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ABSTRACT

Three-dimensional chromosome structure plays an
integral role in gene expression and regulation, repli-
cation timing, and other cellular processes. Topo-
logically associated domains (TADs), building blocks
of chromosome structure, are genomic regions with
higher contact frequencies within the region than
outside the region. A central question is the de-
gree to which TADs are conserved or vary between
conditions. We analyze 137 Hi-C samples from 9
studies under 3 measures to quantify the effects
of various sources of biological and experimental
variation. We observe significant variation in TAD
sets between both non-replicate and replicate sam-
ples, and provide initial evidence that this variabil-
ity does not come from genetic sequence differ-
ences. The effects of experimental protocol differ-
ences are also measured, demonstrating that sam-
ples can have protocol-specific structural changes,
but that TADs are generally robust to lab-specific dif-
ferences. This study represents a systematic quan-
tification of key factors influencing comparisons of
chromosome structure, suggesting significant vari-
ability and the potential for cell-type-specific struc-
tural features, which has previously not been sys-
tematically explored. The lack of observed influence
of heredity and genetic differences on chromosome
structure suggests that factors other than the genetic
sequence are driving this structure, which plays an
important role in human disease and cellular func-
tioning.

INTRODUCTION

While it is recognized that the 3D structure of the chro-
mosome is an integral part of many key genomic func-
tions, we lack a full understanding of the variability of
this structure across biological sources or experimental con-
ditions. Changes in chromosome structure at specific ge-

nomic regions and under certain conditions have been im-
plicated in a variety of human diseases and disabilities, in-
cluding many cancers (1–4), deformation or malformation
of limbs during development (5) and severe brain anoma-
lies (6). In healthy cells, genome shape is heavily linked to
key processes such as gene regulation and expression (7–
11), replication timing (12–15), and DNA accessibility and
nuclear organization (16–18). Despite the clear importance
of these structures, there has been no systematic study of
the expected variation of topologically associated domains
(TADs) genome-wide.

Features of genome-wide, 3D chromosome structure can
be measured by Hi-C (19), a high-throughput variant of the
chromosome conformation capture protocol (20). The ex-
periment involves cross-linking and ligating spatially close
genomic segments, then aligning them back to the genome
to find their genomic positions. The output of this experi-
ment is a matrix in which the rows and columns represent
segments of the genome along a chromosome, and each ma-
trix entry records the pairwise interaction frequency of the
genome fragments of the associated row and column. These
values reflect 3D proximity, quantifying the frequency of
contact between every pair of genomic segments.

A hierarchical architecture has emerged from these
Hi-C matrices, in which chromosome structure is com-
posed of several different scales of components, from
multi-megabase compartments to sub-megabase TADs and
sub-TADs (21,22). TADs represent chromosomal regions
with significantly higher interaction frequency among seg-
ments within the TAD than with those outside of it (23).
TADs are considered to be a primary structural build-
ing block of chromosome architecture (24), and several
methods have been developed to computationally identify
them (21,23,25–28).

One challenge in the interpretation of TADs is that we
have little understanding of the variability of TAD struc-
tures under different conditions. While some work has com-
pared aspects of Hi-C data quality, TADs in particular were
not considered (29). No other Hi-C study has used more
than 23 samples of different conditions, and even large data
repositories such as ENCODE and the 4D Nucleome con-
tain no more than 30 human Hi-C samples on their own.
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As more Hi-C data have become available recently, it is
now possible to perform a substantial analysis of the rel-
ative consistency or variability of TADs across a variety of
human cell conditions, by combining Hi-C samples from
many studies and resources. Previous work has suggested
that TADs are largely conserved across human cell types
and possibly even species; however, the degree of this con-
servation is unclear and has been tested in only small sets of
samples (23,25).

An initial method to compare TADs between cell types
was previously applied to compare normal versus cancer
human cell types (30), but that study did not investigate
other potential sources of TAD variability and only com-
pared 23 different cell or tissue types. We instead system-
atically quantify several sources of variability that have not
been previously studied, using over three times as many dif-
ferent cell conditions, and three metrics.

We quantify the influence of both technical and biologi-
cal variation on TAD structures across several experimental
and biological conditions in the first study of over 100 Hi-
C experiments. We observe that 10–70% of combined TAD
boundaries differ between replicates, regardless of sequenc-
ing depth or contact coverage, pointing to a potentially dy-
namic or disordered arrangement. Across 69 samples of dif-
ferent cell lines and tissue types, we observe ∼20–80% un-
shared TAD boundaries, suggesting that there can be fairly
large differences in TAD sets across biological conditions,
in contrast to previous claims of extensive TAD conserva-
tion (23,25,31). We find that samples of the same cell or
tissue type have elevated structural similarities, suggesting
that biological function is a key driver of structural simi-
larity. Though it is commonly believed that TADs do not
vary much across cell types and possibly even species, we
observe significant TAD variation across human cell and
tissue types. By analyzing the structural similarity of sets of
parents and their children, as well as tissue samples taken
from different individuals, we observe that the genetic se-
quence differences between individuals and the genetic se-
quence similarities between parents and their children have
little impact on TAD structural similarity. Of the possible
sources of technical variation considered in this work, the
choice of in situ (in nucleus) ligation versus dilution (in so-
lution) ligation protocols has the greatest influence on Hi-C
and TAD structures. In contrast, we demonstrate that Hi-C
measurements and corresponding TAD calls are robust to
other technical differences such as the choice of restriction
enzyme and lab-specific variations.

MATERIALS AND METHODS

Data

A total of 76 human Hi-C samples were processed from se-
quencing reads (.fastq files) downloaded from various pub-
licly available sources (Sequence Read Archive (SRA) (32),
ENCODE (33), Gene Expression Omnibus (GEO) (34) or
4DN portal (35)). Normalized Hi-C matrices were com-
puted from the reads through the HiC-Pro pipeline (36),
and each sample was tested for quality at 100-kb resolu-
tion. Using the criteria suggested by Ay and Noble (37) and
Rao et al. (25) (at least 80% of all bins must contain more
than 1000 contacts), we found 7 experiments which could

not be analyzed at 100 kb resolution or less (Supplemen-
tary Table S1), leaving 69 human Hi-C data sets (137 includ-
ing all replicate samples) representing 52 unique cell types
or biological sources from 9 studies (23,25,31,33,35,38–41).
The details of these experiments, including accession num-
bers, are found in Table 1. All samples were normalized
using iterative correction and eigenvector decomposition
(ICE) (42), and all analyses presented here were performed
at 100-kb resolution, unless otherwise noted. For analyses
that do not explicitly compare replicates, all aligned reads
from each replicate of a sample were merged and processed
into a single combined Hi-C matrix for optimal data qual-
ity.

From the Hi-C matrices, TADs were computed using Ar-
matus (21), a commonly used method for identifying TADs
efficiently. Armatus takes one parameter � , which controls
the expected TAD size. For every sample and chromosome,
Armatus was run with � values ranging from 0 to 1 at in-
tervals of 0.1, and the � value was chosen to ensure a dis-
tribution of TADs with median as close as possible to the
expected median TAD size of 880 kb (22) on each sample
and chromosome.

Comparison measures

In order to comprehensively compare chromosome struc-
tures, we use three different measures: HiCRep (43), Jaccard
Index (JI) and TADsim (30). HiCRep measures similarity
between Hi-C matrices directly, and both JI and TADsim
compare similarity of predicted TADs. All three measures
were computed on all 2346 pairs of non-replicate samples,
in addition to all 83 replicate pairs.

HiCRep was designed to assess the reproducibility of
replicates or the similarity of two Hi-C matrices. This mea-
sure uses a stratum-adjusted correlation coefficient to reli-
ably compute a statistical similarity score between two Hi-C
matrices, explicitly accounting for both the strong distance
dependence found in Hi-C and the known domain struc-
ture (43). This method returns a value that represents the
overall similarity of the full Hi-C matrix, and distinguishes
between replicate and non-replicate samples significantly
better than simple correlation coefficients. We ran HiCRep
on all intra-chromosomal matrices of our samples and av-
eraged over all chromosomes to get a single value per cell
type pair. HiCRep requires a smoothing parameter h, which
was selected for each comparison according to the heuris-
tic optimization procedure provided by the software, which
chooses the minimum h value at which the score begins to
converge. We allow a range of 0 to 3, which is expanded
from the 0 to 2 range shown in the documentation example,
to allow more options while maintaining computational ef-
ficiency.

The Jaccard Index (JI), a simple set similarity metric, is
defined as the size of the intersection of two sets A and
B divided by the size of the union of the sets: JI(A, B) =
|A∩B|/|A∪B|. When comparing TADs, the two sets A and
B represent the two lists of TAD boundaries, as used in
Forcato et al. (44). The resulting JI value is an easily inter-
pretable number representing the fraction of shared bound-
aries between the two TAD sets.
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Table 1. All Hi-C data used in this study

Cell type Description Replicates Res frag Protocol Accession(s) Citation

IMR90 Lung fibroblast 2 MboI In situ SRR1658672, SRR1658673,
SRR1658674, SRR1658675,

(25)

SRR1658676, SRR1658677,
SRR1658678

GM12878 Blood lymphocyte 2 MboI In situ SRR1658570, SRR1658571,
SRR1658572, SRR1658573,

(25)

SRR1658574, SRR1658575,
SRR1658576, SRR1658577,
SRR1658578, SRR1658579,
SRR1658580, SRR1658581,
SRR1658582, SRR1658583,
SRR1658584, SRR1658585,
SRR1658586, SRR1658587,
SRR1658588, SRR1658589,
SRR1658590, SRR1658591,
SRR1658592, SRR1658593,
SRR1658594, SRR1658595,
SRR1658596, SRR1658597,
SRR1658598, SRR1658599,
SRR1658600, SRR1658601,
SRR1658602, SRR1658603

HMEC Mammary epithelial 2 MboI In situ SRR1658680, SRR1658681,
SRR1658682, SRR1658683,

(25)

SRR1658684, SRR1658685
HUVEC Umbilical vein endothelial 1 MboI In situ SRR1658709, SRR1658710,

SRR1658711, SRR1658712,
(25)

SRR1658713, SRR1658714
K562 Chronic myeloid leukemia 2 MboI In situ SRR1658693, SRR1658694,

SRR1658695, SRR1658696,
(25)

SRR1658697, SRR1658698,
SRR1658699, SRR1658700,
SRR1658701, SRR1658702

KBM7 Chronic myeloid leukemia 2 MboI In situ SRR1658703, SRR1658704,
SRR1658705, SRR1658706,

(25)

SRR1658707, SRR1658708
NHEK Epidermal keratinocyte 1 MboI In situ SRR1658689, SRR1658690,

SRR1658691
(25)

A549 Adenocarcinomic alveolar
basal epithelial

2 HindIII Dilution ENCLB571HTP,
ENCLB222WYT

(33)

Caki2 Clear cell renal cell
carcinoma (epithelial)

2 HindIII Dilution ENCLB555CZE,
ENCLB858SVS

(33)

G401 Rhabdoid tumor kidney
epithelial

2 HindIII Dilution ENCLB506SDM,
ENCLB589RBY

(33)

LNCaP-FGC Prostate carcinoma
epithelial-like

2 HindIII Dilution ENCLB191OGC,
ENCLB473XWD

(33)

NCI-H460 Large cell lung cancer 2 HindIII Dilution ENCLB118KAE,
ENCLB104ZTM

(33)

Panc1 Pancreas ductal
adenocarcinoma

2 HindIII Dilution ENCLB951HSJ,
ENCLB134IVX

(33)

RPMI-7951 Malignant melanoma 2 HindIII Dilution ENCLB210AAY,
ENCLB016TGU

(33)

SKMEL5 Malignant melanoma 2 HindIII Dilution ENCLB296ZFT,
ENCLB462TWE

(33)

SKNDZ Neuroblastoma 2 HindIII Dilution ENCLB524GGK,
ENCLB952BSP

(33)

SKNMC Neuroepithelioma 2 HindIII Dilution ENCLB215KZO,
ENCLB914GYK

(33)

T47D Ductal carcinoma 2 HindIII Dilution ENCLB758KFU,
ENCLB183QHG

(33)

IMR90 lung fibroblast 2 HindIII Dilution SRX116345, SRX128222 (23)
hESC Human embryonic stem cell 2 HindIII Dilution SRX116344, SRX128221 (23)
H1-hESC Human embryonic stem cell 1 NcoI In situ 4DNES4DGHDMX (35)
H1-hESC Human embryonic stem cell 3 DpnII In situ 4DNESRJ8KV4Q (35)
H1-hESC Human embryonic stem cell 1 HindIII Dilution 4DNES78Y8Y5K (35)
H1-hESC Human embryonic stem cell 2 DpnII In situ 4DNES2M5JIGV (35)
HFF-hTERT Foreskin fibroblast 4 HindIII dilution 4DNES9L4AK6Q (35)
HFF-hTERT Foreskin fibroblast 2 DpnII in situ 4DNESVUMGLG2 (35)
HFF-hTERT Foreskin fibroblast 1 NcoI in situ 4DNESY859VLG (35)
HFF-hTERT Foreskin fibroblast 2 HindIII in situ 4DNESB6MNCFE (35)
HFF-hTERT Foreskin fibroblast 1 HindIII in situ 4DNES8J78WV2 (35)
HFF-hTERT Foreskin fibroblast 1 MboI in situ 4DNESAPF27TG (35)
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Table 1. Continued

Cell type Description Replicates Res frag Protocol Accession(s) Citation

HFFc6 Subclone of HFF-hTERT 2 DpnII in situ 4DNES2R6PUEK (35)
HG00733 Blood lymphocyte 2 HindIII Dilution 4DNESTAPSPUC (35)
HG00732 Blood lymphocyte 2 HindIII Dilution 4DNESI2UKI7P (35)
HG00731 Blood lymphocyte 2 HindIII Dilution 4DNESJ1VX52C (35)
HG00514 Blood lymphocyte 2 HindIII Dilution 4DNESE3ICNE1 (35)
HG00513 Blood lymphocyte 2 HindIII Dilution 4DNESJIYRA44 (35)
HG00512 Blood lymphocyte 2 HindIII Dilution 4DNES4GSP9S4 (35)
GM19238 Blood lymphocyte 2 HindIII Dilution 4DNESYUYFD6H (35)
GM19239 Blood Lymphocyte 2 HindIII Dilution 4DNESVKLYDOH (35)
GM19240 Blood lymphocyte 2 HindIII Dilution 4DNESHGL976U (35)
hESC Human embryonic stem cell 1 HindIII Dilution SRR639047, SRR639048,

SRR639049
(38)

IMR90 Lung fibroblast 6 HindIII Dilution SRX212172, SRX212173,
SRX294948, SRX294949,

(38)

SRX294950, SRX294951
IMR90 Lung Fibroblast 6 HindIII Dilution SRX212174, SRX212175,

SRX294952, SRX294953,
(38)

SRX294954, SRX294955
IMR90 Lung fibroblast 1 HindIII Dilution SRR639045, SRR639046 (38)
hESC Human embryonic stem cell 2 HindIII Dilution SRX378271, SRX378272 (39)
GM20431 Blood lymphocyte 3 HindIII Dilution ENCLB097VEW,

ENCLB167NGL,
ENCLB938LSX

(33)

Skeletal muscle tissue Gastrocnemius medialis, 4
donors

4 MboI In situ ENCLB925XYW,
ENCLB361HQM,
ENCLB966EDS,
ENCLB645GUM

(33)

Transverse colon From 4 donors 4 MboI In situ ENCLB584CUK,
ENCLB920LTI,
ENCLB724QSQ,
ENCLB527HSP

(33)

Brain microvascular Endothelial 2 HindIII Dilution SRX3322341, SRX3322340 (33)
Astrocyte Cerebellum 2 HindIII Dilution ENCLB672PAB,

ENCLB174TEA
(33)

Astrocyte Spinal cord 2 HindIII Dilution SRX3322978, SRX3322979 (33)
DLD1 Colon adenocarcinoma

epithelial
2 HindIII Dilution SRX3321987, SRX3321988 (33)

Pericyte Brain 2 HindIII Dilution SRX3322286, SRX3322287 (33)
HEMEC Endometrial microvascular

endothelial
2 HindIII Dilution SRX3322599, SRX3322600 (33)

Hepatic sinusoid Endothelial 2 HindIII Dilution ENCLB284TIY,
ENCLB618NVM

(33)

ACHN Renal cell adenocarcinoma
epithelial

2 HindIII Dilution SRX3322373, SRX3322374 (33)

IMR90 Lung fibroblast 2 HindIII Dilution GSM2595584, GSM2595585 (40)
hESC (H9) Human embryonic stem cell 1 HindIII Dilution GSM2309023 (41)
Adrenal gland Tissue 1 HindIII Dilution SRX2179246 (31)
Bladder Tissue 2 HindIII Dilution SRX2179247, SRX2179248 (31)
DPC Dorsolateral prefrontal

cortex tissue
1 HindIII Dilution SRX2179249 (31)

Hippocampus Tissue 1 HindIII Dilution SRX2179250 (31)
Lung Tissue from 2 donors 2 HindIII Dilution SRX2179252, SRX2179251 (31)
Ovary Tissue 1 HindIII Dilution SRX2179253 (31)
Pancreas Tissue from 2 donors 2 HindIII Dilution SRX2179254, SRX2179255,

SRX2179256, SRX2179257
(31)

Psoas muscle Tissue from 2 donors 2 HindIII Dilution SRX2179260, SRX2179258,
SRX2179259

(31)

Right ventricle Tissue 1 HindIII Dilution SRX2179261 (31)
Small bowel Tissue 1 HindIII Dilution SRX2179262 (31)
Spleen Tissue from 2 donors 2 HindIII Dilution SRX2179264, SRX2179263 (31)
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While JI is an effective way to compare boundary loca-
tions, it does not take into account the total overlap be-
tween TAD interiors. We therefore also adopted a mea-
sure from Sauerwald and Kingsford (30), which presented a
method to identify structurally similar regions between two
TAD sets. We updated the original method to address some
methodological artifacts and improve efficiency, as detailed
in the Supplementary Data. The measure used here, which
we will call ‘TADsim,’ is the fraction of the genome covered
by structurally similar regions identified by the method de-
scribed in Sauerwald and Kingsford (30).

Statistical comparisons

Distributions of similarity values under all three measures
were checked for statistical significance through the Mann–
Whitney U test, also called the Mann–Whitney–Wilcoxon
(MWW) test. This nonparametric statistical test assesses
the null hypothesis that a randomly selected value from one
sample is equally likely to be less than or greater than a ran-
domly selected value from the other sample. The alternative
hypothesis can then be formulated as a randomly selected
value from one distribution being likely to be greater than
(or less than) a randomly selected value from the other dis-
tribution.

Without knowing the underlying distribution of struc-
tural similarity values, a nonparametric statistical test is
required for all of our comparisons. The Kolmogorov–
Smirnov two-sample test (KS test) is another commonly
used nonparametric test, but it does not include any assess-
ment of which distribution is greater than the other. The
KS test is additionally sensitive not only to differences in
the median or mean between two distributions, but any dif-
ferences in their shapes, dispersion or skewness as well. We
therefore chose the MWW test for these analyses, given that
we specifically are testing for the difference in relative mag-
nitudes of the values in the distributions, rather than differ-
ences their overall shapes.

RESULTS

Structural similarity of replicate samples

By quantifying the similarity of all 83 replicate pairs in our
data, we find that the TAD sets of replicate pairs are sig-
nificantly more similar than those of non-replicate pairs
(Figure 1A–C, P < 10−20 for all comparison measures),
in contrast to previous work that suggested much lower
TAD reproducibility between replicates (44). We note that
this discrepancy can be explained by the fact that Forcato
et al. (44) used a different pre-processing method that results
in many fewer aligned reads than HiC-Pro and therefore sig-
nificantly fewer Hi-C contacts, decreasing the reproducibil-
ity they observe. Consistent with this explanation, we used
HiC-Pro to process the same data from Forcato et al. under
the same Armatus parameters used in that work, and found
JI values consistent with those we found on the larger data
set analyzed for this work.

Among the samples studied in this work, replicates share
an average of 62.77% of their combined TAD boundaries,
which is consistent with other previous studies on differ-
ent data using different methods (Dixon et al. (23): 62.28%,

73.73% and Rao et al. (25): 61.88%). This leaves almost
40% of TAD boundaries that vary across replicates. Among
non-replicate pairs, almost 60% TAD boundaries are not
shared on average, which contradicts the common notion
that TADs are highly conserved between human cell types.
These levels of variability also hold at a higher resolution
of 40 kb (Figure 1D–F), though the sample size is much
smaller due to the limited number of samples with repli-
cates sequenced deeply enough to be analyzed indepen-
dently at 40 kb. The variability we observe could not be
explained by limitations of sequencing depth, as we found
that reproducibility is only weakly correlated with sequenc-
ing coverage (see Supplementary Figure S5). This points to
a dynamic or disordered structure, as suggested by a recent
imaging study (45), and a much higher level of TAD varia-
tion than previously thought.

Variability across tissues and individuals

The chromosome structure of tissue samples has not been as
widely studied as that of cell lines, but these structures may
provide valuable insight into tissue-specific genome spatial
organization. Among our set of 69 Hi-C experiments, 13
different human tissues are represented, and there are 16
pairs of the same tissue type taken from different donor in-
dividuals. The similarity values of the chromosome struc-
tures of these pairs are statistically indistinguishable from
those of replicate samples (Figure 2A–C; HiCRep: P =
0.4792, JI: P = 0.1300, TADsim: P = 0.09559). There is
much less variation across individuals than across tissue
types (Figure 2A–C; HiCRep: P = 1.5577 × 10−6, JI: P =
3.876 × 10−6, TADsim: P = 1.017 × 10−7), suggesting that
individual genetic differences have less influence on chro-
mosome structure than the biological function of the sam-
ple.

Our analysis suggests that around 40% of TAD bound-
aries are shared between different tissue types, consistent
with the findings of Schmitt et al. (31). While this is signifi-
cantly more than expected given random TAD boundary lo-
cations, it leaves room for large differences in the TAD sets
of different tissue samples. In order to determine whether
TAD structure is more similar across tissues than across cell
lines, we compared the similarities between tissue types to
the background distribution consisting of all non-replicate
pairs with at least one cell line. Two of our three measures
suggest that there is elevated conservation between tissues
compared with cell lines, but the two TADsim distributions
are statistically similar (Figure 2A–C, HiCRep: P = 2.120 ×
10−19, JI: P = 0.004806, TADsim: P = 0.4235). The average
JI value between tissue samples of 41.6% implies that while
there is a significant level of similarity among chromosome
structures of different tissue types, close to 60% of TAD
boundaries vary between different tissue samples. This level
of variability between tissue types may indicate the existence
of tissue-specific structural features, rather than significant
conservation of TADs between tissue types.

Family relationships do not seem to influence TAD similarity

Hi-C measurements from blood lymphocyte cells of three
parent–parent–child triplets (trios) permit a glimpse into
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Figure 1. Hi-C and TAD reproducibility. The violin plots show distributions of HiCRep (A,D), Jaccard Index (B,E) and TADsim (C,F) values on pairs of
either replicates or non-replicates, at 100-kb (A,B,C) and 40-kb resolution (D,E,F). All of these plots show a statistically significant (P < 10−9) elevation
of similarity among replicate pairs, demonstrating that both Hi-C matrices and TADs are reproducible. Only 15 samples had replicates which passed the
criteria for analysis at 40kb, resulting in a much smaller sample size for these comparisons.

the heritability of chromosome structure. We find that un-
related individuals (parents) share just as much structural
similarity as each parent and their child (Figure 2D–F). We
therefore see no evidence that chromosome structure is de-
termined by genetic similarity, at least in blood lympho-
cyte cells. The similarity values within trios are generally
much higher than the background of non-replicate compar-
isons; however, they are similar to the distribution of pairs
of blood lymphocytes, so this is likely a result of the shared
cell type rather than genetic similarity. As with the tissue
data, the biological source (cell or tissue type) seems to be
a much stronger driver of structural similarity than genetic
similarity.

Variations across Hi-C protocols

In order to investigate technical sources of variation, we
compare several common variations in the Hi-C protocol,

and test whether they affect the similarity of the TADs
that are identified. There are two main protocol variants
that differ in the cross-linkage step. In situ Hi-C (25) (also
termed ‘in nucleus Hi-C’ (46)) involves cross-linking the
DNA within the nucleus, while dilution Hi-C (or ‘in so-
lution Hi-C’) performs cross-linking in a dilute solution.
Each protocol also requires the choice of a restriction en-
zyme, which could be any of four common options: HindIII,
MboI, NcoI and DpnII. While there has been some study
of the differences in Hi-C data resulting from in situ and di-
lution protocols (25,46), the influence on TAD sets and the
effect of the restriction enzyme had not been systematically
studied previously.

In situ and dilution Hi-C reproducibility. Across all repli-
cate pairs (12 in situ, 71 dilution), the intra-chromosomal
Hi-C matrices of in situ replicates are statistically signifi-
cantly more similar than dilution replicates (Figure 3A, P
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Figure 2. Biological sources of TAD variation. (A,B,C): Comparisons between and within tissue samples using (A) HiCRep, (B) JI and (C) TADsim.
Each figure shows four violin plots representing distributions of similarity values of the background (non-replicate pairs), replicates, pairs from the same
tissue type but different donor individuals, and pairs from different tissue types. (D,E,F): Comparisons with three trio samples of blood lymphocyte cells
using (D) HiCRep, (E) JI and (F) TADsim. The background distribution consists of all non-replicate pairs, and the blood lymphocyte pair distribution
shows all similarity values of two blood lymphocyte samples outside of the trios. The trio replicates refer to the similarity values of the replicate pairs from
within each individual of the trio samples. The scattered points on the right side of each figure represent all within-trio comparisons, colored by family
relationship.
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Figure 3. Comparing Hi-C samples generated from the in situ and dilution protocols. (A): HiCRep shows that in situ Hi-C matrices are more reproducible
than dilution matrices (P < 0.0005). (B,C): TAD set reproducibility according to JI (P = 0.02703) and TADsim (P = 0.1547) shows that protocol choice
has less of an impact on reproducibility of TAD sets than full Hi-C matrices. (D,E,F): Comparisons of same cell type pairs generated by the same and
different protocols. The background distribution is all comparisons of different cell types. Under all measures, there is a clear and statistically significant
(P < 0.05) drop in similarity values of samples generated by different protocols compared to samples generated by the same protocol.

= 1.180 × 10−5). However, the TAD sets of in situ replicates
only show statistically significantly higher similarity than
those of dilution replicates under the JI measure (Figure 3B
and C; JI: P = 0.02703, TADsim: P = 0.1547). TADs cap-
ture only relatively short-range interactions, and it therefore
appears that the difference between in situ and dilution Hi-
C is not as significant a factor in TAD reproducibility as in
overall Hi-C matrix reproducibility. It has been previously
shown that in situ Hi-C matrices are more reproducible than
dilution Hi-C matrices (25,46), specifically with respect to
long-range and inter-chromosomal contacts.

Comparing in situ and dilution samples. In order to study
whether both in situ and dilution protocols result in the
same structures, we compared samples across protocols.
Among pairs of the same cell type, mixed protocol pairs,
where one sample came from in situ and one from dilution,
were consistently statistically significantly less similar than

the single protocol pairs, in which both samples came from
the same protocol (Figure 3D-F, HiCRep: P = 0.0003423,
JI: P = 0.03967, TADsim: P = 0.02002). The chromoso-
mal structures identified from these two protocol variants
are therefore not entirely consistent, although pairs from
the same cell type still showed more similarity than pairs of
different cell types, even among mixed protocol pairs (Hi-
CRep: P = 3.436 × 10−15, JI: P = 1.2645 × 10−9, TADsim:
P = 0.006010). We observe a similar trend across all non-
replicate pairs as well (Supplementary Figure S6). Overall,
we observe some structural differences induced by the pro-
tocol variations, but not enough to obscure the general sim-
ilarities expected from samples of the same cell type.

Restriction enzyme choice has minimal impact on TAD sets.
By comparing samples from the same lab of the same cell
type, generated with a different restriction enzyme, we see
no significant variation in similarity measures induced by
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Figure 4. Measurements of structural similarity across the use of different restriction enzymes. The scattered points represent the similarity of a pair of
samples of the same cell type (gray is hESC, red is HFF-hTERT), generated by using different restriction enzymes. The violin plot shows the distribution of
all other non-replicate comparisons. As expected, the points that differ only in restriction enzyme are largely more similar than the background, suggesting
that this choice is not a significant source of technical variability.

restriction enzymes, as shown in Figure 4. As expected, the
pairs of the same cell type with a different restriction en-
zyme tend to be more structurally similar than the back-
ground distribution, which includes all 2333 other pairwise
comparisons. The choice of restriction enzyme does not ap-
pear to be a significant source of technical variation in mea-
surements of chromosome structure, as both Hi-C matrices
and TAD sets appear robust to this experimental variable.

TAD variation induced by lab-specific differences

Across all of our data, we see no pattern of elevated struc-
tural similarity among samples from the same lab (Fig-
ure 5A, JI and TADsim heat maps can be seen in Supple-
mentary Figures S7 and S8). A comparison of pairs of the
same cell type from different labs shows that these pairs
are generally more similar than non-replicate pairs, with
similarity values near those of replicate pairs (Figure 5B-
D). Consistent with the protocol-driven variation described
above, the three lowest pairwise scores for IMR90 in both JI
and TADsim are the three mixed protocol comparisons; all
other points represent pairs generated by the same protocol.
Chromosome structure seems to be robust to the variability
across experimental labs.

Robustness to TAD size

While the exact similarity values differ somewhat, all trends
observed in this work are consistent across TAD sets se-
lected for median TAD sizes of 500, 700, 880 kb and 1Mb.
The true expected size of TADs is fairly unclear, and likely
to span a wide range due to their hierarchical nature (21,22).
Though Armatus does not optimize for a specific TAD
length, its resolution parameter � adjusts a preference for
larger or smaller TADs. Throughout this work, the � value

was selected by choosing the set with median TAD length
closest to 880 kb. In order to assess robustness to this pa-
rameter, we additionally ran all analyses for TAD sets with
median lengths of 500, 700 kb and 1Mb. Note that be-
cause HiCRep is performed on the full Hi-C matrix rather
than TADs, only JI and TADsim were compared for robust-
ness here. While the similarity values are generally lower
for TADs of larger size (Figure 6), the trends across condi-
tions compared here were robust (Supplementary Figures
S9–S12).

DISCUSSION

We have demonstrated that cell or tissue type, rather than
individual or genetic difference, appears to be the greatest
driver of biological variation in TAD structures and Hi-C
matrices, confirming and quantifying the likely biological
importance of TADs. However, between replicates, TAD
structures are shown to share only 60% of their boundaries,
suggesting that chromosome structure is not a static feature,
but remains variable even in identical cell populations. Con-
trary to previous claims that TADs are highly conserved, we
note significant TAD variability across human samples. We
observe elevated similarities between samples of the same
cell type, suggesting that TAD structures are likely corre-
lated with cellular function rather than individual genetics.
The largest differences due to technical variations appeared
in comparing structures generated through in situ or dilu-
tion protocols, while lab-specific differences and restriction
enzyme choices had a smaller impact on the resulting simi-
larities of Hi-C measurements.

In order to maximize the number of samples analyzed in
this work, all comparisons were performed at a fairly low
resolution of 100 kb, so structural features that would be
clearer at higher resolution may have been overlooked. A
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Figure 5. Quantifying variation across samples from different labs. (A) Summary of all 2346 pairwise sample comparisons as a heat map of HiCRep scores.
The dotted lines outline groups of samples from the same study. (B, C and D): The effects of lab-specific variation on chromosome structure measurements.
The points represent similarity scores of the same cell type (red for IMR90, gray for hESC) from different studies. These can be compared to the distribution
of non-replicate pairs and that of replicate pairs, showing that samples from different labs achieve similarity values near those of replicate pairs.

few observations noted in this work are consistent with pre-
vious smaller scale studies of higher resolution matrices. In
particular, the similarities between replicates that we ob-
served were consistent with those found in Dixon et al. (23)
and Rao et al. (25), though much higher than those reported
in Forcato et al. (44) due to the different pre-processing
methods used in each study. The higher-than-random simi-
larity between pairs of different tissue types was also found
by Schmitt et al. (31), but our quantification of this simi-

larity suggests significant variability rather than extensive
conservation between tissue types.

There are still relatively few available Hi-C data sets com-
pared with other genomic analyses, and many of the obser-
vations made here would be strengthened with more sam-
ples or with confirmation through single-cell Hi-C. In par-
ticular, more trios from other cell types would help to con-
firm whether there is truly no elevated similarity in geneti-
cally related individuals, or whether this conclusion was spe-
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Figure 6. Measuring robustness to TAD size parameter. Boxplots, with midline representing the median, represent the distributions of JI (A) and TADsim
(B) values for TAD sets selected for median TAD sizes of 500, 700, 880 kb and 1 Mb. The 880 kb distributions are also shown in Figure 1, and are included
here for comparison.

cific to the blood lymphocyte samples studied in this work.
As more single-cell Hi-C data becomes available through
studies such as (47–49) and analysis methods improve, cell-
to-cell variations in chromosome structure will be easier to
assess, and we will be able to determine whether these pop-
ulation trends hold within individual cells.

All samples studied here were processed from sequenc-
ing reads to Hi-C matrices through the same pre-processing
pipeline, and all TADs were computed using Armatus (21).
These choices may have influenced the trends we observed
in this work, because different pre-processors, Hi-C normal-
ization methods or TAD callers could result in different pat-
terns in the resulting structural measurements. The consis-
tencies with previous work using different methods for each
of these steps suggests that they did not have a major effect,
but more study is needed to assess the overall robustness of
Hi-C measurements to these processing choices. Addition-
ally, there may be other possible comparison methods for
Hi-C matrices and TAD sets, which may or may not agree
with the three measures used here.

Further study of the structural differences across cell
types may lead to insights into the mechanisms of chro-
mosome structure. These comparison techniques could also
be used to determine the differences between chromosome
structures in healthy and diseased cells and could point to
the locations of structural changes that are present across
diseased cells. There is already significant evidence of struc-
tural abnormalities in many diseases (review, (5)). Addi-
tional systematic, genome-wide analyses of TAD structures
could increase our understanding of a range of human dis-
eases. Here, we have taken the first step toward systemati-
cally quantifying, at a large scale, the extent of TAD struc-
ture variability.

This work compares Hi-C data and TAD structures from
nine studies using three different measures, in order to iden-
tify trends in the variables controlling chromosomal struc-
tural similarity. We observe that even replicates display

a certain amount of variability in chromosome structure.
Chromosome structure appears most conserved within cell
types and tissue types and not influenced more strongly by
genetic similarity or differences across individuals. Differ-
ences in the cross-linkage step of the Hi-C protocol can
induce variation in the resulting Hi-C and TAD measure-
ments, but they seem robust to both lab-specific differences
and choice of restriction enzyme.

DATA AND AVAILABILITY

The scripts to reproduce the analysis are available at
https://github.com/Kingsford-Group/localtadsim/tree/
master/analysis.
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