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Abstract

Single-cell RNA-Sequencing (scRNA-seq) is the most widely used high-throughput tech-

nology to measure genome-wide gene expression at the single-cell level. One of the most

common analyses of scRNA-seq data detects distinct subpopulations of cells through the

use of unsupervised clustering algorithms. However, recent advances in scRNA-seq tech-

nologies result in current datasets ranging from thousands to millions of cells. Popular clus-

tering algorithms, such as k-means, typically require the data to be loaded entirely into

memory and therefore can be slow or impossible to run with large datasets. To address

this problem, we developed the mbkmeans R/Bioconductor package, an open-source

implementation of the mini-batch k-means algorithm. Our package allows for on-disk data

representations, such as the common HDF5 file format widely used for single-cell data,

that do not require all the data to be loaded into memory at one time. We demonstrate the

performance of the mbkmeans package using large datasets, including one with 1.3 million

cells. We also highlight and compare the computing performance of mbkmeans against

the standard implementation of k-means and other popular single-cell clustering methods.

Our software package is available in Bioconductor at https://bioconductor.org/packages/

mbkmeans.

Author summary

We developed the mbkmeans package (https://bioconductor.org/packages/mbkmeans) in

Bioconductor, an open-source implementation of the mini-batch k-means algorithm. Our

package allows for on-disk data representations, such as the common HDF5 file format

widely used for single-cell data, that do not require all the data to be loaded into memory

at one time.
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Introduction

Unsupervised clustering algorithms are commonly used to divide a set of unlabeled observa-

tions into separate groups with similar traits [1, 2]. In particular, clustering algorithms are pop-

ular in single-cell transcriptomics, where datasets can consist of millions of unlabeled

observations (or cells) [3, 4]. The goal in this setting is to group cells into distinct clusters with

discrete labels that approximate true biological groups [5]. In this context, different clusters

can be thought of as different cell types or cell states, which can be further explored in down-

stream analyses [4].

The most widely used partitional clustering algorithm is k-means [6–8]. The algorithm par-

titions N cells into k clusters each represented by a centroid, or mean profile, for the cells in

the kth cluster. This algorithm is commonly used not only on its own, but also as a component

of ensemble clustering [9, 10].

While k-means is easy to implement, it assumes that the user has enough computational

resources (specifically RAM) to store the data and all intermediate calculations into memory.

However, file sizes generated from scRNA-seq experiments can be on the order of tens to hun-

dreds of gigabytes. For large enough data, k-means can be slow or completely fail if a user lacks

sufficient computational resources. Ensemble clustering approaches that depend on the use of

k-means [9, 10] run it multiple times (e.g., with different parameter values or on a different

data subset) limiting the usability of these packages for large scRNA-seq datasets [11]. We note

that our goal here is not to debate the relative merits of k-means as a clustering algorithm—k-

means is a well-established method, which has been thoroughly investigated [12]—but to pro-

vide users with the ability to use the popular k-means algorithm on large single-cell datasets.

To address the problems of using k-means with large data, two solutions are (1) paralleliza-

tion and (2) subsampling. Parallelization approaches typically leverage some combination of

(i) MapReduce [13] concepts to handle a large volume of data over a distributed computing

environment [14, 15], (ii) k-dimensional (k-d) trees to either optimize for the nearest centroid

[16] or to partition datasets into subsets, representative of the larger dataset [17], and (iii)

leverage multi-core processors [18]. While these approaches do improve the speed of k-means,

they can be limited to the number of reducers for each centroid and can often require exten-

sive computational resources. In contrast, subsampling approaches, such as the mini-batch k-

means algorithm [19] work on small, random subsamples of data (“mini batches”) that can fit

into memory on standard computers. We would emphasize, however, that while mini-batch k-

means only operates on small subsamples of the data at any one time, the algorithm still mini-

mizes the same global objective function evaluated over all samples as in traditional implemen-

tations of k-means.

Current implementations of the mini-batch k-means algorithm [19] are available in stan-

dard programming languages such as in the scikit-learn machine learning Python library [20]

or in the ClusterR R package [21]. However, these implementations either implicitly or explic-

itly require all the data to be read into memory, and therefore do not leverage the potential of

the algorithm to provide a low memory footprint.

To address the described problems, we implemented the mini-batch k-means clustering

algorithm in the open-source mbkmeans R package [22], providing fast, scalable, and mem-

ory-efficient clustering of scRNA-seq data in the Bioconductor framework [5, 23]. Like exist-

ing implementations, our package can be applied to in-memory data input for smaller

datasets, but also to on-disk data, such as from the HDF5 file format [24], which is widely used
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for distributing single-cell sequencing data. For on-disk input, mbkmeans leverages the sub-

sampling structure of the algorithm to read into memory only the current “mini batch” of data

at any given point, thereby greatly reducing the required memory (RAM) needed.

We evaluate the performance of mbkmeans compared to the standard k-means algorithm

using the 1.3 million brain cells scRNA-seq data from 10X Genomics [25] and simulation stud-

ies. We demonstrate that our implementation constrains the memory usage and increases the

speed of the clustering algorithm, performing orders of magnitude faster than the popular

clustering algorithms Louvain [26] and Leiden [27], which are also frequently used for cluster-

ing single-cell sequencing data, without loss of accuracy as compared to the standard k-means

algorithm. Our contribution is two-fold: we implement a mini-batch k-means algorithm for

on-disk data, and we benchmark the performance of a non-trivial algorithm for HDF5 against

its in-memory counterpart.

Design and implementation

Overview of k-means algorithm

Given a set of observations Y = {y1, y2, . . ., yN} where each observation is a G-dimensional real

vector, the optimization problem of k-means clustering is to partition the N observations into

k (< N) sets S = {S1, S2, . . ., Sk} to minimize the within-cluster sum of squares (WCSS) or

argmin
S

Xk

c¼1

X

y2Sc

jjy � mcjj
2

where μc is the centroid of observations in Sc and ||�|| denotes the L2 norm. Lloyd’s algorithm

[8] is the most widely used algorithm to solve this optimization, alternating between an assign-

ment step and an update step until convergence.

Overview of mini-batch k-means algorithm

Our mini-batch k-means implementation follows a similar iterative approach to Lloyd’s algo-

rithm. However, at each iteration t, a new random subset M of size b is used and this continues

until convergence. If we define the number of centroids as k and the mini-batch size as b (what

we refer to as the ‘batch size’), then our implementation of mini-batch k-means follows that of

ClusterR [21], and is briefly described here:

0. At t = 0: Initialize the set of k centroids m̂ð0Þ = (m̂
ð0Þ

1 ; m̂
ð0Þ

2 ; . . . m̂
ð0Þ

k ).

1. For each t� 1: Randomly sample (without replacement) from Y a random subset M of size

b. Update the estimates of the k centroids by performing the following two steps:

(i). Assignment: Given the set of k centroids at t − 1, or m̂ðt� 1Þ, compute the Euclidean dis-

tances between observations in M and the k cluster centroids. Assign each observation

from M to the closest centroid to obtain a new set of observations per centroid

Sðt� 1Þ ¼ fSðt� 1Þ

1 ; . . . ; Sðt� 1Þ

k g.

(ii). Update: calculate the new centroids by averaging the coordinates of the observations

from the mini-batch M assigned to each cluster to obtain m̂ðtÞ ¼ ðm̂
ðtÞ
1 ; m̂

ðtÞ
2 ; . . . m̂

ðtÞ
k ).

Steps (i-ii) are repeated until convergence using the difference in norm of the cen-

troids, jjm̂ðtÞ � m̂ðt� 1Þjj
2
.

2. Use the final estimates of the k centroids to assign all observations in Y to the cluster with

the nearest centroid.
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Like the k-means algorithm, the mini-batch k-means algorithm will result in different solu-

tions at each run due to the random initialization point and the random samples taken at each

point. Tang and Monteleoni [28] demonstrated that the mini-batch k-means algorithm con-

verges to a local optimum. However, mini-batch k-means follows a different search path than

k-means, and therefore does not necessarily converge to the same local optimum as the k-

means algorithm.

The mbkmeans software package

The mbkmeans software package implements the mini-batch k-means clustering algorithm

described above and works with matrix-like objects as input. Specifically, the package works

with standard R data formats that store the data in memory, such as the standard matrix class

in base R and sparse and dense matrix classes from the Matrix R package [29], and with file-

backed matrices, e.g., by using the HDF5 file format [24]. In addition, the package provides

methods to interface with standard Bioconductor data containers such as the SummarizedEx-
periment [30] and SingleCellExperiment [31] classes.

We implemented the computationally most intensive steps of our algorithm in C++,

leveraging the Rcpp [32] and beachmat [33] packages. Furthermore, we make use of Biocon-

ductor’s DelayedArray [34] framework, and in particular the HDF5Array [35] package to inter-

face with HDF5 files. The mbkmeans package was built in a modular format that would allow

it to easily operate on alternative on-disk data representations in the future. To initialize the k
centroids, the mbkmeans package uses the k-means++ initialization algorithm [36] with a ran-

dom subset of b observations (the batch size), by default. Finally, to predict final cluster labels,

we use block processing through the DelayedArray [34] package to avoid working with all the

data at once.

Benchmarking datasets

To evaluate the performance of mbkmeans, we used: (i) simulated gene expression data from a

mixture of k Gaussian distributions (see S1 Text for details), and (ii) downsampled subsets of a

real scRNA-seq dataset from 10X Genomics [25]. This scRNA-seq experiment was performed

with the 10X Chromium Genomics platform [25] measuring the gene expression in mouse

cells that came from three regions of the brain (cortex, hippocampus, and subventricular zone)

and two mouse embryos (E18 C57BL/6 mice). After filtering out low-quality cells and lowly

expressed genes, the dataset consists of G = 11, 720 genes and N = 1, 232, 055 cells. We used all

genes for the full analysis, while we focused on the 5,000 most variable genes for the subsam-

pling analysis. We used the TENxBrainData Bioconductor data package [37] to access the

data, which are stored as a dense matrix in a HDF5 file. See S1 Text for details about the pro-

cessing of these data.

We evaluate both the memory usage and computing time using the Rprof and proc.
time R functions. Both of these are reported from two independent computing systems: (i)

an iMac with a 4.2GHz Intel Core i7-7700K CPU and 64 GB of RAM, which we refer to as

“desktop” and (ii) a cluster node with 2.5GHz AMD Opteron Processor 6380 CPU, which we

refer to as “HPC cluster” (high performance computing cluster).

Results

One of the main purposes of unsupervised clustering algorithms for the analysis of scRNA-seq

data is to empirically define groups of cells with similar expression profiles [5]. We explored

the impact of the number of cells and batch sizes in a scRNA-seq dataset on the speed, mem-

ory-usage, and accuracy of mbkmeans as compared to k-means when predicting cluster labels.
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Specifically, we evaluated the performance of (1) the standard (in-memory) k-means algo-

rithm, as implemented in R [8], (2) mini-batch k-means applied to in-memory data, (3) and

mini-batch k-means applied to an on-disk data representation (HDF5), where the last two

implementations of mini-batch k-means are those available in our mbkmeans package. The

results reported in the main text are based on our desktop configuration, but results for our

HPC cluster configuration lead to similar conclusions, though all of the algorithms take

slightly longer; the HPC cluster results are detailed in Supporting Information (S1, S2 and

S11–S14 Figs).

mbkmeans is fast and memory-efficient

Using downsampled datasets ranging from 75,000 to 1,000,000 observations from the 1.3 mil-

lion mouse brain cells, we found that our on-disk (HDF5) mbkmeans uses dramatically less

memory than either k-means or the in-memory mbkmeans for large scRNA-seq datasets (Fig

1A and S1 Table). There is almost no memory increase for datasets with larger sample sizes

using our on-disk implementation of mbkmeans, and we can cluster 1 million cells with only

1.55GB of RAM, as compared to 39.4 GB for the in-memory version. We were not able to

compare to standard k-means at large sample sizes due to lack of sufficient memory; however,

when using 300,000 cells, k-means used 52 GB as opposed to 0.98GB with the on-disk

mbkmeans. In addition, the in-memory mbkmeans uses far less memory than k-means, requir-

ing only 11.95GB for 300,000 cells. In addition, we compared our in-memory mbkmeans
implementation to the mini-batch k-means algorithm implemented in the ClusterR [21] R

package (S1 Fig). We found mbkmeans was more memory-efficient compared to ClusterR,

demonstrating the improvements over k-means are not only achieved from the mini-batch k-

means algorithm itself, but also in the implementation of our mbkmeans software package.

Furthermore, we found both of our mbkmeans implementations are significantly faster

compared to k-means (Fig 1B and S1 Table). Specifically, we can cluster 1 million cells in 9.8

and 7.8 minutes (mean values across 10 runs) for in-memory and on-disk implementations of

mini-batch k-means, respectively, compared to 36.6 minutes using in-memory k-means for

300,000 cells (k-means fails to complete with larger datasets). In addition, we found mbkmeans
performed similarly in computational time compared to ClusterR, leading to no loss in perfor-

mance of speed (S2 Fig).

mbkmeans is accurate

Using simulated gene expression data, we explored the effect of increasing sizes of datasets, as

well as batch sizes, on the performance of the algorithms. We found that using datasets with a

batch size b = 500 observations or larger led to no loss in accuracy with respect to k-means,

based on ARI (Fig 2A and S2 Table) and WCSS (Fig 2B and S2 Table). In addition, we consid-

ered a wider range of sizes of datasets and found consistent ARI and WCSS results (S3–S6

Figs). This confirms the results of [19].

Next, we assessed the WCSS using the 1.3 million mouse brain cells by downsampling to

similar dataset sizes (N = 5,000, 10,000, and 25,000). We found similar results to simulated

data (Fig 2C and S2 Table) with no substantial difference in the minimum observed WCSS

between the k-means and mbkmeans algorithms (using k = 15) if using a batch size of b = 500

observations or more. These results demonstrate that, as long as the batch size of the

mbkmeans is not unreasonably small (at least 500 − 1, 000 cells in a batch), the mbkmeans algo-

rithm is as accurate as the standard k-means algorithm. We note that these results do not

depend on our implementation, but on the mini-batch k-means algorithm, as both mbkmeans
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and the implementation in the ClusterR [21] R package lead to comparable WCSS values

(S7 Fig).

Finally, because one of the user-defined parameters in the k-means and mini-batch

k-means algorithms is the number of centroids (k), we investigated the impact of k on

both memory-usage and accuracy. We found that the maximum memory (GB) used was

Fig 1. mbkmeans uses less memory and is faster than k-means. Performance evaluation (y-axis) of (A) maximum

memory (RAM) used (GB) and (B) elapsed time (minutes) (repeated 10 times) for increasing sizes of datasets (x-axis)

with N = 75,000, 150,000, 300,000, 500,000, 750,000, and 1,000,000 observations and G = 5,000 genes, using our

desktop configuration. Results for mbkmeans are in green (in-memory) and blue (on-disk); k-means is in red. We used

k = 15 for both algorithms and used a batch size of b = 500 observations for mbkmeans.

https://doi.org/10.1371/journal.pcbi.1008625.g001
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not affected by k either in the in-memory or on-disk implementations for small (N =

25,000) or large (N = 1,000,000) datasets (S8 Fig). However, using simulated scRNA-seq

data we found that accuracy—using ARI (S9 Fig) or using WCSS (S10 Fig)—varied as a

function of k with the highest accuracy resulting when k = 15 (the true simulated centroids),

as expected.

Fig 2. The accuracy of mbkmeans depends on batch size. Performance evaluation (y-axis) with (A) adjusted Rand index (ARI) and (B) within clusters

sum of squares (WCSS) for increasing batch sizes ranging from 75 to 1000 cells (x-axis) using simulated gene expression data (G = 1000) with a fixed

k = 3 true centroids with three sizes of datasets (N = 5000, 10000, 25000). (C) WCSS (y-axis) for increasing batch sizes (x-axis) using real scRNA-seq

gene expression data from 10X Genomics and k = 15 for both algorithms. ARI and WCSS is reported as an average across 50 runs.

https://doi.org/10.1371/journal.pcbi.1008625.g002
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Impact of mbkmeans batch size on speed and memory-usage

The choice of batch size (b) in mbkmeans can in principle have an impact on how long it takes

the algorithm to run and how much memory is used. We used the downsampled 1.3 million

mouse brain cells dataset with N = 1,000,000 observations and considered the effect of increas-

ing batch sizes for both the in-memory and on-disk implementations of mbkmeans. We found

that there was no impact on maximum memory usage (Fig 3A and S3 Table) nor speed (Fig 3B

and S3 Table) for batch sizes up to b = 10,000. This is perhaps unsurprising, since computa-

tions in memory on datasets of size 10,000 are routine and unlikely to have noticeable differ-

ences in time and memory. For larger batch sizes, we started to see noticeable increases in

demand for memory and larger time to run mbkmeans.
All considered, we recommend users to use a batch size of b = 10,000, which balances both

the results from accuracy (Fig 2), memory-usage and speed (Fig 3). Furthermore, since the ini-

tialization uses by default the same number of cells as batch size, this gives a robust sample for

determining the initial start point.

Combined with the results of accuracy, these results demonstrated that the algorithm is not

sensitive to the batch size parameter, with values in the range of b = 500 to 10,000 giving com-

parable results with respect to both accuracy and computational performance.

HDF5 file format geometry can improve performance

How the data are stored (or ‘chunked’) and accessed in the HDF5 format (or different file

geometries) can affect the speed of accessing the data. For example, the indexing can be based

on columns or rows of the data (vertical or horizontal slices), or other sub-matrices (rectan-

gles). In the case of a matrix (two-dimensional array), the default chunk size in the HDF5Array
package selects a rectangle that satisfies the following constraints: (i) its area is less than

1,000,000; (ii) it fits in the original matrix; (iii) its shape is as close as possible as the shape of

the original matrix (the two dimensions are in the same proportion).

We investigated the choice of different file chunking geometries on the performance of the

mbkmeans algorithm, and we found that the best choice for minimizing the maximum RAM

used is to index a HDF5 file by the cells (or observations) of the matrix (Fig 4A and S4 Table);

indexing by cells also improves the speed of the algorithm (Fig 4B and S4 Table).

In contrast, if a file is indexed by genes, we found the on-disk mbkmeans implementation

required twice as much RAM—though even then it is still a relatively small memory footprint

compared to an in-memory version. We also considered indexing a HDF5 file by the entire

matrix in one chunk (“single chunk” in Fig 4), which is the default in the HDF5 library format

[24]. In this case, we found that even for a small number of cells, there is an substantial mem-

ory cost for this naive geometry.

Finally, we note that while the default geometry implemented in HDF5Array is not optimal

for clustering, there are many different components in a standard scRNA-seq pipeline, with

clustering typically not being the slowest step (see ‘A complete analysis of a large single-cell

dataset’ Section below), and thus the choice of geometry may ultimately be better determined

by the performance of these other steps.

A complete analysis of a large single-cell dataset

We analyzed the full 1.3 million mouse brain cells with all the steps in a standard scRNA-seq

analysis [5]: quality control and filtering, normalization, dimensionality reduction using

Principal Components Analysis (PCA), and finally clustering for detection of subtypes. For

all of the non-clustering steps, we used recent packages in Bioconductor that operate directly

on HDF5 files. Specifically, we used scater [38] for quality control and dimensionality
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reduction, via the BiocSingular package, which implements the implicitly restarted Lanczos

bidiagonalization algorithm (IRLBA) [39], and scran [40] for normalization. We note that we

used mbkmeans as a preliminary step to create homogeneous cell groups for scran normaliza-

tion (see [40] for details). Our mbkmeans package complements these existing packages,

Fig 3. The speed and memory-usage of mbkmeans depends on batch size. Performance evaluation (y-axis) of (A)

maximum memory (RAM) used (GB) and (B) elapsed time (minutes) for increasing batch sizes (x-axis) with b = 75,

150, 300, 500, 1,000, 1,500, 3,000, 5,000, 7,500, 10,000, 20,000, 50,000, 100,000, and 200,000 with a dataset of size

N = 1,000,000 observations using our desktop configuration. Results for mbkmeans in-memory are in red and and on-

disk in blue. We used k = 15 for the number of centroids.

https://doi.org/10.1371/journal.pcbi.1008625.g003
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allowing us to demonstrate a complete HDF5-ready pipeline for scRNA-seq analysis in

R/Bioconductor.

We note that because clustering is generally performed after a dimensionality reduction

(e.g. reducing to the top 50 principal components or PCs), the size of the data matrix to be

clustered is significantly reduced in complexity and can be potentially performed in-memory,

Fig 4. The speed and memory-usage of the on-disk mbkmeans implementation depends on the structure of the

on-disk file. Performance evaluation (y-axis) of (A) maximum memory (RAM) used (GB) and (B) elapsed time

(minutes) (repeated 10 times) for increasing sizes of datasets (x-axis) with N = 75,000, 150,000, 300,000, 500,000,

750,000, and 1,000,000 observations using our desktop configuration. Results for indexing a HDF5 file by gene is blue,

by cell is red, as a single chunk is purple and the default indexing is green. The single chunk was only able to run for

the smallest dataset size (N = 75,000). We used k = 15 and used a batch size of b = 500 observations for mbkmeans.

https://doi.org/10.1371/journal.pcbi.1008625.g004

PLOS COMPUTATIONAL BIOLOGY mbkmeans: Fast clustering for single cell data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008625 January 26, 2021 10 / 18

https://doi.org/10.1371/journal.pcbi.1008625.g004
https://doi.org/10.1371/journal.pcbi.1008625


even with 1.3 million cells. However, some normalization methods, such as scran, make use of

an initial clustering to improve the accuracy of the normalization, which is before the

dimensionality reduction step; in this case the dimension of the clustering problem is over all

cells and all expressed genes and benefits greatly from using on-disk clustering.

In S5 Table, we show the compute time for each step of the pipeline. The clustering of the

data with mbkmeans, even with all genes, was a very quick part of the pipeline, taking roughly

9 minutes (with k = 15 and batch size of 500); in contrast, normalization took 5 hours, and

IRLBA PCA took 96 hours. On the computationally simpler problem of clustering on only the

top 50 PC dimensions, which we performed via the in-memory mbkmeans, the clustering took

only about 30 seconds—quickly enough to rerun the clustering algorithm with different num-

ber of clusters or on random subsamples of the data for stability analysis.

We compared our pipeline with two alternative approaches, based on Louvain and Leiden

clustering, implemented in Bioconductor and in the scanpy Python package [41], respectively.

Specifically, after obtaining the top 50 PC dimensions, we computed the shared nearest neigh-

bor (SNN) graph and we detected communities in the network via the Louvain algorithm [26].

Alternatively, after normalization and PCA, we performed batch correction using the BBKNN

method [42] and Leiden clustering [27] on the resulting network.

Comparing the resulting partitions, we observed that the clustering results of the three

methods are qualitatively similar (S15 and S16 Figs) and that both Louvain and Leiden are

considerably slower than mbkmeans. The Louvain algorithm took 35.5–156 minutes (depend-

ing on whether finding an approximate or exact solution) and the Leiden algorithm took 48.5

minutes (S7 Table); this is in contrast to 30 seconds with mbkmeans.
In Fig 5A we show the UMAP of the full dataset, with cells color-coded by their assignment

into the 15 final clusters found by applying mbkmeans on the first 50 PCs. We note that the

Fig 5. Results of full analysis on 1.3 million mouse brain cells. (A) Hexbin plot [54] of the UMAP representation of the 1.3 million cells, color coded

by the clusters found via mbkmeans. (B) Heatmap of the average gene expression of each of the 15 clusters found by mbkmeans for 42 marker genes.

https://doi.org/10.1371/journal.pcbi.1008625.g005
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mbkmeans clustering is not driven by batch effects, as shown by the Adjusted Rand Index

(ARI) of the cluster labels and the “mouse” variable (ARI = 0.04). mbkmeans clearly identified

distinct outlying groups of cells, such as clusters 2, 5, 12, 14, and 15 (S6 Table). The remaining

clusters are not easily separated by eye in two dimensions, making it difficult to discern

whether mbkmeans is identifying meaningful clusters. To further evaluate the clusters, we

accumulated a list of genes previously shown to discriminate known subtypes of cells in devel-

oping and adult mouse brains [43–49]. We show the average expression of each cluster for

these marker genes in Fig 5B. Many of the clusters identified by mbkmeans have unique

expression of these marker genes, indicating that mbkmeans is finding meaningful biological

clusters. For example, clusters 1, 7, and 10—the boundaries of which are not obviously distin-

guished by eye on the UMAP representation—all correspond to Radial Precursors [47], but

they each have clear markers that distinguish them, suggesting that they correspond to differ-

ent developmental stages (see S6 Table). Similarly, cluster 8 (expressing the L2/3 marker Crym
[44]) and 11 (expressing the L5/6 marker Ntf3 [43]) represent two distinct pyramidal excit-

atory neuron populations, possibly residing in different cortical layers.

Availability and future directions

A major challenge in the analysis of scRNA-seq data is the scalability of analysis methods as

datasets increase in size over time. This is particularly problematic as experiments now fre-

quently produce millions of cells [50–53], possibly across multiple batches, making it challeng-

ing to even load the data into memory and perform downstream analyses including quality

control, batch correction and dimensionality reduction. Providing analysis methods, such as

unsupervised clustering, that do not require data to be loaded into memory is an imperative

step for scalable analyses. While large-scale scRNA-seq data are now routinely stored in on-

disk data formats (e.g. HDF5 files), the methods to process and analyze these data are lagging.

To address this, we have developed an open-source implementation of the mini-batch k-

means algorithm to provide an unsupervised clustering algorithm scalable to millions of obser-

vations. Unlike other existing implementations of mini-batch k-means, our algorithm har-

nesses the structure of the mini-batch k-means algorithm to only read in the data needed for

each batch, controlling memory usage for large datasets. This makes our implementation truly

scalable and applicable to both standard in-memory matrix objects, including sparse matrix

representations, and on-disk data representations that do not require all the data to be loaded

into memory at any one time, such as HDF5 matrices. We have demonstrated the performance

improvement of the mbkmeans package across a range of different sized datasets, both with

simulated and real single-cell datasets. We have also benchmarked an end-to-end Bioconduc-

tor pipeline, which includes using mbkmeans for subtype discovery, on a 1.3 million scRNA-

seq dataset.

Our implementation of mini-batch k-means is available as the open-source mbkmeans
package in Bioconductor (https://bioconductor.org/packages/mbkmeans). The analyses in this

manuscript were performed using mbkmeans version 1.4.0, and all code to replicate the analy-

ses is available at: https://github.com/stephaniehicks/benchmark-hdf5-clustering.

Supporting information

S1 Fig. Memory-usage reported for both desktop and HPC cluster configurations corre-

sponding to Fig 1.

(PDF)
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S2 Fig. Elapsed time (minutes) reported for both desktop and HPC cluster configurations

corresponding to Fig 1.

(PDF)

S3 Fig. Accuracy (ARI) corresponding to Fig 2A using simulated data (N = 500, 2,000,

4,000, 5,000, 6,000, 8,000, 10,000, 25,000 observations) reported using our desktop config-

uration.

(PDF)

S4 Fig. Accuracy (WCSS) corresponding to Fig 2B using simulated data (N = 500, 2,000,

4,000, 5,000, 6,000, 8,000, 10,000, 25,000 observations) reported using our desktop config-

uration.

(PDF)

S5 Fig. Accuracy (ARI) corresponding to Fig 2A using simulated data (N = 500, 2,000,

4,000, 5,000, 6,000, 8,000, 10,000, 25,000 observations) reported using a HPC cluster.

(PDF)

S6 Fig. Accuracy (WCSS) corresponding to Fig 2B using simulated data (N = 500, 2,000,

4,000, 5,000, 6,000, 8,000, 10,000, 25,000 observations) reported using a HPC cluster.

(PDF)

S7 Fig. Accuracy (WCSS) corresponding to Fig 2C using real scRNA-seq gene expression

data from 10X Genomics (N = 5,000, 10,000, and 25,000 observations) and k = 15 for all

algorithms. WCSS is reported as an average across 50 runs for both a desktop and HPC

cluster.

(PDF)

S8 Fig. Memory usage with two sizes of simulated scRNA-seq datasets and three absolute

batch sizes (75, 500, 1000) with the true number of clusters as k = 15.

(PDF)

S9 Fig. Performance evaluation of ARI with increasing estimated cluster centroids k
using mbkmeans and k-means using our desktop and HPC cluster configurations. We

simulated gene expression data with 15 true centroids for two sizes of datasets (N = 25000,

100000, both using G = 1000 genes) considered three absolute batch sizes of cells (b = 75, 500,

1000) for mbkmeans (both in memory and on-disk using HDF5 files using our desktop con-

figuration). We show the impact of increasing the number of estimated cluster centroids k
used in the clustering algorithm (x-axis) on the adjusted Rand index (ARI) performance met-

ric (y-axis).

(PDF)

S10 Fig. Performance evaluation of WCSS with increasing estimated cluster centroids k
using mbkmeans and k -means using our desktop and HPC cluster configurations. We sim-

ulated gene expression data with 15 true centroids for two sizes of datasets (N = 25000, 100000,

both using G = 1000 genes) considered three absolute batch sizes of cells (b = 75, 500, 1000) for

mbkmeans (both in memory and on-disk using HDF5 files using our desktop configuration).

We show the impact of increasing the number of estimated cluster centroids k used in the clus-

tering algorithm (x-axis) on the within clusters sum of squares (WCSS) performance metric

(y-axis).

(PDF)
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S11 Fig. Memory-usage reported for both desktop and HPC cluster configurations, corre-

sponding to Fig 3.

(PDF)

S12 Fig. Elapsed time (minutes) reported for both desktop and HPC cluster configura-

tions, corresponding to Fig 3.

(PDF)

S13 Fig. Memory-usage reported for both desktop and HPC cluster configurations, corre-

sponding to Fig 4.

(PDF)

S14 Fig. Elapsed time (minutes) reported for both desktop and HPC cluster configura-

tions, corresponding to Fig 4.

(PDF)

S15 Fig. Comparison between mbkmeans (k = 15) and Louvain clustering in the space of

the top 50 Principal Components of the 1.3 million mouse brain cells dataset. See S1 Text

for details on the Louvain clustering.

(PNG)

S16 Fig. Comparison between mbkmeans (k = 15) and Leiden clustering in the space of the

top 50 Principal Components of the 1.3 million mouse brain cells dataset. See S1 Text for

details on the Leiden clustering.

(PNG)

S1 Table. Performance evaluation for memory-usage and elapsed time as reported in Fig 1.

We report the maximum memory (RAM) used (GB) and averaged elapsed time (minutes) for

increasing sizes of datasets with N = 75,000, 150,000, 300,000, 500,000, 750,000, and 1,000,000

observations and 5,000 genes using our desktop computer configuration. The average elapsed

time (elapsed_mean) and standard deviation (elapsed_sd) of ten runs is reported in the table.

We used k = 15 for both algorithms and used a batch size of b = 500 observations for mbkmeans.
(PDF)

S2 Table. Performance evaluation for accuracy as reported in Fig 2. We report the adjusted

Rand index (ARI) and within-cluster sum of squares (WCSS) averaged across 50 replicates for

increasing sizes of datasets with N = 5,000, 10,000, and 25,000 observations and increasing batch

sizes b = 10, 35, 75, 150, 500, 750, 1,000 using our desktop computer configuration. The average

ARI for simulated data (ari_sim_mean) and standard deviation (ari_sim_sd), average WCSS for

simulated data (wcss_sim_mean) and standard deviation (wcss_sim_sd), average WCSS for real

scRNA-seq data (ari_real_mean) and standard deviation (ari_real_sd), is reported in the table.

We used k = 3 for simulated data and k = 15 for real scRNA-seq data for all algorithms.

(PDF)

S3 Table. Performance evaluation for memory-usage and elapsed time reported in Fig 3.

We report the maximum memory (RAM) used (GB) and averaged elapsed time (minutes) for

increasing batch sizes with b = 75, 150, 300, 500, 1,000, 1,500, 3,000, 5,000, 7,500, 10,000,

20,000, 50,000, 100,000, 200,000 with a dataset of size N = 1,000,000 observations and 5,000

genes using our desktop computer configuration. The average (elapsed_mean) and standard

deviation (elapsed_sd) of ten runs is reported in the table. We used k = 15 for the number of

centroids in mbkmeans.
(PDF)
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S4 Table. Performance evaluation for memory-usage and elapsed time as reported in Fig 4.

We report the maximum memory (RAM) used (GB) and averaged elapsed time (minutes) for

increasing sizes of datasets with N = 75,000, 150,000, 300,000, 500,000, 750,000, and 1,000,000

observations and 5,000 genes using our desktop computer configuration. The average elapsed

time (elapsed_mean) and standard deviation (elapsed_sd) of ten runs is reported in the table.

The single chunk was only able to run for the smallest dataset size (N = 75,000). We used

k = 15 and used a batch size of b = 500 observations.

(PDF)

S5 Table. Computational time for each of the steps of the pipeline for the full 1.3 million

mouse brain cells.

(PDF)

S6 Table. Identification of mbkmeans clusters with Marker Genes.

(PDF)

S7 Table. Computational time for graph-based clustering. SNN: Shared Nearest Neighbors;

BBKNN: Batch-Balanced K-Nearest Neighbors.

(PDF)

S1 File. Current implementation of the mbkmeans package as a tar file.

(GZ)

S1 Text. Supplementary text.

(PDF)
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