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Background: Left ventricular ejection fraction (LVEF) is the gold standard for evaluating

heart failure (HF) in coronary artery disease (CAD) patients. It is an essential metric in

categorizing HF patients as preserved (HFpEF), mid-range (HFmEF), and reduced (HFrEF)

ejection fraction but differs, depending on whether the ASE/EACVI or ESC guidelines are

used to classify HF.

Objectives: We sought to investigate the effectiveness of using deep learning as

an automated tool to predict LVEF from patient clinical profiles using regression

and classification trained models. We further investigate the effect of utilizing other

LVEF-based thresholds to examine the discrimination ability of deep learning between

HF categories grouped with narrower ranges.

Methods: Data from 303 CAD patients were obtained from American and Greek

patient databases and categorized based on the American Society of Echocardiography

and the European Association of Cardiovascular Imaging (ASE/EACVI) guidelines into

HFpEF (EF > 55%), HFmEF (50% ≤ EF ≤ 55%), and HFrEF (EF < 50%). Clinical

profiles included 13 demographical and clinical markers grouped as cardiovascular

risk factors, medication, and history. The most significant and important markers

were determined using linear regression fitting and Chi-squared test combined

with a novel dimensionality reduction algorithm based on arc radial visualization

(ArcViz). Two deep learning-based models were then developed and trained using

convolutional neural networks (CNN) to estimate LVEF levels from the clinical

information and for classification into one of three LVEF-based HF categories.
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Results: A total of seven clinical markers were found important for discriminating

between the three HF categories. Using statistical analysis, diabetes, diuretics

medication, and prior myocardial infarction were found statistically significant (p< 0.001).

Furthermore, age, body mass index (BMI), anti-arrhythmics medication, and previous

ventricular tachycardia were found important after projections on the ArcViz convex hull

with an average nearest centroid (NC) accuracy of 94%. The regression model estimated

LVEF levels successfully with an overall accuracy of 90%, average root mean square

error (RMSE) of 4.13, and correlation coefficient of 0.85. A significant improvement

was then obtained with the classification model, which predicted HF categories with

an accuracy ≥93%, sensitivity ≥89%, 1-specificity < 5%, and average area under the

receiver operating characteristics curve (AUROC) of 0.98.

Conclusions: Our study suggests the potential of implementing deep learning-based

models clinically to ensure faster, yet accurate, automatic prediction of HF based on the

ASE/EACVI LVEF guidelines with only clinical profiles and corresponding information as

input to the models. Invasive, expensive, and time-consuming clinical testing could thus

be avoided, enabling reduced stress in patients and simpler triage for further intervention.

Keywords: heart failure, coronary artery disease, left ventricular ejection fraction, clinical profiles, demographical

and clinical information, radial visualization, machine and deep learning

INTRODUCTION

Heart failure (HF) is a chronic and progressive pathologic
state characterized by the inability of the heart to pump an
adequate amount of blood to supply tissues with nutrients via
the systemic circulation (1). Several conditions, such as coronary
artery disease (CAD) and arterial hypertension, are considered
major causes of HF progression (2, 3). According to the European
Society of Cardiology (ESC), more than 26million people around
the world suffer from HF caused by CAD (4). Furthermore, the
World Health Organization (WHO) estimates that HF accounts
for more than 7.2 million deaths annually worldwide (3).

The systolic function of the heart, as indicated by the left
ventricular ejection fraction (LVEF), is significantly decreased
in HF. LVEF refers to the amount (%) of oxygenated blood
pumped out of the left ventricle at each contraction of the
heart (5, 6). It is considered an important diagnostic metric in
evaluating the progression of HF, especially at early stages. Based
on the LVEF, HF can be classified according to the American
Society of Echocardiography and the European Association of
Cardiovascular Imaging (ASE/EACVI) (7–9) into three main
categories: heart failure with preserved ejection fraction (HFpEF)
with an EF above 55%, heart failure with mid-range ejection
fraction (HFmEF) with an EF between 50 and 55%, and heart
failure with reduced ejection fraction (HFrEF) with an EF below
50%. The narrower range for the HFmEF category is considered
as a variable criteria for this group in accordance to the etiology
of HF. Other guidelines including the ESC (10) recommend
different cut-off values for classification of HF, with a cut-off for
HFrEF as low as 40%. The literature suggests that there are no
strict rules and that the treatment is loosely associated with LVEF
and clinical presentation. However, patients in the mid-range

group between 40 and 49% based on the ESC guidelines show
that 90% of patients either improved or deteriorated, whilst only
10% of cases remained unchanged (11).

Accurate LVEF-based assessment of HF therefore poses
substantial challenges to clinicians (8, 9, 12). HFpEF, despite
covering half of all patients with HF, is not yet well-understood
and remains frequently undetected due to similarities in
symptoms and adverse outcomes with HFrEF and, to a lesser
extent, HFmEF (12, 13). Furthermore, HFmEF represents one-
fifth of the HF population and remains ambiguous, as its
pathogenesis was observed to be more similar to that of
HFrEF and rather different from HFpEF depending on the
guidelines applied. This raises the question of whether it should
be considered a transient entity between HFpEF and HFrEF
or a distinct entity on its own (14–16). Therefore, additional
research is needed to investigate the effectiveness of LVEF-based
categorization of HF patients. According to recently published
studies, clinical profiles of patients allow for the discrimination
between the three HF categories, especially the presence of
comorbidities and quality of life based on the ESC guidelines
(16–21). Based on these clinical results, HFmEF patients were
found to fall between HFpEF and HFrEF while more closely
resembling HFpEF (22, 23). Additionally, they were more likely
to be younger than HFpEF and more prone to diabetes and
hypertension than HFrEF (20, 24). Thus, further studies on a
larger cohort of patients are still required to understand how
demographical and clinical characteristics are associated with
eachHF category defined by clinicallymeasured ejection fraction,
especially in terms of optimizing treatment options to improve
stratification and risk management of patients.

Most recently, machine learning has beenwidely implemented
in medical research to assist in HF assessment through clinical
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information (25–30). In addition, several studies have employed
machine learning, including unsupervised clustering, to identify
and characterize sub-groups of HFpEF from patient clinical
profiles (31–34). However, there is still a limited knowledge on
the complex relationship between demographical and clinical
information and the three LVEF-based HF categories. In
addition, it would be highly appreciated to offer a promising
alternative tool to echocardiography for LVEF assessment which
does not require the highly specialized knowledge and expensive
equipment. In this vein, machine learning, including deep
learning, can be essential in understanding the complicated
clinical characteristics included in patient records leading to a
better HF assessment. Therefore, in this study, we sought to
investigate the ability of deep learning-based trained models in
estimating LVEF levels as well as predicting HF categories from
patient demographic and clinical information only in line with
the ASE/EACVI guidelines. No previous studies have employed
deep learning for analyzing HF categories associated with
clinical profiles and LVEF. Thus, we developed trained models
that could be capable of automatically providing assistance in
clinical decision making in HF assessment based on LVEF
levels. To prevent training the models using arbitrary or biased
clinical variables, we ensured the following two steps: first,
we investigated the statistical significance of each variable in
discriminating between the three categories, and second, we
followed a novel dimensionality reduction technique based on
radial visualization to observe the best variables in characterizing
and separating each LVEF-based HF category. We report the
performance of the developed models that were trained based on
the most important clinical variables to discuss the importance
of deep learning in HF analysis based on LVEF as well as to
elaborate on the significance of these clinical variables within
patient profiles in differentiating between the threeHF categories.

MATERIALS AND METHODS

Dataset and Patients Enrollment
Two datasets that contain clinical information of American and
Greek patient cohorts were included in this study. Both datasets
included patients with HF, more specifically CAD, with ages
between 33 and 88 years (n = 303). These patients were divided
into 129 HFpEF, 92 HFmEF, and 82 HFrEF according to the
ASE/EACVI guidelines.

The American patient cohort was obtained from the archives
of the Intercity Digital Electrocardiography (ECG) Alliance
(IDEAL) study of the University of Rochester Medical Center
Telemetric and Holter ECG Warehouse (THEW) (35). The
database enrollment protocol was conducted according to Title
45, U.S. Code of Federal Regulations, Part 46, protection
of human subjects (revised: November 13, 2001–effective:
December 13, 2001) and in accordance with the Declaration
of Helsinki. Furthermore, the research subject review board of
the University of Rochester approved the IDEAL protocol (36).
All patients provided a signed consent before participating in
the study. The eligibility criteria to enroll in the IDEAL study
included: (1) having either an evidence of previous MI or an
exercise induced ischemia; (2) being in stable phase of ischemic

heart disease at least 2 months after the last event; (3) not
diagnosed with a congenital heart failure; and (4) being in sinus
rhythm. Furthermore, all patients with dilated cardiomyopathy
(left ventricular diameter (LVD) > 60mm and EF < 40%),
congenital heart failure (CHF), coronary artery bypass grafting
(CABG) surgery, non-sinus rhythm, and any cerebral, severe
hepatic, or malignancy diseases were excluded from the study. A
total of 199 patients were included from the IDEAL study. Out of
these patients, HFpEF (n = 106), HFmEF (n = 46), and HFrEF
(n = 47) categories were grouped based on the aforementioned
ASE/EACVI guidelines.

The Greek patient cohort was obtained from the PRESERVE
EF study with patients enrolled across seven cardiology
departments in Greece (37). The protocol of the study was
approved by the ethics committee at each cardiology department
and was endorsed by the Hellenic Society of Cardiology. A
database was created and is maintained by the Hellenic Society
of Cardiology (38). All patients signed a consent form prior
to enrollment in the study at each cardiology department.
The eligibility criteria for patient enrollment included: (1)
having a post-angiographically proven MI of at least 40 days
after the event or 90 days after any CABG surgeries, if
applicable; (2) being revascularized; (3) being not revascularized
but without evidence of any active ischemia in previous the
6 months; and (4) following optimal and tolerated medical
therapy. Furthermore, any patient with a secondary prevention
indication for implantable cardioverter defibrillator (ICD)
implantation, permanent pacemaker, persistent, long-standing
persistent, and permanent atrial fibrillation, any neurological
symptoms of syncope or pre-syncope within the last 6 months,
and presence of any systemic illnesses such as liver failure, renal
diseases, rheumatic diseases, thyroid dysfunction, and cancer was
excluded from the study. Overall, a total of 104 patients were
obtained from the PRESERVE EF study. These patients were
distributed as 23 HFpEF, 46 HFmEF, and 35 HFrEF based on the
ASE/EACVI guidelines.

Demographic and Clinical Markers
Both datasets included demographic and clinical information.
Provided information was initially grouped into cardiovascular
risk factors, cardiovascular medication, and cardiovascular
history. As cardiovascular risk factors, age (years), sex (male—
female), body mass index (BMI, kg/m2), smoking (yes—
no), diabetes (yes–no), and hypertension (yes—no) were the
recorded markers. As cardiovascular medication, beta-blockers
(yes—no), angiotensin-converting enzyme inhibitors (ACE-
inhibitors, yes—no), anti-arrhythmics (yes—no), and diuretics
(yes—no) were selected. Lastly, cardiovascular history included
the presence of any previous angina pectoris (AP, yes—
no), ventricular tachycardia (VT, yes—no), and myocardial
infractions (Prior MI, yes—no).

Statistical Data Analysis
The statistical analysis was carried out using Student’s t-test
based on linear regression fitting (39), where the significance of
each variable was evaluated based on the corresponding p-value
measurement, with a p-value below 0.05 indicating significance.
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A chi-squared (χ2) test (40) was applied to examine which
clinical variables were most important and highly dependent on
individual LVEF categories. In this test, an important feature
with a high score indicates a significant difference (p < 0.05) in
discriminating between the three LVEF categories.

Multivariate Data Visualization
Patient information, being high-dimensional data, requires
further projections into a low-dimensional space (dimensionality
reduction) for multivariate visual inspection, and for clustering
and pattern recognition purposes. A modified version of
the original radial visualization (RadViz) algorithm (41, 42)
proposed by Van Long (43), based on arc representation of
variables (ArcViz) rather than point or line representations,
was utilized. In ArcViz, a non-linear mapping into a two-
dimensional plane is performed on the high-dimensional data
(clinical information) by considering variables as arcs. Each
multi-dimensional data point that includes clinical information
of each patient is mapped as a point inside a circular convex
hull. The arcs of this circle represent each variable, and new
dimensional anchors (points) are calculated between these arcs
to determine the location of the mapped point as well as the
covering area of each arc. All points are normalized on the axes
between the center [(x, y) = (0, 0)] and each calculated anchor
point that is located on the arcs. The projection of the clinical
variables was then optimized using a genetic algorithm based
on linear discriminant analysis (LDA) fitting and the nearest
centroid (NC) accuracy of the fitting was calculated accordingly.

Three properties are associated with the mapping process
in ArcViz: (1) the larger the value of a variable inside the
multi-dimensional data point, the closer the mapped point will
be toward the anchor point located on the arc representing
this variable; (2) the mapped point gets closer to the center
if its data point values across the variables are similar; and
(3) the mapped point is determined from a combination of
anchor points calculated on the arcs and mapped within their
convex hull.

Deep Learning Models
To provide a complete prediction approach (Figure 1), two
deep learning-based models for regression (level estimations)
and classification (category labels) of LVEF were developed.
The input of these models was 303 patient clinical information
(Figure 1A) including the previously mentioned demographic
and clinical markers (Figure 1B). The results of the statistical
analysis as well as dimensionality reduction based on ArcViz
were used as feature selection approaches to assist in determining
the most important markers for a maximized performance
within the proposed deep learning models (Figure 1C). Both
models for regression and classification were structured as a
deep learning network (Figure 1D) with convolutional neural
networks (CNN). Two convolutional layers were utilized, each
followed by batch normalization (BN) and rectified linear unite
(ReLu), to extract characteristics contaminated within patients’
clinical markers of every LVEF category. The two consecutive
convolutional layers were with kernel sizes of (1, 3) and (1, 2),
respectively, and with 32 filters and 64 filters, respectively. The

development of the models included training and prediction
phases (Figure 1E). In the training phase, both models were
trained for 300 epochs with a mini-batch size of 64. The adaptive
moment estimation (ADAM) was selected as the optimizer with a
learning rate of 0.001, L2-regularization of 0.0001, and decay rate
of 0.90. For the prediction phase, a leave-one-out scheme, where
each subject is held out as the testing subject on each training
iteration, was adopted. This scheme provides a prediction for
every subject in the dataset, while at the same time maximizing
the amount of data included within the trained models. It allows
for treating each patient as a completely hidden testing set to
the trained models, thus, slightly addressing any issues on the
generality in the training and testing phases due to the lack of
any external patient testing sets.

The performance of the regression model was evaluated
based on the overall accuracy level, which was calculated as
the agreement between the estimated and original LVEF with
an accepted error of ±5%. Furthermore, the average root
mean square error (RMSE) and correlation coefficient, alongside
the Bland-Altman (44) (with mean ± 2 std) and correlation
plots of the estimation process were determined. To evaluate
the performance of the classification model, analysis of the
confusion matrix of predictions as well as the receiver operating
characteristic (ROC) curves and the corresponding area under
the ROC (AUROC) was applied. Additional performance
evaluation metrics including accuracy, sensitivity, specificity,
precision, and F1-score.

RESULTS

Clinical Characteristics of Patients
Patients included in this study had a median age of 58 years
with an interquartile range of 50–65 years. Two hundred
and fifty-eight patients were male (85.15%). Diabetes, diuretics
medication, and prior MI showed significant differences in
discriminating between the three LVEF categories (p < 0.001).
Furthermore, for patients with diabetes, a significant difference
was observed between HFpEF and HFrEF, whereas for diuretics
medication and prior MI the significant differences were
observed for HFpEF vs. HFrEF and HFpEF vs. HFmEF (p <

0.001). The complete clinical characteristics of the patient cohort
is shown in Table 1 alongside the p-value calculations using
linear regression fitting. The three aforementioned markers had
the highest normalized importance scores using the Chi-squared
(χ2) test as illustrated in Figure 2 (diuretics: 1.0, Prior MI:
0.63, and diabetes: 0.32). Additionally, VT and AP had relatively
high scores with 0.24 and 0.23, respectively, with the remaining
clinical markers being below 0.1.

ArcViz Representations of Clinical Markers
The projection of clinical markers on the ArcViz convex hull
(Figure 3) yielded an average NC accuracy of 93.73%, distributed
as 99.01, 90.43, and 91.75% for cardiovascular risk factors,
cardiovascular medication, and cardiovascular history categories,
respectively. For cardiovascular risk factors (Figure 3A), the
three LVEF categories were perfectly separated with a large arc
area for diabetes. This indicates the strong impact of diabetes on
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FIGURE 1 | Workflow of developing deep learning-based regression and classification models for the prediction of left ventricular ejection fraction (LVEF) levels and

categories in heart failure patients. The procedure goes through: (A) dataset collection (n = 303 patients), (B) patient information and demographic/clinical markers

categorization, (C) statistical analysis of markers and dimensionality reduction using ArcViz (feature selection), (D) designing deep learning network structure, and

(E) development of regression and classification models with leave-one-out training and predicting scheme.

discriminating the three categories. Furthermore, although the
centroids of HFpEF and HFmEF were located within diabetes,
the centroid for HFrEF was located in the BMI region, which
matches with the p-value observations of HFpEF vs. HFrEF in
diabetes (Table 1—p < 0.001). It is worth noting that age had
a greater effect on some HFpEF and therefore it was found to
be significantly different for HFpEF vs. HFmEF as shown in
Table 1 (p = 0.034). For cardiovascular medication (Figure 3B),
a fair separation was obtained between the three LVEF categories
associated with anti-arrhythmics and diuretics medication use.
Both centroids of HFmEF and HFrEF were located within
the diuretics arc region, with p < 0.001 (Table 1) observed
between HFmEF and HFrEF compared to HFpEF, which was
located mostly within the anti-arrhythmics arc region. Lastly, for
cardiovascular history (Figure 3C), the stronger impact was due
to the prior MI marker that had the lowest (p < 0.001; Table 1)
for differences betweenHFpEF andHFmEF as well as HFpEF and
HFrEF. The centroid of the HFpEF was located within the VT
arc region, whereas both centroids of HFmEF and HFrEF were

located within the prior MI arc region. The slight shift of the
HFrEF category toward the VT biomarker arc area is reflected
by the low (p= 0.005; Table 1) when compared to patients in the
HFmEF group.

Deep Learning Prediction of LVEF
Both deep learning models (regression and classification)
were trained on the NVIDIA GeForce GTX 1070 graphics
processing unit (GPU) of 8 GB display memory (VRAM).
Training of each model required <1min, while the prediction
per-patient took <3 s. Both models were trained using
the most important clinical markers (age, BMI, diabetes,
anti-arrhythmics, diuretics, VT, and Prior MI) based on
statistical significance and location of ArcViz centroids.
The developed regression model (Figure 4A) successfully
estimated patient LVEF levels with an overall accuracy of
90.43% (error: ±5%). Furthermore, the estimated LVEF
levels had an average RMSE of 4.13 relative to the original
LVEF levels. The Bland-Altman plot (Figure 4B) had a mean
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TABLE 1 | Clinical characteristics of the heart failure patients based on their left ventricular ejection fraction categories.

Clinical variables Overall

subjects

(n = 303)

LVEF categories p-value

HFpEF

(n = 129)

HFmEF

(n = 92)

HFrEF

(n = 82)

HFpEF

HFrEF

HFpEF

HFmEF

HFmEF

HFrEF

HFpEF

HFmEF

HFrEF

LVEF, % 55 (46.5–63) 63 (60–70) 52.5 (50–55) 45 (40–47) <0.001 <0.001 <0.001 <0.001

Cardiovascular risk factors

Age, years 58 (50–65) 57 (38–64.5) 58.5 (52–68) 60.5 (50–66) 0.155 0.034 0.533 0.110

Male 258 (85.15) 108 (83.72) 76 (82.61) 74 (90.24) 0.181 0.828 0.147 0.237

BMI, kg/m2 27.28

(24.91–29.41)

27.12

(24.39–28.95)

27.22

(25.35–29.92)

27.68

(25.31–29.74)

0.159 0.166 0.945 0.133

Smoking 203 (67.00) 87 (67.44) 62 (67.39) 54 (65.85) 0.752 0.928 0.831 0.757

Diabetes 43 (14.19) 10 (7.75) 13 (14.13) 20 (24.39) <0.001 0.127 0.086 <0.001

Hypertension 154 (50.83) 64 (49.61) 46 (50.00) 44 (53.66) 0.569 0.955 0.632 0.587

Cardiovascular medication

Beta-Blockers 245 (80.86) 101 (78.30) 77 (83.70) 67 (81.71) 0.551 0.320 0.731 0.478

ACE-Inhibitors 113 (37.29) 47 (36.43) 33 (35.87) 33 (40.24) 0.555 0.932 0.580 0.611

Anti-Arrhythmics 12 (3.96) 3 (2.33) 4 (4.35) 5 (6.10) 0.164 0.400 0.605 0.166

Diuretics 114 (37.62) 24 (18.61) 51 (55.44) 39 (47.56) <0.001 <0.001 0.302 <0.001

Cardiovascular history

AP 186 (61.39) 89 (68.99) 46 (50.00) 51 (62.20) 0.311 0.004 0.107 0.189

VT 21 (6.93) 8 (6.20) 2 (2.17) 11 (13.42) 0.078 0.158 0.005 0.088

Prior MI 223 (73.60) 77 (59.69) 76 (82.61) 70 (85.37) <0.001 <0.001 0.624 <0.001

All values are represented as median (interquartile range) or n (%). Bold p-values show statistically significant differences (p < 0.050) amongst the selected categories. LVEF, Left

ventricular ejection fraction; HFpEF, Heart failure with preserved ejection fraction; HFmEF, Heart failure with mid-range ejection fraction; HFrEF, Heart failure with reduced ejection

fraction; BMI, Body mass index; ACE, Angiotensin-converting enzyme; AP, Angina pectoris; VT, Ventricular tachycardia; MI, Myocardial infarction.

FIGURE 2 | Normalized importance scores for the clinical markers used in the study in differentiating between the three LVEF categories. Importance scores were

calculated using the Chi-squared (χ2) statistical test.

difference of 0.39 ± 11.61 between the estimated and original
LVEF levels. Additionally, the correlation plot was skewed
positively with an overall coefficient of 0.85 (Figure 4C). The
classification model developed for this project (Figure 5A)
efficiently predicted each LVEF category with a precision

level of 93.00, 89.10, and 95.10% for HFpEF, HFmEF, and
HFrEF, respectively.

The model resulted in an average AUROC of 0.975
(Figure 5B) distributed as 0.986 for HFpEF, 0.955 for HFmEF,
and 0.983 for HFrEF. Furthermore, the model achieved high
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FIGURE 3 | Arc visualization (ArcViz) and dimensionality reduction for: (A) cardiovascular risk factors, (B) cardiovascular medication, and (C) cardiovascular history

clinical markers. The nearest centroid (NC) accuracy was calculated after optimizing linear discriminant analysis (LDA) fitting.

levels of performance (Figure 5C) in accuracy, sensitivity,
specificity, precision, and F1-score (more than 89%).

To elaborate on the generality and performance of the
proposed deep learning models, support vector machines (SVM)
based on a radial basis function (RBF) kernel and generalized
linear model (GLM) were used to estimate LVEF (regression) and
predict HF categories (classification). The performance of both
models are compared with the aforementioned deep learning
results in Table 2. LVEF estimation accuracies using SVM and

GLM models have reached 87.46% and 84.82%, respectively,
which was outperformed by deep learning (90.43%). In addition,
the RMSE had its lowest levels for deep learning (4.13) compared
with SVM (4.38) and GLM (5.11). In predicting HF categories,
the overall accuracy reached 88.45 and 84.14% for SVM and
GLM, respectively, whereas it reached 90.10% in deep learning.
It is worth noting that both models had high precision levels
in HFrEF prediction with a 94.12% using SVM and 96.34%
using GLM. However, they both had lower performance metrics
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FIGURE 4 | The overall performance of the deep learning-based regression model in estimating left ventricular ejection fraction (LVEF) levels in heart failure patients:

(A) estimation of LVEF relative to the original levels alongside the overall accuracy and average root mean square error (RMSE), (B) Bland-Altman plot for the average

vs. difference between the estimated and original LVEF levels with the mean ± 2 std difference level, and (C) correlation plot between estimated and original LVEF

levels with the corresponding correlation coefficient.

(sensitivity, 1-specificity, and precision) than deep learning in
discriminating between HFpEF and HFmEF.

DISCUSSION

In this study, we demonstrated the significance of utilizing deep
learning as a tool to estimate LVEF levels in HF patients as
well as to categorize HF patients in accordance with their LVEF
levels, offering an easily used and automated assistive tool for
everyday clinical practice. The adopted narrower band for the
HFmEF highlights that even slightly reduced values of LVEF

can have an effect on heart rhythm and hence change in patient
condition. Therefore, it was essential to employ versatile criteria
for various cohorts in order to enable the adaptive analysis of the
collected patient data. In addition, the ability to use automated
deep learning-based trained models could save crucial time in
clinical circumstances. In addition, these models may be able of
aiding in the clinical decision making in HF assessment by going
through available patient information with less dependence on
medical experts. Only few studies have identified and discussed
clinical information that may be capable of classifying HFpEF,
HFmEF, and HFrEF patients statistically as well as from a
machine learning-based perspective. To fill this gap, in the
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FIGURE 5 | The overall performance of the deep learning-based classification model in predicting left ventricular ejection fraction (LVEF) categories in heart failure

patients: (A) confusion matrix of the predictions for the output and target classes, (B) receiver operating characteristics (ROC) curves for each LVEF category with the

corresponding area under the ROC curves, and (C) evaluation metrics including accuracy, sensitivity, specificity, precision, and F1-score.

current study important clinical markers were first statistically
identified and then projected into a novel arc radial visualization
(ArcViz). Furthermore, a complete deep learning approach
was developed that ensures higher levels of performance for
automatic estimation of LVEF levels and differentiation between
the three HF categories from clinical profiles only.

Clinical Markers Significance
Thirteen clinical markers often found in patient profiles were
evaluated statistically as well as through a new dimensionality
reduction approach (ArcViz). Among these markers, 7 were
found to be important in classifying HF patients based on LVEF.

For cardiovascular risk factors, age was found to be
an important marker in differentiating between HFpEF and
HFmEF. However, HFpEF patients were more skewed toward the
age region in ArcViz analysis in agreement with previous studies
that have found that HFmEF patients were younger in age and
closer to HFrEF in comparison to the HFpEF patients (24, 45,
46). Furthermore, BMI, although not significantly different, was
better in differentiating HFrEF from the other two groups when
applying ArcViz. Of interest and in agreement with our study,
several previous studies (47, 48) suggested that higher BMI often
associated with HFrEF patients (was beneficial to this patient
group), as higher BMI may counteract catabolism inflammation
and stress hormone activation in the HFrEF group. However, a
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high body weight in HFpEF patients is usually strongly associated
with HF, causing this patient group to be at higher risk of
developing further adverse cardiac events. Additionally, it was
shown that BMI does not play a critical role in HF progression
apart from the HFrEF category which has a higher 30-day
mortality (49). In this study, the minimum-maximum range for
BMI of HFpEF patients was 19.7–36.3 kg/m2 with 21 obese
patients (>30 kg/m2). For HFmEF patients, the range was 18.0–
37.7 kg/m2 with 23 obese patients. For HFrEF patients, the
range was 20.8–37.9 30 kg/m2 with 17 obese patients. These
ranges fit with the usual BMI range (20–40 kg/m2) reflecting
normal spread of BMI values across the included patients in the
three LVEF categories. This could elaborate on the insignificance
found using statistical analysis considering the narrow LVEF
ranges in the three categories. Lastly, diabetes was found to be
significantly different as well as the best in characterizing the
three LVEF categories in ArcViz. Our findings show that the
three LVEF categories can be better discriminated according
to patients’ diabetes diagnosis. All-cause mortality rates are
reported to increase in diabetic HFrEF relative toHFpEF (50–52).
However, patients within HFpEF and HFmEF groups showed
higher burden of diabetes than HFrEF patients (53).

Important markers associated with cardiovascular medication
included anti-arrhythmics and diuretics medication. Patients
with HFpEF had a higher intake of both medications followed
by HFrEF and lastly HFmEF. This shows a distinct medication
procedure between the three LVEF categories using these two
medications. The literature reports that HFpEF patients are more
prone to atrial fibrillation, and thus, anti-arrhythmics medication
is usually needed. Further, they were more likely to undergo
repeated ablations compared to the HFrEF group (54, 55).
This elaborates on the high number of patients taking anti-
arrhythmics medication observed in this study for the HFpEF
category with a better representation between HFpEF and HFrEF
in the ArcViz analysis. In addition, use of diuretics medication
was found to be highly discriminant between HFpEF and the
other two LVEF categories. Previous studies reported that the
prevalence of diuretics intake among HFmEF patients was found
to be less than the prevalence in the HFpEF and HFrEF in
agreement with the current study (45). Furthermore, diuretics
are widely used in HFpEF and HFrEF patients to prevent
symptoms of congestion in HF (56). This information supports
the findings of this study by considering diuretics as a highly
favored clinical marker in classifying patients into one of the
three LVEF categories.

Lastly, in cardiovascular history, the best marker was the
occurrence of prior MI. In a few previous studies (14, 57), a
greater number of prior MI was observed in HFrEF compared
to HFpEF. However, this could be due to the drop of LVEF levels
in the HFrEF patients included in these studies, as a higher rate of
prior MI is usually recorded if LVEF levels are <40% (58), which
was found in very few cases in our study. In addition, VT was
found to be the second most important cardiovascular history
marker in characterizing the three LVEF categories using ArcViz
analysis, especially the HFpEF, as well as being significant in
discriminating HFrEF from the two other categories. This relates
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to the higher burden of VT observed in patients with HFpEF over
patients in the other LVEF categories (59, 60).

It is worthmentioning that sex (male/female) was not found to
be significant nor effective in characterizing any LVEF category in
ArcViz analysis. However, this could be due to the high number
of male patients enrolled in this study and needs to be further
investigated as sex has been shown to be a factor in the prevalence
of HF (60–63).

Deep Learning as an Assistive Tool
Our study suggests deep learning as an assistive tool that could
be capable of automatically reading and extracting characteristics
from the clinical records of HF patients. In comparison with
machine learning, our trained models allow for training on
deeply extracted attributes between patients of each LVEF
category. Thus, it was less biased than feature engineering
techniques often used in conventional machine learning
algorithms. Our novel deep learning models may assist clinicians
based on the automated estimation of LVEF as well as the
accurate classification into one of the three main HF categories
(64). Furthermore, the models estimate and predict LVEF based
on the cardiovascular risk factors, medication, and history.
Additionally, the high levels of performance achieved in our deep
learning models suggest the potential of relatively simple, yet
effective, artificial intelligence algorithms in identifying certain
clinical characteristics that differentiate between LVEF categories
that may not be possible in conventional approaches. Although
deep learning has outperformed other machine learning models
in this work including SVM and GLM, further testing on external
patient cohorts are still needed to elaborate further on the general
validity of the achieved performance.

Limitations
Although our study shows that deep learning-based models have
performed efficiently in LVEF predictions, it has a number of
shortcomings. First, we have utilized 13 features (the 7 most
important ones were selected later) that were available in the
databases used in this study. However, additional markers need to
be further investigated, especially echocardiographic attributes,
i.e., left ventricular diastolic and systolic dimensions (LVDD
and LVDS), to provide more information on their effects on
LVEF predictions. Moreover, even though the dataset used in this
study combined patients from American and Greek populations,
the trained models should be tested further on wider sets of
patients to ensure additional generality of the performance.
Future studies should focus on using external validation sets
from different patient cohorts to imply general validity of the
trained models. In addition, the proposed models were trained
and tested on a specific range for each LVEF category as
recommended by the ASE/EACVI guidelines. Despite having
a narrower border-line for the HFmEF (50% ≤ EF ≤ 55%),
further studies of other LVEF guidelines and recommended LVEF
category ranges may enhance the effectiveness of deep learning in
LVEF predictions. Furthermore, validation on longitudinal data
needs to be undertaken to identify efficacy of intervention over
time based on the current models. Lastly, patients cohort in this
study includes a much higher percentage of males compared to

females. In addition, the median BMI of the included patients
was 27.28 kg/m2 indicating overweight but not obese subjects
with a narrow BMI range between the three LVEF categories.
Future studies with cohorts differing with reference to all
demographic categories including BMI are needed in order to
demonstrate the efficacy of the proposed methods in all possible
populations/clinical scenarios with narrow or wide ranges for
clinical information across LVEF categories.

Conclusions
Overall, our novel deep learning-based models showed high
levels of performance in automatically estimating LVEF levels
as well as classifying HF patients into one of the three
LVEF categories, suggesting it as a promising assistive tool
in clinical settings. The developed approach may lead to
a better understanding, from a machine learning (or deep
learning) perspective, of the clinical variables most suitable
for discriminating HFpEF, HFmEF, and HFrEF. The proposed
study is to extend the applicability of use of LVEF to
communities where the required instruments are not available
due to economic hardship or lack of clinical expertise.
Future research can add additional demographic and clinical
information to the deep learning models alongside clinical
profiles for an even better performance and understanding of
the differences between each LVEF category. Our outcomes
may also facilitate the development of a model for the
prediction of the HF phenotype or its changes during the
followed therapy of HF, offering a versatile tool for the
further exploration of disease pathophysiology or the objective
assessment of the different therapeutic schemes in future patients
with HF.
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