prefer to locate products that are
ordered together frequently in the proximity of each other. How-
ever, this routine may not be entirely desirable as it may cause
pickers’ routes to overlap further. Thus, it is necessary to re-
think the order association among the products to ensure a safer

workplace.
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able B.11
PS, MID, SNS, and RAS obtained by NSGAII, SPEA2, and NSGAIII using Midpoint policy.
N Q ∆ NSGAII SPEA2 NSGAIII

NPS MID SNS RAS NPS MID SNS RAS NPS MID SNS RAS

10 50 0 5.0 1438.3 67.6 1888.2 5.2 1428.5 56.1 1882.4 4.4 1439.0 56.4 1894.9
10 50 10 6.0 1471.0 95.8 1053.5 6.2 1467.3 103.7 951.9 7.6 1464.8 96.2 881.3
10 50 30 4.4 1434.8 58.7 1220.0 5.0 1427.1 59.5 1151.9 7.0 1448.9 60.2 973.5
10 100 0 6.8 1467.3 56.3 1986.9 7.2 1454.0 58.1 1959.4 5.8 1473.3 62.3 1997.4
10 100 10 12.8 1515.5 84.7 681.3 12.4 1506.8 81.6 669.0 12.2 1518.4 89.9 680.6
10 100 30 11.4 1505.6 70.8 688.2 10.8 1498.0 77.4 751.1 10.4 1489.3 72.1 889.2
25 50 0 1.0 2478.1 0.0 3149.0 1.0 2478.1 0.0 3149.0 1.0 2474.3 0.0 3145.0
25 50 10 8.8 2756.2 207.9 8.1 11.6 2749.9 121.2 13.1 10.4 2718.2 162.9 10.0
25 50 30 7.4 2718.3 155.1 5.7 9.4 2785.6 183.7 8.9 8.6 2781.1 204.6 7.1
25 100 0 12.0 2556.5 108.6 3324.3 12.6 2546.6 96.8 3318.0 11.8 2589.7 127.6 3368.0
25 100 10 82.6 2655.9 161.4 66.0 76.2 2642.6 148.8 72.8 74.8 2644.1 150.9 105.3
25 100 30 106.4 2738.5 228.8 18.4 104.4 2689.9 178.7 20.6 90.0 2665.2 163.7 22.2
50 50 0 3.2 6252.2 106.0 6934.2 4.4 6251.1 98.8 6950.8 4.4 6297.0 143.0 6999.0
50 50 10 84.6 7150.1 224.8 10.1 91.8 7106.2 222.3 10.4 87.6 7074.8 227.0 10.3
50 50 30 65.6 8661.8 350.9 13.7 63.0 8445.3 358.9 13.7 77.0 8467.8 243.4 13.6
50 100 0 24.6 6088.1 791.6 6989.5 22.2 5869.1 489.7 6752.6 19.4 6377.1 1070.3 7321.0
50 100 10 154.4 6919.5 761.1 7.9 231.0 6518.4 730.3 7.4 192.8 6505.3 810.3 7.2
50 100 30 174.8 7579.0 1234.2 8.8 212.2 7305.9 1134.9 8.6 193.6 7104.9 1137.8 8.2
100 50 0 5.2 12787.2 505.9 13603.3 5.6 12732.2 389.5 13550.9 5.8 12926.2 734.8 13744.8
100 50 10 73.0 19026.7 344.5 29.4 113.8 18884.7 395.8 29.1 92.6 18832.0 399.2 29.0
100 50 30 68.2 24935.1 446.6 38.1 57.4 24742.9 436.4 38.1 79.8 24644.6 479.2 37.6
100 100 0 21.0 13212.0 2122.9 14287.2 26.2 12073.3 1080.7 13074.8 18.8 13933.7 2749.6 15014.2
100 100 10 208.4 16568.5 2347.9 19.6 273.4 15884.4 2166.2 18.7 247.2 15569.3 2089.3 18.1
100 100 30 151.6 19219.6 3706.5 23.5 221.8 19353.0 3589.8 24.0 194.4 18419.6 3428.9 22.1
200 50 0 8.2 14984.3 1562.7 15744.9 9.0 14390.6 560.1 15149.0 8.6 16325.2 2367.5 17085.8
200 50 10 90.8 23566.0 633.3 39.5 90.2 23746.9 573.7 40.2 80.2 23382.6 614.5 39.2
200 50 30 53.4 30449.2 1177.0 49.3 41.4 30499.4 829.6 50.1 47.4 30584.4 893.7 50.3
200 100 0 30.8 16963.6 3757.6 17962.0 37.0 15256.9 2545.4 16222.1 20.4 18274.5 5106.8 19319.4
200 100 10 132.2 22889.9 6726.8 31.5 212.6 23487.7 5724.3 33.6 184.6 20676.0 6009.9 27.0
200 100 30 105.2 26014.5 9684.8 34.7 138.4 27955.4 8191.6 40.3 121.4 25903.2 8742.5 35.7
500 50 0 7.4 40708.9 4454.5 41522.4 7.8 37964.6 1384.7 38777.4 6.8 41838.0 5330.4 42654.4
500 50 10 64.4 143043.4 2026.6 207.0 94.4 142919.5 1733.9 206.3 90.2 143081.5 2220.2 207.5
500 50 30 43.2 240265.9 6187.7 324.0 53.0 240297.6 4907.3 326.3 44.4 241026.3 4395.3 330.5
500 100 0 30.4 47758.7 12415.5 48852.5 42.2 44521.8 8095.7 45561.4 22.4 50680.4 14022.1 51784.0
500 100 10 103.2 124851.1 53144.6 154.8 145.4 121961.3 39226.1 154.2 114.2 116580.2 41211.7 145.7
500 100 30 80.2 198928.2 83802.3 230.2 100.8 199729.3 69931.3 239.6 93.8 202496.0 70480.6 241.5
t+b2v2r2 +∆(1 − η
b1v1r1
b2v2r2

) ≥ t−b1v1r1 ∀b1, b2 ∈ B, b1 ̸= b2; v1, v2 ∈ V; r1, r2 ∈ R, δ∆(v1, v2) = 1 (A.1)

t+b1v1r1 +∆(1 − η
b2v2r2
b1v1r1

) ≥ t−b2v2r2 ∀b1, b2 ∈ B, b1 ̸= b2; v1, v2 ∈ V; r1, r2 ∈ R, δ∆(v1, v2) = 1 (A.2)

η
b1v1r1
b2v2r2

+ η
b2v2r2
b1v1r1

≥ 1 ∀b1, b2 ∈ B, b1 ̸= b2; v1, v2 ∈ V; r1, r2 ∈ R, δ∆(v1, v2) = 1 (A.3)

η
b1v1r1
b2v2r2

∈ {0, 1} ∀b1, b2 ∈ B; v1, v2 ∈ V; r1, r2 ∈ R (A.4)

Box II.
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Appendix A. No overlap model

No overlap model P ′, is formulated as follows:

min (1) and (2)

subject to constraints (4) to (24), (28) to (32), (34) and (35), Eqs.
(A.1)–(A.4) which are given in Box II.

In model P ′, variable ηb1v1r1b2v2r2
equals 1 if r1th visit of node

1 in batch b1 is prior to the r2th visit of node v2 in batch b2.
dditionally, constraints (A.1) to (A.3) ensure no picking overlap
mong locations that are positioned closer than the minimum
hysical distance (see Table A.7).

ppendix B. Midpoint policy results

See Tables B.8–B.11.
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