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Endogenous viral elements (EVE) seem to be present in all eukaryotic genomes. The
composition of EVE varies between different species. The endogenous retrovirus 3
(ERV3) is one of these elements that is present only in humans and other Catarrhini.
Conservation of ERV3 in most of the investigated Catarrhini and the expression pattern
in normal tissues suggest a putative physiological role of ERV3. On the other hand, ERV3
has been implicated in the pathogenesis of auto-immunity and cancer. In the present
review we summarize knowledge about this interesting EVE. We propose the model
that expression of ERV3 (and probably other EVE loci) under pathological conditions
might be part of a metazoan SOS response.
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ENDOGENOUS VIRAL ELEMENTS (EVE)

Several virus species can persist lifelong in their hosts (Norja et al., 2006; Thorley-Lawson et al.,
2013). In some cases, persistence is a consequence of integration in the host genome (Wang et al.,
2015). In addition to somatic cells, cells of the germ line can be target cells of integration events.
The integrated virus can then be transmitted vertically like an ordinary gene (Feschotte and Gilbert,
2012). If such endogenous viral elements (EVE) have no negative effects on the host, EVE can
become stable elements of the host genome (Villesen et al., 2004).

Endogenous retroviruses (ERV) are the largest group of EVE and form at least 8% of the human
genome (Griffiths, 2001). In some other species the amount of ERV DNA in the genome is much
lower, suggesting the existence of efficient control systems in these species (Muir et al., 2004).
ERV have been detected in the genomes of virtually all higher eukaryotes (Belshaw et al., 2004;
Heidmann et al., 2009). There is growing evidence that ERV have played an important role in the
evolution of mammals, primates, and humans (Deininger et al., 2003). Nearly all known human
ERV (HERV) integrated up to 100 million years ago (Magiorkinis et al., 2015; Escalera-Zamudio
and Greenwood, 2016).

Endogenous viral elements are usually inactivated by genetic and epigenetic mechanisms (Jern
and Coffin, 2008). Genetic mechanisms include deletions, inversions, and point mutations in the
open reading frames for the viral proteins. Therefore, most EVE are no longer able to replicate and
form virus particles autonomously. However, release of virus particles derived from EVE has been
described in cancer and other diseases (Wang-Johanning et al., 2007; Volkman and Stetson, 2014).
In addition to mutations, epigenetic mechanisms inhibit EVE transcription (Blazkova et al., 2009;
Lee et al., 2012). Reactivation of epigenetically silenced EVE can occur and lead to transcription of
EVE-encoded proteins or non-coding sequences.

Frontiers in Microbiology | www.frontiersin.org 1 January 2018 | Volume 8 | Article 2691

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2017.02691
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2017.02691
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2017.02691&domain=pdf&date_stamp=2018-01-15
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02691/full
http://loop.frontiersin.org/people/513174/overview
http://loop.frontiersin.org/people/427958/overview
http://loop.frontiersin.org/people/493429/overview
http://loop.frontiersin.org/people/513184/overview
http://loop.frontiersin.org/people/86462/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-08-02691 January 11, 2018 Time: 16:45 # 2

Bustamante Rivera et al. Endogenous Retrovirus 3

The majority of genomic HERV sequences are incomplete or
heavily mutated, are often relatively short, and do not retain
the complete retrovirus genome organization. Nevertheless, these
HERV-like elements (HERVLE) can contribute to physiological
or pathological processes. Complete HERV and HERVLE have
been shown to be reactivated in certain types of cancer (Bannert
and Kurt, 2004). Reactivated HERVLE can modulate expression
of adjacent genes. For instance, HERVLE have been shown to
act as alternate promoters for varying cellular genes in Hodgkin
lymphoma and Non-Hodgkin lymphoma cells (Huff et al.,
2005; Lamprecht et al., 2010; Lock et al., 2014; Babaian et al.,
2016).

Endogenous retroviruses have been classified based on
sequence similarities, but no system is universally accepted
(Blomberg et al., 2009). ERV contain over 200 distinct groups
and subgroups. ERV have been classified into three major groups:
Class I ERV are related to gammaretroviruses and include human
ERVE and ERV3; Class II ERV are related to betaretroviruses
and include human ERVK and mouse mammary tumor virus;
Class III ERV are related to Spumaretrovirinae and include ERVL
(Katzourakis and Tristem, 2005).

Endogenous retroviruses are preferentially located on the Y
chromosomes of human, chimpanzee and orang-utan (Sin et al.,
2010). It has been suggested that reduced recombination of the
Y chromosome renders loss of integrated sequences less likely. In
addition, the apparently low number of functional genes and the
high amount of heterochromatin on the Y chromosome might
allow integration of ERV without negative impact (Kjellman et al.,
1995).

THE ENDOGENOUS RETROVIRUS 3
(ERV3)

ERV3 (also known as HERV-R) has been detected only in
Hominidae (with the exception of Gorilla) and Cercopithecoidea.
ERV3 entered the primate genome obviously 30–40 million
years ago, around the time of the separation of the Catarrhini
and Platyrrhini lineages (separation of the Old and New
World monkeys). In several studies, ERV3 has been used as
marker for the presence of human DNA (Yuan et al., 2001;
Whiley et al., 2004; Eberhart et al., 2005; Lee et al., 2005, 2006;
Adaui et al., 2006; Rollison et al., 2007; Gage et al., 2011;
MacIsaac et al., 2012; Agrawal et al., 2014; Alsaleh et al., 2014;
Barletta et al., 2014; Devonshire et al., 2014; Shigeishi et al.,
2016). ERV3 is located in great apes, monkeys and humans at
an identical genomic position. No ERV3 locus was found in the
genome of Gorilla. Despite absence of ERV3 from the Gorilla
genome, sequences with similarity to human ERV3 are present
in Gorilla (Kim et al., 2006). Indeed, the current Gorilla genome
version (gorGor4) contains at least one predicted non-coding
gene (LOC109024208) with high sequence similarity to human
ERV3. The human genome contains the same non-coding
ERV3 copy. In both species, this copy is located upstream
of the zinc finger protein ZNF681 on chromosome 19. ERV3
sequences have been found in different species of Catarrhini
including Cercopithecinae (macaques, baboons, mangabyes),

FIGURE 1 | ERV3 is undetectable in cells from Saguinus oedipus. Genomic
DNA (gDNA) or cDNA from the human Hodgkin lymphoma cell line L-1236
(Homo sapiens) (Wolf et al., 1996), the grivet (Chlorocebus aethiops) cell line
COS-1 (C. aethiops) (Gluzman, 1981), and the cotton-top tamarin (S. oedipus)
cell line B95.8 (S. oedipus) (Shope et al., 1973) were used as template for
PCR with ERV3 specific primers. Actin beta (ACTB) served as control.

Hylobatidae (gibbons), and Hominidae. No sequences have
been found in Platyrrhini (Shih et al., 1991; Hervé et al.,
2004). As demonstrated in Figure 1, ERV3 is detectable at the
cDNA as well as genomic DNA level in man (Homo sapiens,
Hominoidea, Catarrhini; Hodgkin lymphoma cell line L-1236;
Wolf et al., 1996) and grivet (C. aethiops, Cercopithecoidea,
Catarrhini; cell line COS-1; Gluzman, 1981) but not in cotton-
top tamarin (Saguinus oedipus, Cebidae, Platyrrhini; cell line
B95.8; Shope et al., 1973). The ERV3 sequences from Catarrhini
are highly conserved (Figure 2). Unfortunately, a definitive
and universally accepted nomenclature for ERV and other
EVE has not been established (Mayer et al., 2011; Vargiu
et al., 2016). Therefore, several sequences that are annotated
in public databases as ERV3 (e.g., gene IDs 71995, 107603642,
105604693, and many others) are not homolog to ERV3 from
Catarrhini.

ERV3 was isolated from human DNA and cDNA libraries
in the mid-80s (O’Connell et al., 1984; Cohen et al., 1985)
and named ERV3 because it was the third identified human
endogenous retrovirus locus (after ERV1 and virus 51-1).
Sequence similarities with mammalian type C retroviruses qualify
this ERV as a class I ERV. Human ERV3 is located on
chromosome 7 at 7q11 (Kim et al., 2000). Early observations
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FIGURE 2 | Sequence comparison of ERV3 sequences from different species. Variations specific for individual taxa are highlighted. The following sequences have
been analyzed: Cercocebus atys: NM_001308247, Cercopithecus aethiops: MG574981, H. sapiens: NM_001007253, Hylobates agilis: AB198937, Hylobates
moloch: AJ862653, Macaca fascicularis: AB198938, Macaca fuscata: XM_015446627, Macaca mulatta: XM_015133398, Nomascus leucogenys: NM_001308194,
Pan paniscus: XM_014345675, Pan troglodytes: XM_016956775, Papio anubis: XM_017956681, Pongo abelii: NM_001308132, Pongo pygmaeus: AB198936,
Rhinopithecus bieti: XM_017858756.
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FIGURE 3 | Comparison of the ZNF117 regions in chromosome 7 from Homo
sapiens and Gorilla gorilla. Presented is a schematic drawing of the ZNF117
regions from H. sapiens (genome version GRCh38.p7) and Gorilla gorilla
(genome version gorGor4) on chromosome 7. For both chromosomes the
region between the two zinc finger proteins ZNF273 and ZNF92 is presented.
Genes are presented as blocks, intergenic regions as dark blue boxes.
Homologous gene loci are indicated by identical colors.

indicated that some of the transcripts from the ERV3 locus
contained sequences from the downstream region (Kato et al.,
1987). It was found that such transcripts contain sequences from
a zinc finger protein (ZNF117) with unknown function (Kato
et al., 1990). Interestingly, these read-trough transcripts were
more abundant in peripheral blood mononuclear cells (PBMCs)
from patients with multiple sclerosis than in PBMC from healthy
individuals (Rasmussen et al., 1995). However, a link between
the ERV3 locus and multiple sclerosis could not be established
(Clausen, 2003). Read-trough transcription from ERV into zink
finger proteins seems to be a common theme. For instance,
according to nucleotide data bases, ERV-ZNF8 read-trough
transcription might occur. Notably, ERV3-ZNF117 read-through
transcripts (NM001348050) and normal ZNF117 reference
transcripts (NM_015852) encode the identical ZNF117 protein
sequence. Therefore, the ERV3 locus can be considered as an
alternative promoter for ZNF117. No specific functions for the
different untranslated regions of the two transcripts have been
identified. According to the RegRNA2.0 (Chang et al., 2013)
analysis the shorter 5′-untranslated region of the read-through
transcripts might have fewer binding sites for microRNAs and
non-coding RNAs. Whether the different ZNF117 transcripts
have different stabilities and translation efficiencies should be
analyzed. The Gorilla gorilla genome contains a sequence with
high homology to the human ZNF117 that is located in a
predicted gene (LOC101136021, “zinc finger protein 107-like”).
In previous genome versions the region was annotated as “zinc
finger protein 208-like.” As a consequence of the high number
of zinc finger proteins with similar sequences the automated
annotation algorithms have obviously not correctly assigned this
gene as Gorilla ZNF117. However, this homology is evidenced
not only by the high sequence similarity but also by the identical
chromosomal context (Figure 3). Human ZNF117 as well as
Gorilla ZNF107-like are located on the opposite strand between

the two zinc finger proteins ZNF273 (G. gorilla LOC101135434)
and ZNF92 (G. gorilla LOC101137731) on chromosome 7. The
sequence between the two zinc finger proteins is remarkably
shorter in Gorilla than in Homo suggesting that the Gorilla ERV3
might has been lost by a deletion.

A large proportion of human genomes harbor a
polymorphism that results in a truncated ZNF117 protein
(Balasubramanian et al., 2011). This single nucleotide
polymorphism (rs1404453) introduces a termination codon
in the open reading frame resulting in loss of the last 57 amino
acids. The putative nucleic acid binding sites are not affected by
the truncation. Interestingly, this polymorphism is conserved in
other species, suggesting that the shorter protein form might be
functionally active.

The human genome contains approximately 40 ERV3-like
elements (Kannan et al., 1991; Kjellman et al., 1995; Andersson
et al., 2005). Only the copy on chromosome 7q11 has a complete
open reading frame for a viral envelope protein; the other open
reading frames from this locus are inactivated by non-sense
mutations (Kannan et al., 1991). Polymorphisms in the LTR
and open reading frame of ERV3 including non-sense mutations
that lead to truncated proteins have been observed but no
association with diseases has been found (Rasmussen et al., 1996;
Rasmussen and Clausen, 1998). Interestingly, approximately 1%
of the Caucasian population has mutations in ERV3 that disrupt
the open reading frame (de Parseval and Heidmann, 1998).
The functional consequences of this inactivation have not been
clarified.

ERV3 transcripts are detectable in several normal tissues
including lymphoid organs (spleen, lymph nodes, thymus),
the gastro-intestinal tract (stomach, duodenum, small bowel,
appendix, colon, rectum), the endocrine system (adrenal
glands, thyroid), the urinary system (kidney, urinary bladder),
placenta, male and female reproductive system (testis, corpus
luteum, Fallopian tubes), the respiratory system (lung bronchial
epithelium), astrocytes, sebaceous glands, and salivary glands
(Larsson et al., 1994; Andersson et al., 1996; Katsumata et al.,
1998; Eo et al., 2014; Fei et al., 2014; Kang et al., 2014). The
broad expression profile of ERV3 was also found in other species
(Schiavetti et al., 2002).

ERV3 AND IMMUNOPATHOLOGY

The stimulation of the immune system by ERV encoded antigens
might be involved in autoimmunity. ERV encoded antigens
can be recognized by cytotoxic T cells (Haist et al., 1992).
Antibody cross-reactivity between exogenous retroviruses and
ERV3 peptides have been described (Katsumata et al., 1999) and
ERV3 is up-regulated by cytokines in endothelial cells (Sasaki
et al., 2009). Indeed, ERV3 has been suggested as an auto-antigen
involved in different immune-pathologies (Takeuchi et al., 1995;
Li et al., 1996; de Parseval et al., 1999; Blank et al., 2009;
Nelson et al., 2010, 2014; Kowalczyk et al., 2012). Expression of
ERV3 was found to be up-regulated in blood cells but down-
regulated in skin biopsies from patients with morphea (Li et al.,
1996). ERV3 was detected in synovial tissues from patients
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with rheumatoid arthritis and osteoarthritis but also in synovial
tissues of healthy individuals (Nelson et al., 2010). Altogether, the
possible involvement of ERV3 in autoimmunity requires further
investigations. Like many other retroviral envelope proteins,
ERV3 has a functionally active so-called immunosuppressive
domain that can reduce immune responses in mice (Mangeney
et al., 2007). Immune responses are governed by several host
factors including highly polymorphic systems like the major
histocompatibility complex. It seems possible that the balance
between immunosuppressive and immuno-stimulatory activities
depends on the individual combination of such factors.

ERV3 AND CANCER

The role of ERV3 in cancer might vary in different tumor entities.
Elevated presence of ERV3 has been detected in colorectal,
lung and liver cancer (Ahn and Kim, 2009; Lee et al., 2014).
ERV3 is expressed in prostate cancer cells (Wang-Johanning
et al., 2003). ERV3 is up-regulated together with other ERV
(ERVFRD-1, ERV-PABLB-1, ERVPb-1, ERVV-1, ERVW-1, and
ERVW-2) in endometrial carcinoma (Strissel et al., 2012).
Besides, ERV3 is co-expressed together with members of the
ERVK family and ERVE family in ovarian cancer (Wang-
Johanning et al., 2007). Interestingly, 30% of ovarian cancer
patients have antibodies against ERV3 whereas such antibodies
are not detectable in healthy individuals (Wang-Johanning et al.,
2007). This observation underscores the recognition of ERV3
by the immune system. In early studies, ERV3 was not detected
in breast cancer (Wang-Johanning et al., 2001). A more recent
study observed increased levels of ERV3 in the blood of untreated
patients with breast cancer. Levels of ERV3 and other ERV
decreased after therapy (Rhyu et al., 2014). Up-regulation of
ERV3 in different cancer types might suggest an involvement in
the pathogenesis of these diseases.

On the other hand, ERV3 was considered to be a tumor
suppressor (Matsuda et al., 1997; Lin et al., 1999, 2000).
ERV3 is up-regulated after irradiation of head and neck
squamous cell carcinoma cells (Michna et al., 2016), during
monocytic differentiation of acute myelogenous leukemia cells
(Larsson et al., 1996, 1997; Abrink et al., 1998) as well as
during differentiation of normal squamous cells (Otsuka et al.,
2006). Demethylation of the ERV3 locus during monocytic
differentiation leads to expression of ERV3 and ZNF117
(Andersson et al., 1998). Growth inhibited Hodgkin lymphoma
cells express higher levels of ERV3 RNA than proliferating cells
(Kewitz and Staege, 2013).

Regulation of ERV3 seems to be cell type specific (Sibata
et al., 1997). For instance, ERV3 is up-regulated together with
fusogenic ERV envelope proteins in muscle after long-term
endurance exercise (Frese et al., 2015). ERV3 is expressed during
embryogenesis and a role of ERV3 in developmental processes
has been discussed (Andersson et al., 2002). ERV3 expression
might be regulated by steroid hormones (Rote et al., 2004).
On the other hand, a function of ERV3 in hormone regulation
has been suggested (Morrish et al., 2001). In normal placenta,
ERV3 is higher expressed in the first trimester of pregnancy

than at term (Holder et al., 2012). ERV3 is up-regulated during
trophoblast differentiation (Boyd et al., 1993). Like the 5′-long
terminal repeats (LTRs) of ERVW-1 and ERVFRD-1, the ERV3
5′-LTR is hypomethylated in cytotrophoblasts during pregnancy
(Gimenez et al., 2009). Expression of ERV3 and other ERV in the
placenta is reduced in cases of intrauterine growth retardation
(Ruebner et al., 2010). The importance of ERV expression in the
placenta is, indeed, known for a long time (Muir et al., 2004). An
immunosuppressive function of ERV3 in the context of mother-
fetus interaction has been proposed (Venables et al., 1995). Other
ERV expressed in the placenta have fusogenic activity. Whether
ERV3 has fusogenic activity has been discussed controversially
(Boyd et al., 1993; Morrish et al., 2001). Together with syncytin
1 and syncytin 2, ERV3 is down-regulated in hydatidiform moles
and malignant gestational trophoblastic tumors in comparison to
normal placenta (Bolze et al., 2016). ERV3 expression is absent in
choriocarcinoma (Cohen et al., 1988; Kato et al., 1988).

Taking together, it seems that in some tumor entities ERV3 is
preferentially expressed in differentiated or growth inhibited cells
compared to proliferating tumor cells. Whether ERV3 has growth
inhibitory activity in certain cell types has to be investigated.
Rodent (tumor) models for ERV3 (and other genuine human
ERV) have the limitation that ERV3 is not naturally present
in these species. Therefore, especially the interaction between
immune cells and ERV3 in these models is highly different from
the situation that can be expected in the human system. In vitro
systems might be necessary to reconstruct basic aspects of this
interaction. Independent on the function of ERV3 in tumor
cells, ERV3 might be considered as target for immunological
treatment strategies. The presence of antibodies against ERV3
in some cancer patients indicates that immune responses are
possible. Cytotoxic T cells with specificity for ERV3 might
be able to kill ERV3 expressing tumor cells. However, the
problems of overcoming tolerance on the one hand and avoiding
autoimmunity on the other hand have to be solved before ERV3
(which is not a classical cancer antigen) might be useful as
immunological cancer target.

THE METAZOAN SOS RESPONSE

Based on the presented observations, it remains unclear whether
ERV3 can act as a tumor suppressor or a tumor promoting factor.
It remains possible that the expression of ERV3 in tumor cells
has no impact on tumor growth but is only an epiphenomenon
related to relaxed gene expression control. ERV3 transgenic rats
show no pathology (Tanaka et al., 2003). The limitations of
such animal models have been discussed above. The presence
of mutations in ERV3 that disrupt the open reading frame in
virtually healthy individuals suggest that ERV3 protein has no
essential function. In addition, it seems doubtful whether the
numerous mutated non-coding copies of ERV3 (and other ERV)
have individual functions. We propose a different function for
ERV3 and other ERV loci. It was suggested that ERV3 DNA
can form a structure that activates the intracellular DNA sensor
cyclic GMP–AMP synthase (Herzner et al., 2015). Activation
of this enzyme can trigger an inflammatory pathway. The
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importance of this pathway is highlighted by the development of
autoimmunity in patients with defective double-stranded DNA-
removal machinery (Stetson et al., 2008). Interestingly, increased
ERV expression has been detected in patients with cancer as well
as in patients with a spectrum of auto-immune diseases. One of
the common features between cancer and auto-immune diseases
is the dysfunction of regulatory circuits. Biological systems are
characterized by a high level of ultra-stability (Staege, 2014). In
cancer cells, normal regulatory circuits are defect. It seems likely
that cells have sensor mechanisms that respond to dysfunctional
regulatory circuits (DRC). As a consequence of ultra-stability,
cells will try to reach alternative steady-state equilibria. The
activation of ERV under these conditions might be involved
in these mechanisms. DRC can be the consequence of virus
infections. If the immune system cannot eliminate this virus
directly, the activation of the immune system by EVE can be
an alternative pathway that allows elimination of the exogenous
virus by varying mechanisms (receptor interference, lysis of
EVE-expressing cells by cytotoxic T cells, competition between
RNA molecules, and so on and so forth). Such mechanism
might be responsible for the detected antibodies against ERV
including ERV3 in some cancer patients. This might be one
reason why the genomes of virtually all higher organisms
contain a plethora of EVE. ERV re-activation in cancer or
other diseases can indicate the presence of DRC in these
diseases.

In the case of ERV3, loss of ERV3 expression in certain types
of cancer can indicate that in these tumors ERV3 expression
would otherwise activate the endogenous sensing machinery. The
further elucidation of the function of ERV3 and other EVE in

health and disease might allow the development of new treatment
strategies for cancer and auto-immune diseases.

CONCLUSION

ERV3 is a Catarrhini-specific EVE with interesting expression
profile in normal tissues, cancer and other diseases. ERV3
is closely linked to the neighboring ZNF117 locus and for
both genes the physiological function has not been clarified.
Differential expression of ERV3 in cancer cells and the
corresponding normal tissues makes ERV3 a potential target for
future therapeutic developments. However, further investigations
are necessary in order to elucidate the role of the ERV3/ZNF117
locus in the context of cancer and other diseases as well as
physiological functions of these genes.
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