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Two types of number magnitude processing – semantic and spatial – are significantly
correlated with children’s arithmetic performance. However, it remains unclear
whether these abilities are independent predictors of symbolic approximate arithmetic
performance. The current study addressed this question by assessing 86 kindergartners
(mean age of 5 years and 7 months) on semantic number processing (number
comparison task), spatial number processing (number line estimation task), and
symbolic approximate arithmetic performance with different levels of difficulty. The
results showed that performance on both tasks of number magnitude processing
was significantly correlated with symbolic approximate arithmetic performance, but the
strength of these correlations was moderated by the difficulty level of the arithmetic task.
The simple symbolic approximate arithmetic task was equally related to both tasks. In
contrast, for more difficult symbolic approximate arithmetic tasks, the contribution of
number comparison ability was smaller than that of the number line estimation ability.
These results indicate that the strength of contribution of the different types of numerical
processing depends on the difficulty of the symbolic approximate arithmetic task.

Keywords: symbolic approximate arithmetic, kindergartner, number processing, number line estimation, number
comparison, task difficulty

INTRODUCTION

Arithmetic competency is an important aspect of mathematical ability. Over the past few decades,
many studies have investigated the cognitive mechanisms underlying exact arithmetic ability
(De Smedt et al., 2013; Moeller et al., 2015; see Arsalidou and Taylor, 2011; Schneider et al.,
2017, for reviews). However, less is known about the cognitive mechanisms underlying symbolic
approximate arithmetic calculations, such as solving the following task: “give an approximate
answer for 38× 21 in 5 s.”

Symbolic approximate arithmetic performance refers to the ability to provide an
approximate answer rather than an exact one (Gilmore et al., 2007; McNeil et al., 2011;
Xenidou-Dervou et al., 2015). This ability plays an important role in mathematical
learning (Xenidou-Dervou et al., 2013). This importance has begun to receive recognition
by educational authorities. For example, symbolic approximate arithmetic performance
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is listed as an important part of mathematical learning by
The National Council of Supervisors of Mathematics and
the National Council of Teachers of Mathematics in the
United States (1989), as well as by the Ministry of Education in
Japan (1989). Understanding cognitive mechanisms underlying
symbolic approximate arithmetic performance will help with
the designing of curricula that develop symbolic approximate
arithmetic skills.

Recent research has begun to provide insights into these
mechanisms. Research has suggested that, unlike exact arithmetic
ability, symbolic approximate arithmetic performance may not
be influenced by culture (Reys and Yang, 1998), language, or
education (Spelke and Tsivkin, 2001; Nys et al., 2013). For
example, recent research has found that preschool children
can solve symbolic approximate arithmetic problems with large
numbers, even if they cannot provide exact answers (Gilmore
et al., 2007; McNeil et al., 2011; Xenidou-Dervou et al., 2015).

Two types of tasks have typically been used to assess
basic numerical magnitude processing: the number magnitude
comparison task, primarily tapping into number semantic
processing (Pinel et al., 2001; Rousselle and Noël, 2007; Holloway
and Ansari, 2009; see De Smedt et al., 2013, for a review) and
the number line estimation task, primarily tapping into spatial
number processing (Dehaene et al., 2003; Hubbard et al., 2005;
Siegler and Ramani, 2008; Berteletti et al., 2012; see Moeller
et al., 2015, for a review). These abilities are commonly referred
to in the literature as number sense, although recent research
suggests that it is a highly heterogeneous concept (e.g., Berch,
2005; Halberda et al., 2008; Tosto et al., 2017; see Cohen Kadosh
et al., 2008; De Smedt et al., 2013, for reviews).

Number semantic processing and number spatial processing
are both correlated with exact arithmetic processing. For
example, correlations between exact arithmetic processing and
number semantic processing have been found in typically
developing children (Durand et al., 2005; Bartelet et al., 2014;
Vanbinst et al., 2015), in children with developmental dyscalculia
(Landerl et al., 2004; Mussolin et al., 2010), as well as in training
studies (Wilson et al., 2006, 2009). Similarly, correlations between
exact arithmetic processing and number spatial processing have
been shown in typically developing children (Booth and Siegler,
2008; Laski and Yu, 2014), as well as in training studies (Siegler
and Ramani, 2008; Kucian et al., 2011).

It is possible that number semantic processing and number
spatial processing may relate to arithmetic abilities through a
common mechanism. For example, Laski and Siegler (2007)
examined the performance on number line estimation and
number comparison tasks in 5–8-year-old children and observed
strong associations between the two tasks within each grade.
However, other studies suggest that the two abilities influence
arithmetic performance through different mechanisms, as the
two are at least partially independent. For example, Sasanguie
and Reynvoet (2013) found that children in grades 1–3 who
were faster at comparing numbers performed better on a timed
arithmetic test 1 year later. In contrast, no significant associations
were found between performance on symbolic number line
estimation task and a timed arithmetic test. Recent data provided
by Linsen et al. (2014) further showed significant associations

between number processing (including number comparison
and number line estimation tasks) and the more specific
mathematical skill of mental subtraction. In their study, the
association between number comparison and mental subtraction
remained after controlling for the number line estimation,
whereas the association between number line estimation and
mental subtraction disappeared after controlling for the number
comparison task.

Both number magnitude comparison ability (Gilmore et al.,
2007) and number line estimation ability (Gunderson et al., 2012)
have been found to be associated with children’s performance on
symbolic approximate arithmetic tasks. However, most previous
studies have examined only one of these basic numerical
processing tasks at a time, which makes it difficult to evaluate the
extent to which they differentially predict symbolic approximate
arithmetic performance.

It is necessary to involve two number magnitude processing
tasks in one study to investigate their differential influence on
symbolic approximate arithmetic performance. We put forward
our first hypothesis, “Number semantic processing and spatial
processing are significantly correlated with the performance of
symbolic approximate arithmetic tasks.”

It is possible that relations between number magnitude
processing and arithmetic processing are moderated by the
difficulty of the arithmetic task, in that different difficulty
levels of arithmetic problems rely on semantic and spatial
number tasks to a different extent. For example, a correlation
between performance on exact arithmetic processing and number
semantic processing has been observed in simple exact arithmetic
tasks (e.g., single-digit arithmetic problems) (Landerl et al.,
2004; Durand et al., 2005; Bugden et al., 2012; Bartelet et al.,
2014; Vanbinst et al., 2015). In contrast, other studies found
a correlation between exact arithmetic processing and number
spatial processing, which has been observed in difficult arithmetic
tasks, such as two-digit or three-digit arithmetic problems.
Complex mathematical problems are more dependent on spatial
processing when compared with simple problems. For the simple
arithmetic problems, participants retrieved the answers from
long-term semantic working memory (Geary et al., 1996; LeFevre
et al., 1996; Delazer and Benke, 1997; McLean and Hitch, 1999),
whereas much more visuospatial processing was involved in the
processing of complex arithmetic problems (Zago et al., 2001;
Berteletti et al., 2015).

It is unclear if the symbolic approximate arithmetic task has
the same effects as the exact arithmetic task. We put forward
our second hypothesis, “The relations between number semantic
processing and spatial processing and symbolic approximate
arithmetic ability vary as a function of the difficulty of the symbolic
approximate arithmetic tasks.”

MATERIALS AND METHODS

Participants
A total of 94 typically developing children from middle-to-high
socioeconomic status (SES) backgrounds were recruited from
three kindergartens in the urban area of Hangzhou, China. Data
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of eight children were removed from the analyses because they
either correctly answered at least one question in the probe
stage (see Procedure for details) of the symbolic approximate
arithmetic task (n = 5) or did not complete all the tasks (n = 3).
The final sample included 86 children (45 boys and 41 girls).
Their mean age was 5 years and 7 months (ranging from
5 years and 1 month to 6 years and 3 months). Similar to most
countries, formal mathematics education starts in the first year
of elementary school in China; therefore, children in this study
were assessed prior to receiving formal mathematical instruction.
Permission to conduct the study was given by the principals
of the kindergartens. Written informed consents were obtained
from all the parents. The study was approved by the principals
of the kindergartens and the ethics committee at the Zhejiang
University, China.

Measures
Symbolic Approximate Arithmetic Task
The symbolic approximate arithmetic task was adapted from
Gilmore et al. (2007). Arithmetical questions were presented both
visually on a computer screen and verbally by the experimenter.
The children had to indicate which side of the screen had
a larger numerical magnitude through mental arithmetic. For
example, on the screen, one cartoon character first received
a bag of candies marked with the number 13 and then
received a second bag marked with the number 22. Another
cartoon character received a bag of candies marked with the
number 28. The children needed to determine which character
had more candies in total. Each trial would remain on the
screen until the participants responded. This task consisted
of 5 practice problems and 24 formal problems. The formal
problems were divided into three levels of difficulty according
to the ratios of the sum of the problem to the comparison
number, that is, 4:7 (Level 1, the easiest level), 4:6 (Level
2, the medium level), and 4:5 (Level 3, the hardest level).
The numbers ranged from 6 to 56. The exact answer was
larger than the comparison number in half of the problems,
whereas it was smaller in the other half of the problems.
The formal problems part was split into three blocks. Each
block included eight problems. The difficulty levels varied
within each block. Error rate was used as the index of
performance. There was no time limitation for the children’s
responses. Spearman–Brown corrected split half reliability was
r = 0.76.

Symbolic Number Comparison Task
The symbolic number comparison task was adapted from
Gilmore et al.’s (2007) study. In the number comparison task,
two two-digit numbers were used. The numbers were presented
on a computer screen at the same time, and the children were
asked to judge which number was larger. A total of 5 practice
problems were followed by 24 formal problems. The children
were required to make the judgment. If the children chose the
left number, they pressed the “F” key on the computer keyboard;
if they chose the right number, they pressed the “J” key. Each
trial would remain on the screen until the participants responded.
The order of the presentation was random for each participant.

After each practice trial, the children would see a smiling face
on the screen if they responded correctly or a crying face if they
responded incorrectly. Only children with accuracy above 60%
in the practice problems would be given the formal problems.
No feedback was given following the formal trials. The index of
performance was the error rate. Spearman–Brown corrected split
half reliability was r = 0.83.

Number Line Estimation Task
This task was adopted from Siegler and Opfer’s (2003) study.
The children were given 28 sheets of paper, 2 for practice
trials and 26 for formal trials, each with the same 25 cm
number line printed in the center and a number between
0 and 100 printed 2 cm above the middle of the line. The
experimenter initially told the children the following: “Each
number has its own specific position on the number line and
you should mark the position where you think the number
actually is on the line using a pencil. Try your best to do it
exactly.” For two practice problems, the children were asked
to mark the location of the number 50. If they failed, the
experimenter would help them to find the correct location.
The formal problems had “0” written below the start of the
number line and “100” written below the end point. A total
of 26 trials were held, respectively, for the 26 numbers to
be estimated. The numbers used in the experiment (3, 4, 6,
8, 12, 14, 17, 18, 21, 24, 25, 29, 33, 39, 42, 48, 52, 57, 61,
64, 72, 79, 81, 84, 90, and 96) were taken from Booth and
Siegler’s (2006) study. The order was presented randomly for
each child. The main performance index was the percent of
absolute error [PAE = (|estimate−estimated quantity|/scale of
estimates) × 100], where estimate is the participant’s answer,
estimated quantity is the correct answer, scale of estimates is
100 in the current study. PAE reflects the accuracy of numerical
estimation and has been used in a large number of studies
(Booth and Siegler, 2008; Laski and Yu, 2014; Xenidou-Dervou
et al., 2015). A smaller PAE indicates more accurate numerical
estimation. Spearman–Brown corrected split half reliability was
r = 0.81.

Procedure
The symbolic approximate arithmetic and number comparison
tasks were presented on a laptop with a 15-inch monitor.
The stimuli for the symbolic approximate arithmetic and
number comparison tasks were presented using Presentation R©

software (version 0.71; Neurobehavioral Systems, Berkeley, CA,
United States). The number line estimation was a paper-and-
pencil task.

For all experimental measures, the children were tested one
by one in a quiet room in the kindergarten, accompanied by an
experimenter. The children performed the tasks in the following
order: the symbolic number comparison task, the number line
estimation task, and the approximate addition arithmetic task.
A short break of about 2 min was provided between each task.

In order to prevent the children from performing exact
calculations in the symbolic approximate arithmetic task, a probe
stage was then conducted. In the probe stage, the children were
asked to provide the exact answers for two problems, which were
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chosen randomly from the ones they had performed correctly in
the formal part of the symbolic approximate arithmetic task. The
data of the children who correctly answered at least one question
in the probe stage were removed from the analysis. This approach
ensured that the participants were unable to perform the exact
calculations.

The whole test took approximately 25 min for each child.
Following the experiment, each child received a sticker as a
reward.

Data Analysis
The following data analysis was performed using the SPSS
19.0 software (SPSS Inc., Chicago, IL, United States). Analyses
were performed on error rate for the symbolic approximate
arithmetic and symbolic number comparison tasks and on PAE
for the number line estimation task. No participants were outliers
(three SD above or below the group mean) for each task. Error
rates and PAE have the same direction. First, we calculated
the correlation coefficients between the symbolic approximate
arithmetic task and the two basic number processing tasks after
controlling for gender and age. To explore the specific roles of
the number comparison and number line estimation abilities in
different levels of symbolic approximate arithmetic performance,
we conducted hierarchical regression analyses.

RESULTS

Descriptive and Preliminary Analysis
All dependent measures and predictors are presented in Table 1.
The correlations between the different levels of symbolic
approximate arithmetic task and basic numerical magnitude
processing task are presented in Table 2 (controlling for gender
and age). First, a series of analyses were conducted in order to
verify that our children were able to perform the tasks. The error
rate of approximate addition showed that children performed
below chance level (50%) on all three levels (Level 1: M = 28%,
t85 = −11.060, p < 0.001; Level 2: M = 33%, t85 = −7.421,
p < 0.001; and Level 3: M = 38%, t85 = −5.881, p < 0.001).
These results were similar to Gilmore et al.’s (2007) study, which
had a 26.7% error rate for approximate addition problems. The
children’s error rate for number comparison tasks was also below
50% (M = 22%, t85 = −13.036, p < 0.001), which was similar
to Gilmore et al.’s (2007) study (19.6% error rate for number
comparison tasks). The children’s mean PAE was 20.65%, which
was similar to the previous studies (Booth and Siegler, 2006,
M = 24%).

In addition, a repeated measure ANOVA was conducted to
test the effect of difficulty on symbolic approximate arithmetic
performance, F(2,170) = 13.263, p < 0.001. The post hoc results
showed that as the difficulty increased, the accuracy of symbolic
approximate arithmetic performance decreased. Error rate for
Level 1 of symbolic approximate arithmetic performance was
significantly lower than that for Level 3 [F(1,85) = 24.638,
p < 0.001], Level 1 was significantly lower than Level 2
[F(1,85) = 9.328, p = 0.003], and Level 2 was significantly lower
than Level 3 [F(1,85) = 5.012, p = 0.028].

TABLE 1 | Descriptive statistics of kindergartners’ performance on measures of
symbolic approximate arithmetic ability, symbolic number comparison ability, and
number line estimation ability.

Task Index Mean (SD) Range

Symbolic approximate arithmetic Error rate 0.33 (0.16) 0.00 ∼ 0.58

Level 1 (4:7) Error rate 0.28 (0.19) 0.00 ∼ 0.62

Level 2 (4:6) Error rate 0.33 (0.21) 0.00 ∼ 0.75

Level 3 (4:5) Error rate 0.38 (0.19) 0.00 ∼ 0.88

Symbolic number comparison Error rate 0.22 (0.20) 0.00 ∼ 0.62

Number line estimation PAE 20.65% (8.55) 3.68% ∼ 41.16%

PAE = percent of absolute error.

TABLE 2 | Correlations between the basic numerical magnitude processing tasks
and different difficulty levels of the symbolic approximate arithmetic tasks after
controlling for gender and age.

1 2 3 4 5

Symbolic approximate arithmetic

(1) Level 1 –

(2) Level 2 0.59∗∗∗ –

(3) Level 3 0.42∗∗∗ 0.48∗∗∗ –

(4) All Levels 0.81∗∗∗ 0.86∗∗∗ 0.77∗∗∗ –

Basic numerical processing

(5) Number comparison 0.33∗∗ 0.40∗∗∗ 0.35∗∗ 0.44∗∗∗ –

(6) Number line
estimation

0.29∗∗ 0.39∗∗∗ 0.39∗∗∗ 0.44∗∗∗ 0.44∗∗∗

∗∗p < 0.01 and ∗∗∗p < 0.001. “All Levels” was the composite score of Level 1,
Level 2, and Level 3.

Hierarchical Regression Analysis
Two models of hierarchical regression analysis were carried
out to further examine the relationships among number
comparison performance, number line estimation performance,
and different levels of symbolic approximate arithmetic
performance. The error rates of the three different levels of
symbolic approximate arithmetic performance were the outcome
variables.

The first regression model tested whether number magnitude
comparison ability was associated with different levels of
symbolic approximate arithmetic performance after controlling
for gender, age, and number line estimation performance. Gender
and age were entered into the model first, following which the
PAE of number line estimation performance and the error rate
of number comparison performance were entered, respectively.
For Level 1 and Level 2, number comparison performance
was a significant predictor of symbolic approximate arithmetic
performance after controlling for gender, age, and number line
estimation performance. However, for the most difficult level
(Level 3), number comparison performance was not a significant
predictor. For Level 1, number line estimation performance was
not a significant predictor for symbolic approximate arithmetic
performance after number comparison performance was entered
into Model 1. However, for Levels 2 and 3, number line
estimation performance continued to be a significant predictor
of symbolic approximate arithmetic performance, even when
number comparison performance was entered into the model.
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The R-square change carried by number comparison
performance decreased, becoming 4.2% for Level 1, 4.9% for
Level 2, and 3.0% for Level 3, after controlling for number line
estimation performance, gender, and age. For difficulty Levels 1
and 2, number comparison performance significantly improved
the fit of the model, whereas for Level 3, it did not significantly
improve the fit of the model (Table 3, Model 1).

To assess the relative contribution of performance on
the two tasks to the 3 levels of difficulty on symbolic
approximate arithmetic performance, a second regression
model was conducted, reversing the order of entry. Gender
and age were entered first, followed by the error rate of
number comparison performance and the PAE of number
line estimation performance, respectively. For Level 1, number
line estimation performance was not a significant predictor of
symbolic approximate arithmetic performance after controlling
for gender, age, and number comparison performance. For
Level 2, the regression coefficient of both number line
estimation performance and number comparison performance
were significant. For the most difficult level (Level 3), number
comparison performance was not a significant predictor after
number line estimation performance was entered into the model.
For Levels 1 and 2, number comparison performance was
still a significant predictor for symbolic approximate arithmetic
performance after number line estimation performance was
entered into Model 2. However, for Level 3, number comparison
performance was not a significant predictor of symbolic
approximate arithmetic performance when the number line
estimation performance was entered into the model. As symbolic
approximate arithmetic performance became more difficult, the
R-square change uniquely carried by number line estimation
performance increased gradually, becoming 2.1% for Level 1,
4.7% for Level 2, and 5.9% for Level 3 after number comparison
was controlled. It should be noted that number line estimation
performance significantly improved the fit of the model for
Levels 2 and 3 of symbolic approximate arithmetic performance
(Table 3, Model 2).

DISCUSSION

The current study aimed to investigate the relations between
two basic numerical magnitude processing abilities (semantic
and spatial) and symbolic approximate arithmetic performance.
The results supported the two hypotheses proposed. First, both
number magnitude comparison and number line estimation
abilities were significantly correlated with the performance on
symbolic approximate arithmetic tasks. Second, the relations
between the two basic numerical magnitude processing abilities
and symbolic approximate arithmetic performance varied with
a change in the difficulty of the symbolic approximate
arithmetic tasks; with an increase in the difficulty of the
symbolic approximate arithmetic task, the contribution of
number magnitude comparison ability decreased, whereas the
contribution of number line estimation ability increased. The
results indicate that number line estimation ability plays a
particularly important role in symbolic approximate arithmetic
performance with a higher level of difficulty.

Similarity Between Semantic and Spatial
Number Magnitude Processing Abilities
Previous studies have found significant relations between
arithmetic ability and number magnitude comparison or number
line estimation abilities (Booth and Siegler, 2008; Gunderson
et al., 2012; Sasanguie and Reynvoet, 2013; Bartelet et al., 2014),
as well as significant correlations between number magnitude
comparison ability and number line estimation ability (Laski
and Siegler, 2007). In our study, we found that both numerical
magnitude tasks correlated with each other and had significant
correlations with symbolic approximate arithmetic performance,
which was consistent with previous studies (Gilmore et al., 2007;
Laski and Siegler, 2007; Gunderson et al., 2012).

Performance on number magnitude comparison and number
line estimation tasks may rely on the same underlying
representation, similar to a compressed mental number line
(Gallistel and Gelman, 1992; Dehaene, 2011). Specifically, a
mental number line representation implies that magnitudes
are represented as a Gaussian distribution around the true
location of each specific number, with partially overlapping
representations for nearby numbers. Such a representational
organization leads to greater difficulty in discriminating between
nearby numbers. This is reflected in both higher error rates and
longer reaction times for near distance pairs when compared
with far distance ones in a comparison task (distance effect)
and in the inaccurate estimation of the location of specific
numbers in a number line task within the range of familiar
numbers. Because of the common representation, symbolic
approximate arithmetic performance is significantly correlated
with both basic numerical magnitude processing tasks. And both
basic numerical magnitude processing tasks were related to each
other.

Differences Between Semantic and
Spatial Number Magnitude Processing
Abilities
The results of the current study were consistent with previous
studies that demonstrated that number comparison and number
line estimation abilities play different roles in arithmetic
performance with different levels of difficulty (Sasanguie and
Reynvoet, 2013; Linsen et al., 2014).

The different contributions of the two basic numerical
magnitude processes to symbolic approximate arithmetic
performance could be explained by the evidence provided for
the dissociation between number comparison and number line
estimation abilities. For example, a patient who had damage
to the left posterior parietal lobe was impaired in the ability
to process the relative positions of numbers, while the ability
to perform tasks that required the processing of the meaning
of numerical magnitude was preserved (Turconi and Seron,
2002). In addition, functional magnetic resonance imaging
(fMRI) studies and event-related potential (ERP) studies showed
separate neural circuits or brain signatures for processing
numerical magnitude information and numerical spatial
information. Researchers have found the different spatial and
temporal courses between numerical processing and ordinal
processing using ERPs (Turconi et al., 2004; Rubinsten et al.,
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2013). Using fMRI, researchers have also found that the ordinal
processing and cardinal number processing have a separate
brain activation in the intraparietal sulcus (Tang et al., 2008).
Furthermore, a behavioral study failed to find a transfer effect
between number comparison and number line estimation
abilities (Maertens et al., 2016).

Difficulty of Symbolic Approximate
Arithmetic Performance and Number
Magnitude Processing
The current study found that when the difficulty of symbolic
approximate arithmetic tasks increased, the number line
estimation ability contributed more to the symbolic approximate
arithmetic performance, whereas the number comparison ability
contributed less.

One possible explanation is that the numerical magnitude
comparison ability develops earlier than the number line
estimation ability. This hypothesis is supported by a variety of
findings. First, studies in developmental psychology have shown
that the ability to process quantities is part of a “cognitive
core knowledge,” recent studies have found that accuracy on
a symbolic number comparison task in the range of 1–100
reaches about 90% in 6-year-old kindergartners (Kolkman et al.,
2013). However, their performance on number line estimation
tasks in the same numerical range continues to show sustained
development across grades 1–3 (Booth and Siegler, 2006).
Second, a developmental model of number acquisition (Von
Aster and Shalev, 2007) has described the development of
numerical cognition in four steps with the learning of the basic
meaning of numbers as the first step, the verbal learning of
number words as the second step, the connection between the
Arabic number system and the former two steps as the third
step, and the numerical spatial representation that develops
during the school period as a result of the development of the
first three steps as the fourth step. Altogether, this evidence
suggests that the numerical comparison ability develops earlier
than the number line estimation ability. According to the
cognitive load theory (CLT), if the extraneous cognitive load
(corresponding to symbolic approximate arithmetic performance
in our study) was not high, automated schema in long-term
memory (corresponding to number semantic processing ability)
would be used to solve the problem; whereas if the extraneous
cognitive load was high, a complex schema (corresponding to
number spatial processing ability) should be developed to solve
the complex problems (Sweller et al., 1998; Van Merrienboer
and Sweller, 2005). Because number semantic processing ability
develops earlier than number spatial processing ability, number
semantic processing ability should develop earlier in the cognitive
process. When the symbolic approximate arithmetic task was
simple (the extraneous cognitive load is low), the children’s
number comparison ability (automated schema) was used first,
whereas when the symbolic approximate arithmetic task became
more difficult, the number line estimation ability (developed
schema) gradually began to operate.

The second possible explanation is that complex mathematical
problems depend on spatial processing ability when compared

with simple problems. Behavioral and neuroimaging studies have
found that as the difficulty of the mathematical problem
increases, spatial ability plays a more significant role.
A developmental study (Sasanguie et al., 2012) found that
when mathematical ability was tested with complex problems,
the number line estimation ability predicted performance
more strongly than the number comparison ability. Previous
neuroimaging studies for children have demonstrated that
complex arithmetic problem activates the parietal lobe more
than simple arithmetic problem (Menon et al., 2000; De Smedt
et al., 2011; Ashkenazi et al., 2012; Berteletti et al., 2015).
Moreover, the number line estimation ability has significant
correlations with complex arithmetic performance in the brain.
One neuroimaging study showed that number line estimation
ability was related to arithmetic performance by comparing the
activation of the parietal lobe for simple and complex arithmetic
problems (Berteletti et al., 2015). A training study showed
that less activation occurred in the parietal lobe in response
to a number task following number line estimation training
(Kucian et al., 2011). Spatial information always depends on the
parietal lobe (see Zacks, 2008, for a meta-analysis and review).
Spatial attention and visuospatial working memory abilities
were needed to solve the complex arithmetic problems when
compared with the simple ones (Zago et al., 2001; Zago and
Tzourio-Mazoyer, 2002; Berteletti et al., 2015). In this study, with
the increase in difficulty, the sum of the problem was closer to
the comparison number. Participants had to rely on much more
spatial attention and visuospatial working memory process to
retrieve the approximate answers from the mental number line
(Knops et al., 2009).

A limitation of the present study is given by the consideration
of the SES in which this sample reflected. Specifically, recent
findings indicated that SES backgrounds can affect children’s
performance on the symbolic approximate arithmetic tasks,
suggesting that those from middle-to-high SES backgrounds
performed significantly better than age-matched peers from
low SES backgrounds (McNeil et al., 2011). Our data were
all collected from kindergartens in urban areas, which
were assumed to be representatives of middle-to-high SES
backgrounds, thereby the question of whether this result
will also generalize to other samples remains to be further
investigated.

The current study provides new insights into the cognitive
mechanisms of symbolic approximate arithmetic performance
for kindergartners. The finding that symbolic approximate
arithmetic ability is related to basic numerical magnitude
processing implies that performance on symbolic approximate
arithmetic tasks may be improved through basic number
magnitude processing training. The results also suggest that for
complex arithmetic tasks, number spatial ability may be more
essential. Training studies have found that spatial representation
of numbers could be taught using games (Siegler and Ramani,
2008; Kucian et al., 2011; De Smedt et al., 2013). These studies
used computer games or board games to teach the spatial
presentation of numbers. Feedback, provided in the game guides,
helps children to learn the correct position of numbers. Future
studies should be conducted to explore the effects of such game
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training on different levels of arithmetic performance, as well as
on exact arithmetic ability in the same study.

The participants in this study were Chinese kindergartners.
Previous cross-cultural studies had found that Chinese
kindergartners had superiority in exact arithmetic ability (Rodic
et al., 2015) and number line estimation ability (Siegler and Mu,
2008). This superiority could be because of the base-10 structure
system of number name which could help Chinese kindergartners
to count and understand the meaning of numbers (Miller et al.,
1995). Secondly, Chinese children have more information related
to numbers in daily life (Kelly et al., 1999). For example, Chinese
people use numbers to name months, that is, January in Chinese
is “the first month,” February is “the second month,” and so on.
Chinese parents typically have higher expectations regarding
mathematical achievement when compared with western parents,
which influences the Chinese parents to teach their children
mathematics at home before entering primary school (see Ng
and Rao, 2010, for a review). Further studies could be carried

out to investigate if the cultural differences would influence the
performance of symbolic approximate arithmetic tasks.
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