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Introduction
Infectious, ischemic, and immune-mediated intestinal diseases 
are characterized by a loss of epithelial paracellular barrier 
function (Hollander et al., 1986; Clayburgh et al., 2004; Turner, 
2009), which, in the absence of gross epithelial destruction, re-
flects increased tight junction permeability (Gitter et al., 2001; 
Suenaert et al., 2002; Epple et al., 2009). Although the extra-
cellular mediators that trigger tight junction regulation are 
incompletely defined, cytokines contribute to barrier loss by at 
least two mechanisms. For example, IL-13, which is increased 
in the mucosa of patients with ulcerative colitis and Crohn’s 
disease, is able to induce expression of claudin-2 (Prasad et al., 
2005; Zeissig et al., 2007). In turn, claudin-2 expression in-
creases tight junction permeability to both ions and small, non-
ionic solutes (Simon et al., 1999; Furuse et al., 2001; Van Itallie 
et al., 2001, 2008; Weber et al., 2010). In contrast, TNF, which 
is critical to Crohn’s disease pathogenesis and contributes sig-
nificantly to infectious, ischemic, and immune-mediated intes-
tinal diseases, regulates barrier function via myosin light chain 

(MLC) phosphorylation (Clayburgh et al., 2005; Blair et al., 
2006) and tight junction remodeling (Shen et al., 2006).  
Although in vitro and in vivo studies have shown that acute 
TNF-induced barrier loss requires MLC kinase (MLCK)– 
dependent MLC phosphorylation (Zolotarevsky et al., 2002; 
Clayburgh et al., 2005; Ma et al., 2005; Wang et al., 2005), the 
only associated ultrastructural modification reported is con-
densation of the perijunctional actomyosin ring (Clayburgh  
et al., 2005). Immunofluorescence microscopy demonstrates 
marked internalization of the transmembrane protein occludin 
after TNF treatment (Clayburgh et al., 2005). The observations 
that TNF-induced MLC phosphorylation, occludin internaliza-
tion, paracellular barrier loss, and diarrhea are all prevented  
by genetic or pharmacological MLCK inhibition (Clayburgh  
et al., 2005) suggest that these events are closely linked. There-
fore, we sought to define the mechanisms of TNF-induced oc-
cludin internalization and to determine whether this endocytic 
event is required for in vivo barrier loss.

Epithelial paracellular barrier function, determined 
primarily by tight junction permeability, is fre-
quently disrupted in disease. In the intestine, bar-

rier loss can be mediated by tumor necrosis factor ()  
(TNF) signaling and epithelial myosin light chain kinase 
(MLCK) activation. However, TNF induces only limited  
alteration of tight junction morphology, and the events 
that couple structural reorganization to barrier regulation 
have not been defined. We have used in vivo imaging 

and transgenic mice expressing fluorescent-tagged occlu-
din and ZO-1 fusion proteins to link occludin endocytosis 
to TNF-induced tight junction regulation. This endocyto-
sis requires caveolin-1 and is essential for structural and 
functional tight junction regulation. These data demon-
strate that MLCK activation triggers caveolin-1–dependent 
endocytosis of occludin to effect structural and functional 
tight junction regulation.
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internalization occurs before fluid accumulation and suggests 
that occludin may be a critical component of MLCK-dependent 
barrier loss.

In vivo imaging of tight junction structure
Studies of tight junction regulation, immune cell trafficking, 
and other dynamic processes have benefitted greatly from 
advanced imaging techniques in living cells and occasionally 
in tissues. To characterize mechanisms of intestinal tight junc-
tion regulation in vivo, transgenic mice expressing a well-
validated EGFP-occludin fusion protein (Shen and Turner, 
2005) under control of the intestinal–epithelial-specific villin 
promoter were developed (Pinto et al., 1999). Jejunal entero-
cytes of these transgenic mice express approximately equal 
quantities of endogenous and EGFP-occludin, such that total 
occludin expression is 2.4 ± 0.4-fold (n = 4) of that in wild-
type mice.

To visualize intestinal epithelia, a loop of jejunum was 
externalized, opened, and imaged directly (Fig. 2 A; Akiba  
et al., 2001; Watson et al., 2005), thereby allowing detailed ex-
amination of villous structure (Fig. 2 B). Confocal reflectance 
was used to detect blood flow within villous capillaries and to 
confirm ongoing vascular perfusion during these experiments 
(Fig. 2 B and Video 1). EGFP-occludin was present at the tight 
junction and along lateral membranes in three separate trans-
genic lines, likely as a result of overexpression. Thus, to define 
the anatomical location of the tight junction, transgenic mice 
expressing EGFP-occludin and monomeric RFP 1 (mRFP1)–
ZO-1 (Shen and Turner, 2005), both driven by the villin pro-
moter, were developed. mRFP1–ZO-1 was concentrated at 
tight junctions and could be used to distinguish tight junction 
associated from lateral membrane EGFP-occludin (Fig. 2 C and 
Video 2). 3D reconstruction of optical slices from transgenic 
mice in which nuclei were labeled with Hoechst 33342 pro-
vides as of yet unobtainable views of villous structure (Fig. 2 D  
and Video 3). Importantly, expression of these transgenes, 
either separately or in combination, did not affect intestinal 
morphology or overall growth, development, and general health 
of the mice. Therefore, these mice represent a powerful tool 
for examining dynamic behavior of intestinal epithelial tight 
junctions in vivo.

TNF-induced endocytosis occurs at 
occludin-enriched tight junction sites
Transgenic mice were used to directly visualize tight junction 
reorganization during TNF-induced barrier loss. mRFP1–
ZO-1 was used to identify the plane of the tight junction.  
Very little change in either mRFP1–ZO-1 or EGFP-occludin 
distribution occurred until 90 min after TNF injection, which 
is consistent with analyses in fixed tissues (Fig. 1 A). How-
ever, focal areas of EGFP-occludin concentration developed 
within the tight junction 85–90 min after TNF injection 
(Fig. 2, E and F). Several minutes later, vesicles formed at 
these sites, and EGFP-occludin was removed from the tight 
junction by endocytosis. Multiple areas demonstrating this 
process are apparent in Fig. 2 E (Video 4), and a high magni-
fication series of one endocytic event is presented in Fig. 2 F. 

In vitro studies have reported occludin endocytosis via 
macropinocytosis, clathrin-coated pits, and caveolae (Ivanov 
et al., 2004b; Bruewer et al., 2005; Shen and Turner, 2005; 
Schwarz et al., 2007). To define the mechanisms of TNF- 
induced occludin endocytosis in vivo, we developed mice ex-
pressing fluorescent occludin and ZO-1 fusion proteins within 
the intestinal epithelium. These were studied using high resolu
tion in vivo imaging approaches. Our data show that TNF induces 
focal intrajunctional concentration of occludin followed by 
caveolin-1–dependent endocytosis. Moreover, both caveolin-1  
knockout and pharmacologic inhibition of endocytosis pre-
vented TNF-induced occludin internalization as well as tight 
junction barrier loss and water secretion. Finally, occludin over-
expression limited barrier loss and prevented water secretion. 
Thus, caveolin-1–dependent occludin endocytosis is essential 
for in vivo immune-mediated tight junction regulation.

Results
We have previously shown that diarrhea induced by TNF requires 
the combined effects of protein kinase C, which inhibits  
Na+ absorption, and MLCK, which increases tight junction 
permeability (Clayburgh et al., 2005, 2006). The mechanisms 
by which Na+ absorption is inhibited, thereby reducing the 
transmucosal Na+ gradient that drives paracellular water ab-
sorption, have been studied extensively (Lee-Kwon et al., 2003; 
Clayburgh et al., 2006). In contrast, the processes by which 
MLCK activation leads to tight junction regulation are less 
well characterized.

Occludin internalization precedes intestinal 
fluid secretion
To determine whether tight junction protein redistribution was 
associated with TNF-induced barrier disruption and diarrhea, 
the localizations of claudin-1, -3, -4, -5, -7, -15, and E-cadherin 
were examined. These were unaffected by in vivo TNF treat-
ment (Fig. 1 A). Claudin-2 was only detected in crypt epithe-
lium, and claudin-12 was not detected at all, which is consistent 
with previous data (Holmes et al., 2006). In contrast, a marked 
increase in the number of occludin-containing cytoplasmic 
vesicles developed after TNF administration (Fig. 1 B). Although 
apical–basal-oriented sections (Fig. 1 B) could be interpreted 
to suggest that occludin synthesis is stimulated by TNF, images 
orthogonal to the apical–basal orientation showed that this in-
crease in cytoplasmic occludin is associated with a decrease in 
tight junction–associated occludin (Fig. 1 C). This is confirmed 
by immunoblots showing that the total occludin content of  
isolated jejunal enterocytes was unchanged after TNF treat-
ment (Fig. 1 D).

As an initial assessment of the relationship between oc-
cludin internalization, barrier loss, and diarrhea, occludin vesi-
cle number was correlated with intestinal fluid accumulation. 
Immunofluorescent analysis of jejunum harvested at intervals 
after intraperitoneal TNF injection identified significant occlu-
din internalization within 90 min (P < 0.001; Fig. 1 E). In con-
trast, fluid accumulation was not detectable until 135 min after 
TNF injection (P < 0.01; Fig. 1 E). This suggests that occludin 
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and barrier function after TNF treatment. Consistent with this 
hypothesis, cell profiles at the level of the tight junction  
(orthogonal to the apical–basal orientation) showed marked 
preservation of tight junction–associated occludin in TNF-
treated EGFP-occludin transgenic mice (Fig. 3 B). In con-
trast, similar images from TNF-treated wild-type mice showed  
loss of occludin from ZO-1–retaining tight junction segments 
(Fig. 3 B). This suggested that preservation of tight junction–
associated occludin might also prevent TNF-induced barrier 
loss. Although TNF treatment did cause barrier loss in EGFP-
occludin transgenic mice, the effect was markedly decreased 
relative to the barrier loss induced in wild-type mice (P < 
0.05; Fig. 3 C). Moreover, although intestinal water absorp-
tion was reduced (Fig. 3 D), likely because of NHE3 inhibi-
tion (Clayburgh et al., 2006), EGFP-occludin transgenic mice  
continued to absorb water after TNF treatment (P < 0.01; Fig. 3 D).  
Thus, preservation of tight junction–associated occludin as  
a result of EGFP-occludin expression reduces barrier loss  
and restores net water absorption despite TNF treatment. These 
data indicate that occludin removal from the tight junction is 
central to both the barrier defect and diarrhea associated with 
TNF treatment and, therefore, represent the first in vivo evi-
dence of a functional role for occludin with regard to intestinal 
barrier function.

In most cases, the entire process, from occludin recruitment 
to budding, fission, and movement of the vesicle out of the 
plane of focus, was complete within 15 min. To determine 
whether TNF-induced occludin endocytosis occurred from 
the apical or basal aspect of the tight junction, images were 
collected from optical sections that demonstrated apical–
basal-oriented epithelia (Fig. 2 G). These images demon-
strate that, despite its presence along the lateral membrane, 
EGFP-occludin is most concentrated at the tight junction and 
also suggest that EGFP-occludin vesicles form at the baso-
lateral aspect of the tight junction.

EGFP-occludin overexpression limits 
barrier loss and prevents diarrhea  
induced by TNF
As shown in Fig. 1 and a previous study (Clayburgh et al., 
2006), recombinant TNF administration induces occludin 
endocytosis and barrier loss in wild-type mice. Similar endo
cytosis of EGFP-occludin also occurs in transgenic mice 
(Fig. 2). However, jejunal enterocytes from these transgenic 
mice express over twice as much occludin as do jejunal entero
cytes from wild-type mice (Fig. 3 A). This suggests that oc-
cludin overexpression in these transgenic mice might result 
in relative preservation of tight junction–associated occludin  

Figure 1.  Occludin endocytosis begins 90 min after TNF administration and precedes intestinal fluid accumulation. (A) Jejunum was harvested from wild-
type mice at the indicated times after intraperitoneal injection of 5 µg TNF and labeled for claudin proteins or E-cadherin (green), ZO-1 or F-actin (red), and 
nuclei (blue). (B) As in A, jejunal sections were labeled for occludin (green), F-actin (red), and nuclei (blue). (C) Jejunal sections were harvested and labeled 
as in B. TNF treatment leaves large regions of the tight junction completely lacking in occludin (arrows). (D) Jejunal epithelia were isolated from wild-type 
mice 120 min after injection with saline or TNF and analyzed via immunoblotting. (E) Number of occludin-containing vesicles (black circles) was assessed 
morphometrically, and fluid accumulation (white boxes) was measured as weight/length ratio (n = 4). Error bars indicate mean ± SEM. Bars, 10 µm.
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Figure 2.  In vivo imaging of EGFP-occludin endocytosis in jejunal enterocytes. (A) The opened jejunum, with intact neurovascular supply, is placed in a 
dish with the mucosa resting on a coverslip. (B) EGFP-occludin (green) is targeted to tight junctions and, to a lesser degree, lateral membranes of jejunal 
enterocytes. Villous capillaries within the lamina propria can be identified by confocal reflectance (red) based on the presence of blood flow. Portions of four 
villi are shown in cross section. Nuclei (blue) are shown in the merged image. (bottom) High speed imaging shows erythrocytes (arrows) flowing through 
villus capillaries (outlined by dashed lines). Images are taken from Video 1. Bars: (top) 20 µm; (bottom) 5 µm. (C) XY plane images at the indicated relative 
z positions show the targeting of mRFP1–ZO-1 (red) and EGFP-occludin (green) in jejunal enterocytes. Both proteins are concentrated at the tight junction. 
EGFP-occludin is also present in lateral membranes. The full z stack is shown in Video 2. Bar, 20 µm. (D) 125 confocal sections collected at 0.1-µm intervals 
were used to create this reconstruction of three villi from a transgenic mouse expressing mRFP1–ZO-1 (red) and EGFP-occludin (green). Nuclei are blue.  
A rotating view of the reconstruction is available as Video 3. Bar, 20 µm. (E) High magnification images of villous epithelium show that mRFP1–ZO-1 (top; 
red in merge) and EGFP-occludin (middle; green in merge) were collected at the plane of the tight junction as determined by the location of mRFP1–ZO-1 
(pink arrows). EGFP-occludin endocytosis occurs during the interval from 85 to 185 min after TNF injection (blue arrows). The complete time-lapse series 
is shown in Video 4. Bar, 10 µm. (F) The relatively low magnification image is shown for orientation. Images were collected from a small area of the tight 
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the macropinocytosis inhibitor amiloride had no effect on  
abundance of occludin-containing vesicles before or after 
TNF treatment (Fig. 4, A and B). This did not reflect a  
lack of efficacy, as internalization of fluorescent WGA was 
blocked by amiloride despite ongoing endocytosis of occlu-
din (Fig. 4 C).

Clathrin-coated pits and caveolae are the two primary  
routes of dynamin-dependent endocytosis. Chlorpromazine,  
which inhibits endocytosis via clathrin-coated pits, failed to 
block TNF-induced occludin endocytosis (Fig. 4, A and B), 
although clathrin-coated pit-mediated endocytosis of IgG  
(He et al., 2008) was blocked (Fig. 4 D). Methyl--cyclodextrin 
(MCD) was used to preliminarily assess the role of caveolae-like 
membrane domains in TNF-induced occludin internalization. 
MCD completely blocked TNF-induced occludin internaliza-
tion (Fig. 4, A and B). Moreover, the synthetic glycosphingo-
lipid L-t-LacCer (-d-lactosyl-N-octanoyl-l-threo-sphingosine), 
which blocks caveolar endocytosis without some of the off-
target effects of MCD (Singh et al., 2007), blocked TNF-
induced occludin internalization (Fig. 4, A and B). In contrast, 
the related but inactive lipid D-e-LacCer (-d-lactosyl-N- 
octanoyl-d-erythro-sphingosine) had no effect (Fig. 4, A and B). 
These data suggest that TNF-induced occludin endocytosis 
may occur via caveolae or other cholesterol-enriched mem-
brane domains.

The effects of dynasore, MCD, and L-t-LacCer could 
reflect disruption of epithelial TNF receptor signaling and 
subsequent MLC phosphorylation, which are required for 
TNF-induced occludin internalization (Clayburgh et al., 2005). 

TNF-induced occludin internalization can be 
blocked by endocytosis inhibitors
The aforementioned data demonstrate that occludin internal-
ization is closely associated with TNF-induced barrier loss. 
Therefore, the mechanism of in vivo TNF-induced occludin 
endocytosis was of interest. Unfortunately, a variety of studies 
using cultured monolayers have reported occludin internaliza-
tion via clathrin-mediated endocytosis (Ivanov et al., 2004b), 
macropinocytosis (Bruewer et al., 2005), and caveolar endo
cytosis (Shen and Turner, 2005). Initially, a pharmacological 
approach was used to characterize TNF-induced occludin inter-
nalization in vivo. Drugs were delivered apically within the  
intestinal lumen, thereby limiting systemic exposure. The abil-
ity of the small molecule dynasore, which inhibits dynamin 
(Macia et al., 2006), to prevent TNF-induced occludin endo
cytosis was tested. Consistent with in vitro experiments of  
epithelia-expressing dominant-negative dynamin II (Shen and 
Turner, 2005), dynasore caused a small increase in occludin-
containing vesicles within intestinal epithelia (Fig. 4, A and B). 
This may indicate a role for dynamin in basal occludin  
trafficking. However, dynasore prevented TNF-induced in-
creases in the number of occludin-containing vesicles (Fig. 4,  
A and B). Thus, TNF triggers occludin endocytosis by a dynamin-
dependent process.

This effect of dynasore largely, although not entirely, 
excludes macropinocytosis, which is typically dynamin in
dependent, as a mechanism of occludin internalization  
(Meier et al., 2002; Schlunck et al., 2004; Cao et al., 2007; 
Doherty and McMahon, 2009). Consistent with this conclusion, 

junction (pink arrows). The higher magnification images of the boxed area show focal EGFP-occludin enrichment before endocytosis, vesicle budding, 
separation, and movement out of the focal plane (blue arrows). The entire process takes 15 min. Time after TNF injection is indicated. Bars: (left) 5 µm; 
(middle) 1 µm. (G) The lower magnification image is shown for orientation. The tight junction (pink arrows) appears as a bright spot of EGFP-occludin. 
Higher magnification images of the boxed area show EGFP-occludin–containing endocytic vesicles (blue arrows) leaving the basal aspect of the tight junction. 
Time after TNF injection is indicated. Bars: (left) 10 µm; (middle) 2 µm.

 

Figure 3.  EGFP-occludin mice are partially 
protected from TNF-induced occludin redistri-
bution, barrier dysfunction, and fluid secre-
tion. (A) Jejunal epithelia were isolated from 
wild-type and EGFP-occludin transgenic mice.  
Occludin, EGFP-occludin, and actin content 
were assessed by immunoblotting. (B) Jejunum 
was harvested from wild-type and EGFP-occludin 
mice 120 min after TNF injection. Wild-type 
tissue was labeled for occludin (top; green in 
merge) and F-actin (red). EGFP-occludin (top; 
green in merge) and labeled F-actin (red) are 
shown for transgenic animals. Regions of the 
tight junction completely lacking in occludin  
(arrows) develop in TNF-treated wild-type but 
not EGFP-occludin transgenic mice. Bar, 10 µm.  
(C) In vivo perfusion assays were used to as-
sess paracellular BSA flux in wild-type mice 
and EGFP-occludin mice injected with TNF 
(gray bars) or vehicle (white bars; n = 6).  
(D) In vivo perfusion assays of water movement 
in wild-type and EGFP-occludin mice injected 
with TNF (gray bars) or vehicle (white bars;  
n = 6). Error bars indicate mean ± SEM.
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fraction that also contained clathrin heavy chain remained low 
(Fig. 5). Additionally, the overall distribution of clathrin heavy 
chain was unaffected by TNF.

In contrast to clathrin heavy chain, caveolin-1 was closely 
associated with the apical junctional complex of jejunal entero
cytes (Fig. 5). The fluorescence micrographs show that caveolin-1  
is concentrated just basal to occludin, although there is  
some colocalization. This suggests that in jejunal enterocytes,  
caveolin-1 may be most concentrated at the adherens junction, 
and this conclusion is supported by immunoelectron micros-
copy (see Fig. 7 B). Remarkably, 90 min after TNF injection, 
both occludin and caveolin-1 begin to be removed from the 
apical junctional complex (Fig. 5). This was associated with a 
marked increase in the number of vesicles containing occludin 
or caveolin-1 as well as the fraction of vesicles that were posi-
tive for both proteins (Fig. 5). This colocalization of occludin 
and caveolin-1 peaked at 105 min but remained elevated for 
at least 120 min after TNF injection. Beyond suggesting that 
occludin is internalized with caveolin-1, the images show that 
TNF induces a dramatic reorganization of caveolin-1. Sections 
oriented orthogonally to the apical–basal orientation confirm 

However, TNF-induced MLC phosphorylation was not inhib-
ited by dynasore, MCD, or L-t-LacCer (Fig. 4 E). Thus, 
taken as a whole, these data show that in vivo, TNF-induced 
occludin endocytosis requires dynamin and involves mem-
brane lipid domains, consistent with a role for caveolae-like 
membrane domains in this process.

Occludin colocalizes with caveolin-1 but not 
clathrin heavy chain after TNF treatment
Although pharmacological inhibitors are useful, they lack the 
specificity necessary for conclusive determination of endo-
cytic mechanisms and frequently enhance endocytosis by  
alternative routes (Rodal et al., 1999; Hambleton et al., 2007; 
Kasprowicz et al., 2008; Morris et al., 2008; Van Hamme  
et al., 2008; Vercauteren et al., 2010). Therefore, markers of 
different endocytic routes were examined. In the absence of 
TNF, clathrin heavy chain was found in vesicles throughout 
the cytoplasm of jejunal enterocytes, and <6% of the rare 
occludin-positive vesicles also contained clathrin heavy chain 
(Fig. 5). Despite the marked increase in number of occludin-
containing vesicles beginning 90 min after TNF injection, the 

Figure 4.  Inhibitors of caveolar endocytosis 
prevent TNF-induced occludin internalization. 
(A) Wild-type mice were injected with vehicle 
or TNF as indicated. A segment of jejunum 
was perfused with 50 µM dynasore, 60 µM 
amiloride, 200 µM chlorpromazine (CPZ),  
2 mM MCD, 50 µM L-t-LacCer, or 50 µM  
D-e-LacCer and harvested 135 min later. Sec-
tions were labeled for occludin (grayscale im-
ages; green in merge), F-actin (red), and nuclei 
(blue). Bar, 20 µm. (B) Morphometric analysis 
of the number of occludin-containing vesicles 
per enterocyte in wild-type mice injected with 
vehicle (white bars) or TNF (gray bars) in jeju-
nal segments perfused with saline or the indi-
cated inhibitors. (C) Wild-type mice were 
injected with TNF, and a segment of jejunum 
perfused with Alexa Fluor 594–conjugated 
WGA (50 µg/ml). Perfused segments were 
harvested 135 min after TNF treatment. Sec-
tions were labeled for actin (top; green) or  
occludin (bottom; green) and nuclei (blue). Per-
fusion with amiloride prevented endocytosis of 
WGA (red) but not occludin. Bar, 10 µm.  
(D) Wild-type mice were injected with TNF, 
and a segment of jejunum perfused with  
DyLight 594–conjugated IgG (40 µg/ml). Per-
fused segments were harvested 135 min after 
TNF treatment. Sections were labeled for actin 
(top; green) or occludin (bottom; green) and 
nuclei (blue). Perfusion with chlorpromazine 
prevented endocytosis of IgG (red) but not  
occludin. Bar, 10 µm. (E) Sections of jejunum 
from mice injected with vehicle or TNF and 
perfused with saline, dynasore, MCD, or  
L-t-LacCer harvested 135 min after TNF injec-
tion were labeled for phosphorylated MLC 
(green) and nuclei (blue). Bar, 20 µm. Error 
bars indicate mean ± SEM.
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endosomal antigen 1; Mu et al., 1995; Callaghan et al., 1999; 
Shen and Turner, 2005; Stamatovic et al., 2009). To determine 
whether this also occurred in intestinal epithelial cells, occlu-
din and EEA1 distributions were assessed (Fig. 5). Notably, 
the EEA1-positive structures were larger than the majority of 
occludin-positive vesicles. Like clathrin heavy chain, TNF  
did not trigger reorganization of EEA1 (Fig. 5). However,  
an increase in the fraction of occludin-positive vesicles  
that contained EEA1 was apparent 90 min after TNF injec-
tion and increased progressively thereafter (Fig. 5). This  
suggests that occludin internalized with caveolin-1 may be  
subsequently trafficked to EEA1-positive early endosomes 

this and demonstrate the redistribution of caveolin-1 from the  
plasma membrane to a population of intracellular vesicles  
after TNF treatment (Fig. 5). In contrast, neither clathrin heavy 
chain nor EEA1 demonstrated redistribution after TNF treat-
ment (Fig. 5). This TNF-induced reorganization of epithelial 
caveolin-1 has not been reported previously but suggests that 
a wave of caveolin-1 endocytosis accompanies TNF-induced 
occludin internalization.

A recent in vitro analysis of endothelial barrier loss  
induced by the proinflammatory chemokine CCL2 reported 
that occludin was initially cointernalized with caveolin-1  
and later trafficked to a compartment containing EEA1 (early 

Figure 5.  TNF induces colocalization of oc-
cludin and caveolin-1 but not clathrin heavy 
chain. Wild-type mice were injected with ve-
hicle or TNF, and jejunum harvested at the 
times indicated. Sections were labeled for 
occludin (green), nuclei (blue), and clathrin 
heavy chain, caveolin-1, or EEA1 (all red). 
Apical–basal-oriented and orthogonal sec-
tions are shown. Morphometric analysis of the 
fraction of occludin-containing vesicles that 
also contain caveolin-1 (red squares), clathrin 
heavy chain (green circles), and EEA1 (blue tri-
angles) is shown below the micrographs. Error 
bars indicate mean ± SEM. Bars, 10 µm.
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(Harhaj et al., 2002; Pelkmans et al., 2004; Parton and Simons, 
2007; Stamatovic et al., 2009).

TNF increases the number of small vesicles 
within the apical cytoplasm
Given the striking caveolin-1 redistribution that occurred 90 
min after TNF injection, it seemed probable that a new popula-
tion of vesicles was induced. Although budding profiles were 
not detected, consistent with the transient nature of these struc-
tures, electron microscopy and morphometry did demonstrate a 
marked increase in uncoated vesicles within the apical cyto-
plasm of jejunal enterocytes (Fig. 6). These vesicles had a 
mean diameter of 80 nm and were first apparent 90 min after 
TNF injection. By 105 min, the number of vesicles with  
mean diameter of 80 nm decreased, but the number in a second 
population, with mean diameter of 125 nm, began to increase.  
A small increase in a third population with mean diameter of 
170 nm also occurred. The number of vesicles in the second 
and third populations increased further by 120 min, whereas 
the number of vesicles with mean diameter of 80 nm decreased. 
This temporal relationship suggests that a stepwise maturation 
of the first, presumably endosomal, vesicle population may 
give rise to the larger vesicles and is consistent with the obser-
vation that immunofluorescent colocalization of occludin and 
EEA1 develops more slowly than does the colocalization of 
occludin with caveolin-1.

Caveolin-1 and occludin are both present 
at the apical junction complex and within 
cytoplasmic vesicles
The effects of pharmacological inhibitors and immunofluo-
rescent colocalization of occludin with caveolin-1 are all 
consistent with endocytosis of occludin from detergent- 
resistant membrane domains via a dynamin- and caveolin-1–
dependent process. Consistent with this, immunoelectron 
microscopy of jejunal enterocytes from control mice demon-
strated concentration of occludin and caveolin-1 at the apical 
junctional complex (Fig. 7 and Fig. S1), which subcellular 
fractionation experiments have shown to be detergent-resistant 
membrane domains (Nusrat et al., 2000). Double labeling 
showed that some caveolin-1 was present adjacent to occlu-
din at the tight junction (Fig. 7 C). Analysis of jejunal mu-
cosa harvested 90 min after TNF treatment showed that some 
occludin and caveolin-1 remained at the apical junctional 
complex (Fig. 8, A and B; and Fig. S2, A and C) but were 
also present within cytoplasmic vesicles (Fig. 8, C and D; 
and Fig. S2, B and D).

Figure 6.  Distinct vesicle populations are impacted by TNF. Electron micro-
graphs of aldehyde-fixed, plastic-embedded jejunum from control and TNF-
treated wild-type mice are shown. (A) Low magnification view of jejunal  
enterocytes showing the relationship between the intestinal lumen (L),  
microvillus brush border (Mv), tight junction (TJ), adherens junction (AJ), 
and desmosomes (D). Note the exclusion of mitochondria (M) from the  
most apical cytoplasm by the dense perijunctional actomyosin ring (PAMR). 

Bar, 2 µm. (B) Jejunal enterocytes of untreated mice (0 min) and mice 
sacrificed at the indicated times after TNF treatment were examined. Rep-
resentative electron micrographs are shown. At least 1,000 µm2 apical 
cytoplasm was examined per condition. Incremental fits show that the data 
can be modeled as the sum of four Gaussian distributions (solid lines). 
Mean diameters of 80, 125, 170, and 240 nm (dashed lines) are shown. 
The number of vesicles in each population (per 1,000 µm2 cytoplasm)  
is indicated above each curve. The actual number of vesicles observed 
(per 1,000 µm2 cytoplasm) is shown in the top right corner of each graph. 
Bar, 500 nm.
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Inhibitors of occludin endocytosis  
prevent TNF-induced barrier loss  
and water secretion
Although the aforementioned data suggest that TNF-induced 
occludin internalization is accompanied by caveolin-1 endo
cytosis, they do not address the functional significance of these 
events to TNF-induced intestinal epithelial barrier loss and  
water secretion. A validated in vivo perfusion system in which 
the vasculature and innervation of a functionally isolated loop 
of bowel remain intact was therefore used to determine whether 
the chemical inhibitors that blocked occludin endocytosis also 
prevented TNF-induced diarrhea (Clayburgh et al., 2005). Over 
the period of perfusion, control, saline-injected mice demon-
strated net water absorption (Fig. 9). Only a small amount  
of BSA leaked from the blood stream to lumen. In contrast,  
a large paracellular barrier defect developed, and net water  
secretion occurred after TNF injection (Fig. 9). However, as 
shown previously, a large paracellular barrier defect developed, 
and net water secretion occurred after TNF injection (Fig. 9). 
Dynasore completely blocked both the development of a  
TNF-induced barrier defect (P < 0.01) and net water secretion 
(P < 0.001). MCD also completely prevented TNF-induced 
increases in paracellular permeability (P < 0.01) and dimin-
ished the magnitude of water secretion (P < 0.05). The inability 
of MCD to completely restore water absorption may reflect 
the known off-target effects of this agent, which can include 
tight junction barrier defects in some settings (Francis et al., 
1999; Yu et al., 2005).

Caveolin-1 is required for TNF-
induced occludin internalization, barrier 
dysfunction, and diarrhea
Although dynasore and MCD prevented TNF-induced occlu-
din internalization and barrier dysfunction, the possibility re-
mains that these effects might reflect other activities of these 
agents. For example, inhibition of dynamin has been reported 
to prevent endocytosis via caveolae and clathrin-coated pits 
(Macia et al., 2006; Mayor and Pagano, 2007) as well as some 
forms of macropinocytosis (Lamaze et al., 2001; Schlunck  
et al., 2004), and MCD can interfere with receptor clustering 
and clathrin-dependent endocytosis (Rodal et al., 1999; Morris 
et al., 2008). To avoid the nonspecific effects of pharmacological 
agents, occludin trafficking was assessed in caveolin-1 knockout 
mice, which lack caveolae but undergo normal endocytosis via 
clathrin-coated pits and have no reported intestinal dysfunction  
(Razani et al., 2001). The distribution of occludin in intes
tinal epithelia of caveolin-1/ mice is similar to that in wild- 
type littermates and is most concentrated at the tight junction  
(Fig. 10 A). However, TNF injection does not induce occludin 
endocytosis in caveolin-1/ mice (Fig. 10 A). This could reflect 
defective TNF signaling, as caveolin-1 has been reported to  
associate with TNF receptor–associated factor 2 in vitro (Feng 
et al., 2001). However, electron microscopy demonstrated similar 
degrees of TNF-induced perijunctional actomyosin condensa-
tion in caveolin-1+/+ and caveolin-1/ mice (Fig. 10 B). More-
over, both immunoblots of isolated intestinal epithelial cells 
(Fig. 10 C) and immunofluorescence microscopy of jejunal  

Figure 7.  Immunogold labeling of occludin and caveolin-1 in jejunal entero
cytes of untreated wild-type mice. High pressure–frozen, freeze-substituted, 
cryoembedded specimens were immunolabeled. (A) Antioccludin, detected 
with 10 nm gold-conjugated secondary antisera, shows tight junction– 
specific labeling (best appreciated in the enlarged region [right]).  
(B) Anti–caveolin-1, detected with 10 nm gold-conjugated secondary anti-
sera, shows labeling at the adherens junction (AJ) and, to a lesser extent, 
the tight junction (TJ). (C) Antioccludin and anti–caveolin-1, detected with 
10 nm and 15 nm gold-conjugated secondary antisera, respectively, label 
at the tight junction and adherens junction as in A and B. Controls for 
double labeling are shown in Fig. S1. Mv, microvilli. Bars: (left) 300 nm;  
(right) 50 nm.

http://www.jcb.org/cgi/content/full/jcb.200902153/DC1
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secretion (P < 0.01). Thus, caveolin-1 is necessary for TNF- 
induced diarrhea. Taken as a whole, these data demonstrate 
that intestinal epithelial caveolin-1–dependent occludin endo-
cytosis is required for acute TNF-induced tight junction regula-
tion and diarrhea.

Discussion
Initial morphological descriptions concluded that structural 
and functional characteristics of the tight junction were fixed 
(Farquhar and Palade, 1963); it was only later that the poten-
tial for barrier regulation was recognized (Bentzel et al., 1976). 
Subsequent studies demonstrated that tight junction function 
could be modulated in response to physiological (Pappenheimer, 
1987) and pathophysiological (Taylor et al., 1998) stimuli  
and that MLCK activation was an essential intermediate in  
the signaling cascade responsible for such acute regulation 
(Zolotarevsky et al., 2002; Clayburgh et al., 2005). We sought 
to use an in vivo, pathophysiologically relevant model to 
determine the key events that link MLCK activation to endo-
cytosis and to determine whether this endocytosis is required for 

mucosa (Fig. 10 D) show that TNF administration caused simi-
lar increases in epithelial MLC phosphorylation in caveolin-1+/+ 
and caveolin-1/ mice. Finally, mucosal TNF transcription was  
similarly increased in caveolin-1+/+ and caveolin-1/ mice  
after TNF administration (Fig. 10 E), and immunoblots showed 
no change in jejunal epithelial occludin, caveolin-1, clathrin heavy 
chain, or E-cadherin content after treatment of either caveolin-1+/+ 
or caveolin-1/ mice with TNF (Fig. 10 F). Thus, the lack of 
TNF-induced occludin internalization within intestinal epithe-
lia of caveolin-1/ mice is not the result of defective immune 
activation or epithelial signal transduction but likely reflects a 
requirement for caveolin-1–mediated endocytosis.

The aforementioned data demonstrate that caveolin-1 is 
required for TNF-induced occludin endocytosis. To determine 
whether caveolin-1/ mice were also protected from TNF- 
induced barrier loss and net water secretion, the previously  
described in vivo perfusion system was used. As expected, 
TNF reduced barrier function (P < 0.05) and reversed net water 
absorption to secretion (P < 0.005) in caveolin-1+/+ mice (Fig. 10, 
G and H). In contrast, caveolin-1/ mice were completely  
protected from both barrier dysfunction (P < 0.05) and water 

Figure 8.  Immunogold labeling of occludin 
and caveolin-1 in jejunal enterocytes of 90-min 
TNF-treated wild-type mice. High pressure– 
frozen, freeze-substituted, cryoembedded speci-
mens were immunolabeled with antioccludin 
and anti–caveolin-1, which were detected with 
10 nm and 15 nm gold-conjugated secondary 
antisera, respectively. (A and B) Occludin and  
caveolin-1 colocalize at tight junctions (TJ)  
and adherens junctions (AJ). Mv, microvilli.  
(C and D) The population of vesicles (V) formed 
after TNF treatment contains occludin and  
caveolin-1. Single-label images are shown in 
Fig. S2. Bars, 300 nm.

http://dx.doi.org/10.1074/jbc.M109.064808
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Only dynasore, MCD, and L-t-LacCer inhibited occludin 
internalization, suggesting that this endocytosis required dy-
namin and cholesterol-enriched membrane domains, such 
as caveolae. Consistent with this hypothesis, caveolin-1/ 
mice failed to internalize occludin after immune activation.  
Importantly, neither pharmacological inhibitors nor caveolin-1 
knockout prevented induction of mucosal TNF transcription 
or epithelial MLC phosphorylation after TNF administration. 
Together with the observation that intracellular occludin co-
localized with caveolin-1 but not clathrin heavy chain, these 
data demonstrate that TNF-induced internalization occurs via 
caveolin-1–dependent endocytosis. Functional analyses fur-
ther demonstrated that dynasore- or MCD-treated wild-type 
mice as well as caveolin-1/ mice were protected from TNF- 
induced barrier loss. Thus, caveolin-1–dependent endocyto
sis that requires dynamin and cholesterol-enriched membrane 

regulation of tight junction barrier function. We developed 
transgenic mice that express well-validated fluorescent fusion 
constructs of critical tight junction proteins as well as the  
tools and techniques necessary for in vivo microscopy of pro-
tein trafficking during barrier regulation. These are the first 
images of tight junction protein trafficking in vivo in real time. 
Although tight junction protein overexpression has the poten-
tial to create artifacts, we were able to take advantage of the 
overexpression model to demonstrate a specific role for occlu-
din in TNF-induced barrier loss. In addition, all experiments 
of transgenic mice were complemented by immunofluorescent 
and immunoelectron microscopy of wild-type mice as well as 
in vivo biochemical and functional analyses of wild-type and 
caveolin-1/ mice. The data provide a comprehensive view of 
structural and functional tight junction regulation and are the 
first to demonstrate the essential role of caveolin-1–dependent 
endocytosis of occludin in TNF-induced barrier dysfunction 
and diarrhea.

Roles for endocytosis during tight junction reorganization 
have been reported previously (Ivanov et al., 2004b; Matsuda  
et al., 2004; Bruewer et al., 2005; Clayburgh et al., 2005; Shen 
and Turner, 2005; Schwarz et al., 2007; Zeissig et al., 2007; 
Wroblewski et al., 2009). However, our in vivo experiments as-
sessing MLCK-dependent barrier loss after immune activation 
identified occludin internalization as the most obvious morpho-
logical change and demonstrated that this was not associated 
with extensive disassembly of the tight junction or apical 
junctional complex (Clayburgh et al., 2005). Thus, together with 
live cell imaging of cultured epithelial monolayers during  
latrunculin A–induced barrier loss, which also identified occludin  
internalization as the first identifiable alteration in tight junc-
tion structure (Shen and Turner, 2005), these data suggest that 
occludin endocytosis may be critical to cytoskeletally mediated 
barrier regulation. To better define the relationship between 
occludin internalization and barrier regulation in vivo, we asked 
whether the number of intracellular occludin vesicles correlated 
with the degree of barrier loss. The data presented in this study 
show that occludin internalization precedes intestinal fluid ac-
cumulation, suggesting that this endocytic process may be cen-
tral to immune-mediated barrier loss. Together with a previous 
study demonstrating that MLCK inhibition prevents TNF- 
induced MLC phosphorylation, occludin internalization, and 
fluid accumulation (Clayburgh et al., 2005), these data suggest 
that MLCK-mediated MLC phosphorylation is a critical trigger 
for occludin internalization.

To determine whether endocytosis is required for TNF-
induced barrier loss in vivo, we sought to determine the mech-
anism of occludin internalization. This was complicated by 
previous reports of occludin endocytosis by macropinocyto-
sis, clathrin-mediated endocytosis, and caveolar endocytosis  
(Ivanov et al., 2004b; Bruewer et al., 2005; Shen and Turner, 
2005; Schwarz et al., 2007; Stamatovic et al., 2009). However,  
these in vitro studies relied primarily on pharmacological in-
hibitors with known off-target effects, used a diverse range of  
stimuli and cell lines, and, in some cases, focused on tight  
junction morphology without assessing function. Therefore, we  
began with a survey approach using pharmacological inhibitors. 

Figure 9.  Inhibition of caveolar endocytosis prevents TNF-induced barrier 
dysfunction and fluid secretion. (A) In vivo perfusion assays of wild-type 
mice injected with TNF (gray bars) or vehicle (white bars). Inclusion of  
50 µM dynasore or 2 mM MCD within the perfusion solution prevented 
TNF-induced increases in BSA flux (n = 3). (B) The direction of water move-
ment is reversed from net absorption to net secretion in wild-type mice 
injected with TNF (gray bars) relative to wild-type mice treated with vehicle 
(white bars). Dynasore prevented and MCD reduced TNF-induced water 
secretion (n = 3). Error bars indicate mean ± SEM.
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et al., 2005; Shen et al., 2006) and that disruption of tight junc-
tion barrier function after actin depolymerization is prevented 
by MCD (Shen and Turner, 2005), these in vivo data suggest 
that reorganization of cholesterol-enriched tight junction mem-
brane microdomains by mechanisms including caveolin-1– 
dependent occludin endocytosis is central to cytoskeletal tight 
junction regulation.

The aforementioned data are the first to demonstrate an 
in vivo role for occludin internalization during tight junction 
regulation. This is significant, as the role of occludin in tight 
junction biology has been controversial. A major component 
of this debate has been the observation that, although occlu-
din/ mice are markedly abnormal, structure and function of 
tight junctions in the small intestine, colon, and urinary bladder 
of these mice are indistinguishable from those of occludin+/+ 
mice (Saitou et al., 2000). These data have been used to support the 
conclusion that occludin function is of limited significance. 

domains is necessary for TNF-induced regulation of the tight 
junction barrier.

The precise contribution of microfilaments to organization 
and internalization of caveolae and other cholesterol-enriched, 
detergent-resistant membrane domains, including tight junc-
tions, remains unclear. However, previous studies have docu-
mented both functional and structural relationships between 
cholesterol-enriched membranes such as caveolae and microfil-
aments (Parton et al., 1994; Pelkmans et al., 2002; Richter et al., 
2008). The data presented in this study demonstrate that MLCK-
mediated activation of myosin II, a well-characterized trigger 
for actin polymerization and actomyosin contraction (Keller 
and Mooseker, 1982; Kamm and Stull, 1986; Goeckeler and 
Wysolmerski, 1995; Shen et al., 2006), precedes tight junction 
regulation by caveolin-1. Together with in vitro and in vivo data 
showing that the density of membrane domains containing tight 
junction proteins is altered after MLCK activation (Clayburgh 

Figure 10.  Caveolin-1 is required for TNF-induced occludin internalization, barrier dysfunction, and net water secretion. (A) Caveolin-1+/+ and caveolin-1/ 
mice were injected with vehicle or TNF as indicated, and a segment of jejunum harvested 135 min later. Sections were labeled for occludin (green),  
F-actin (red), and nuclei (blue). Bar, 10 µm. (B) Electron micrographs demonstrate TNF-induced perijunctional actomyosin condensation in jejunal entero-
cytes of caveolin-1+/+ and caveolin-1/ mice. Bar, 125 nm. (C) Jejunal epithelial cells were isolated from caveolin-1+/+ and caveolin-1/ mice 135 min 
after injection with vehicle or TNF. Cell lysates were analyzed by immunoblotting for phosphorylated and total MLC. (D) Jejunum was harvested 135 min 
after caveolin-1+/+ and caveolin-1/ mice were injected with vehicle or TNF. Sections were labeled for phosphorylated MLC (green) and nuclei (blue). 
Bar, 10 µm. (E) Mucosal TNF mRNA transcripts measured by quantitative RT-PCR were increased by TNF injection in jejunum of caveolin-1+/+ and caveolin-1/ 
mice. (F) Cell lysates were analyzed by immunoblotting for occludin, caveolin-1, clathrin heavy chain, and E-cadherin. Protein content was not affected by 
acute TNF exposure. (G) In vivo perfusion assays show that TNF increases paracellular flux in caveolin-1+/+ mice but not in caveolin-1/ mice. (H) TNF 
reverses the direction of water movement from net absorption to net water secretion in caveolin-1+/+ but not caveolin-1/ mice (n = 6). Error bars indicate 
mean ± SEM.
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used to open a 2-cm loop of jejunum along the antimesenteric border.  
The abdominal cavity was closed under the externalized loop of jejunum 
while taking care to protect the neurovascular supply. The mucosal surface 
of the jejunum was placed against the coverslip bottom of a 35-mm Petri 
dish containing 0.15 ml HBSS with the body of the mouse over the jejunum, 
and both were placed on a 37°C heated microscope stage.

Mice were imaged using a multiphoton confocal inverted microscope 
(SP5; Leica) with a 40× 0.8 NA water immersion objective. EGFP was 
imaged using an Argon laser and spectral emission range of 490–568 nm, 
and mRFP1 was imaged using a laser (DPSS 561) with a spectral emis-
sion range of 577–679 nm, and a pinhole of 130 µm was used for both 
proteins. Hoechst dye was imaged using a multiphoton laser with a spec-
tral emission range of 400–492 nm and pinhole of 600 µm. Scanning 
was performed at 200 Hz, and all image acquisition was controlled by 
LAS-AF software (version 2.1; Leica). Postacquisition image analysis was 
performed using MetaMorph (version 7; MDS Analytical Technologies).

Immunofluorescence
Mouse jejunum was snap frozen in optimal cutting temperature medium and 
stored at 80°C. 5-µm frozen sections were fixed in 1% paraformaldehyde  
and immunostained as described previously using primary mouse monoclonal 
antioccludin (Invitrogen), rabbit anti–caveolin-1 (Abcam), rabbit anticlathrin 
heavy chain (Santa Cruz Biotechnology, Inc.), rabbit anti-EEA1 (Thermo 
Fisher Scientific), affinity-purified rabbit anti–phosphorylated MLC (Berglund 
et al., 2001), mouse anti–claudin-1 (Invitrogen), rabbit anti–claudin-2 (Invitro-
gen), rabbit anti–claudin-3 (Invitrogen), rabbit anti–claudin-4 (Invitrogen), 
rabbit anti–claudin-5 (Invitrogen), rabbit anti–claudin-7 (Invitrogen), rabbit  
anti–claudin-12 (Invitrogen), rabbit anti–claudin-15 (Invitrogen), rat anti– 
E-cadherin (Invitrogen), or monoclonal rat anti–ZO-1 (Stevenson et al., 1986) 
primary antibodies followed by Alexa Fluor 488– or 594–conjugated 
secondary antibodies (Invitrogen) along with Alexa Fluor 488– or 594– 
conjugated phalloidin (Invitrogen) and Hoechst 33342 (Invitrogen). Rabbit 
antioccludin (Invitrogen) was used in some experiments.

Stained sections were mounted in Prolong gold (Invitrogen) and  
imaged using an epifluorescence microscope (DM4000; Leica) equipped 
with DAPI, Endow GFP, and Texas red zero-pixel shift filter sets (Chroma 
Technology Corp.), a 63× 1.32 NA oil immersion objective, and a camera 
(CoolSNAP HQ; Roper Industries) controlled by MetaMorph. Z stacks were 
collected at 0.2-µm intervals and deconvolved using AutoDeblur (version 
X1; Media Cybernetics) for 10 iterations.

For morphometric analysis, deconvolved z stacks were merged after 
pseudocolor assignment, and vesicles were defined as round or oval struc-
tures <2 µm in greatest diameter present in two or more planes. Determina-
tion of colocalization required at least 50% overlap of the two signals 
within at least two adjacent image planes. The number of vesicles was 
counted over the entire cell volume. 30 representative surface enterocytes 
were counted for each condition.

Electron microscopy and morphometry
At indicated times after intraperitoneal saline or TNF injection, mice were 
sacrificed, and jejunal segments were minced and fixed in 2.5% glutaral-
dehyde and 4% paraformaldehyde in 0.1 M sodium cacodylate and pro-
cessed as described previously (Clayburgh et al., 2005). Samples were 
embedded in SPURR (Electron Microscopy Sciences), and two blocks from 
each of two mice were processed per time point. At least 15 well-oriented 
sections including apical cytoplasm of 15–20 villous enterocytes were ex-
amined for each mouse. Images were collected using a scanning transmis-
sion electron microscope (Tecnai F30; FEI). For morphometry, images taken 
at 5,900× were imported into MetaMorph, vesicles were counted and 
measured, and cytoplasmic area was assessed by an observer blinded to 
experimental condition. At least 1,000 µm2 of apical cytoplasm was exam-
ined for each condition. Data were modeled as the sum of four Gaussian 
equations, where a, b, and c are the amplitudes, position of the center of 
peak, and width of the vesicle pools, respectively. Analysis with a1  a4 
as the only free parameters was used to determine the amplitude of each 
pool. Constant values were b1 = 80.5, b2 = 124.8, b3 = 168.6, b4 = 240, 
c1 = 18.5, c2 = 18.2, c3 = 18.0, and c4 = 8.7. The number of vesicles was 
calculated by the equation
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Immunoelectron microscopy
100 min after intraperitoneal saline or TNF injection, mice were anesthe-
tized, and 1–2-mm jejunal segments were transferred to aluminum sample 
holders, cryoprotected with 150 mM sucrose, and frozen in a high pressure 

However, the large body of in vitro work suggesting that  
occludin does contribute to barrier function (Balda et al., 1996; 
McCarthy et al., 1996; Wong and Gumbiner, 1997; Yu et al., 
2005) and the association of occludin endocytosis with stimulus-
induced barrier loss (Ivanov et al., 2004a,b; Bruewer et al., 
2005; Shen and Turner, 2005; Schwarz et al., 2007; Stamatovic 
et al., 2009) suggests that the in vivo data must be inter-
preted with caution. The absence of an intestinal phenotype 
in occludin/ mice may simply reflect the complexity of  
in vivo biology or, alternatively, indicate that the mice have 
not yet been exposed to appropriate stressors. Rather than as-
sessing knockout mice, we have taken the converse approach 
and overexpressed occludin within the intestinal epithelium. 
These mice are protected from TNF-induced barrier loss and 
diarrhea. Thus, occludin is a critical regulator of tight junction 
barrier function in vivo, and caveolin-1–mediated endocytosis 
of occludin is required for TNF-induced barrier loss. These 
data also suggest that mechanisms by which epithelia of oc-
cludin/ mice are able to compensate and their responses to 
TNF injection, as well as other pathophysiologically relevant 
stressors, will be of great interest.

In conclusion, these data demonstrate that caveolin-1– 
mediated endocytosis of occludin follows MLCK activation and 
is required for TNF-induced regulation of tight junction structure 
and function. Therefore, these are the first data to demonstrate 
in vivo roles for the transmembrane protein occludin and mem-
brane traffic in tight junction regulation. Moreover, the novel 
tools and techniques for real time in vivo analysis of tight junc-
tion structure and function presented in this study are likely to 
be of tremendous utility in continuing efforts to understand the 
complexities of tight junction function in health and disease.

Materials and methods
Animals
7–10-wk-old mice were used for all experiments. Wild-type, villin–EGFP- 
occludin, and villin–EGFP-occludin/villin–mRFP1–ZO-1 transgenic mice were 
maintained on a C57BL/6 genetic background. Caveolin-1/ mice and 
caveolin-1+/+ littermates were on a mixed 129:C57BL/6 background with 
a minor contribution from SJL (The Jackson Laboratory). All experiments 
were performed in an Association of Assessment and Accreditation of Lab-
oratory Animal Care–accredited facility under protocols approved by The 
University of Chicago Institutional Animal Care and Use Committee.

Generation of transgenic animals
Transgenic mice expressing fusion proteins of ZO-1 or occludin to mRFP1 
(Campbell et al., 2002) or enhanced EGFP, respectively, under the control 
of the 9 kb villin promoter (Pinto et al., 1999) were established. The fluor
escent constructs were linked to the amino terminus of each tight junction 
protein as described previously (Shen and Turner, 2005). Because of dif-
ferences between the extracellular domains of human and murine occludin 
that may be associated with functional differences (Ploss et al., 2009), the 
murine sequence was used. Sequence of the intracellular protein ZO-1 is 
>90% sequence conservation between human and murine ZO-1; there-
fore, a validated human ZO-1 cDNA was used (Shen and Turner, 2005; 
Shen et al., 2008). The villin promoter, fusion protein sequence, and bo-
vine growth hormone polyadenylation sequence were excised by restric-
tion digestion and injected into C57BL/6 embryos by The University of 
Chicago Transgenic Mouse Core Facility. Mice were screened by PCR of 
genomic DNA.

Live animal imaging
Mice were anesthetized, injected intravenously with Hoechst 33342 dye, 
and the abdomens were opened by a midline incision. Electrocautery was 
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and net water transport (Clayburgh et al., 2005). When used, fluorescent-
conjugated tracers of endocytosis (Alexa Fluor 594–conjugated WGA  
[Invitrogen] and DyLight 594–conjugated mouse IgG [Jackson Immuno
Research Laboratories, Inc.]) were included in an initial 30-min perfusion 
after which the perfusion solution was replaced with fresh buffer that was 
identical save for the exclusion of the fluorescent tracer. At least three repli-
cates are reported for each condition.

Statistical analysis
All data are presented as means ± SEM and represent at least three inde-
pendent experiments. P-values were determined by Student’s t test and 
were considered to be significant if P ≤ 0.05.

Online supplemental material
Fig. S1 shows controls for double-label immunoelectron microscopy. The 
double-labeling protocol was used as in Figs. 7 and 8, but either anti
occludin or anticaveolin was omitted. There was no background signal for  
the omitted antigen under any of these conditions. Fig. S2 shows single-
label immunoelectron microscopy to detect occludin or cavelin-1 in jejunal  
enterocytes of TNF-treated wild-type mice. Videos 1–4 show in vivo imaging  
of murine intestinal mucosa. Video 1 shows blood flow within villus capillaries. 
Videos 2 and 3 show the distribution of EGFP-occludin and mRFP1–ZO-1  
transgenically expressed within murine intestinal epithelium. Video 4 
shows EGFP-occludin endocytosis in vivo after systemic TNF. Online sup-
plemental material is available at http://www.jcb.org/cgi/content/full/ 
jcb.200902153/DC1.
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