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Abstract: The Internet of Things (IoT) empowers the development of heterogeneous systems for
various application domains using embedded devices and diverse data transmission protocols.
Collaborative integration of these systems in the industrial domain leads to incompatibility and
interoperability at different automation levels, requiring unified coordination to exchange infor-
mation efficiently. The hardware specifications of these devices are resource-constrained, limiting
their performance in resource allocation, data management, and remote process supervision. Hence,
unlocking network capabilities with other domains such as cloud and web services is required. This
study proposed a platform-independent middleware module incorporating the Open Platform Com-
munication Unified Architecture (OPC UA) and Representational State Transfer (REST) paradigms.
The object-oriented structure of this middleware allows information contextualization to address
interoperability issues and offers aggregated data integration with other domains. RESTful web
and cloud platforms were implemented to collect this middleware data, provide remote applica-
tion support, and enable aggregated resource allocation in a database server. Several performance
assessments were conducted on the developed system deployed in Raspberry Pi and Intel NUC
PC, which showed acceptable platform resource utilization regarding CPU, bandwidth, and power
consumption, with low service, update, and response time requirements. This integrated approach
demonstrates an excellent cost-effective prospect for interoperable Machine-to-Machine (M2M) com-
munication, enables remote process supervision, and offers aggregated bulk data management with
wider domains.

Keywords: data integration; Internet of Things (IoT); Industrial Internet of Things (IIoT); Industry
4.0 (IR 4.0); intelligent system; OPC UA; REST; system integration

1. Introduction

The Internet of Things (IoT) is an emerging global network affecting almost every
domain by allowing the development of systems through intelligent devices and diverse
application layer protocols according to user demand. Such sustainable growth of IoT
technologies is also occurring in industrial application domains, namely the Industrial IoT
(IIoT), which is leading industrial automation and communication infrastructures to un-
dergo a profound advancement [1]. The advancement in industrial networking facilitated
by the union of IoT and IIoT technologies reinforces the concept of the fourth industrial
revolution (IR 4.0), standardized in (DIN SPEC 91345:2016-04 2016 IEC 2017) [2]. The
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IR 4.0 paradigm migrates current production systems into smart manufacturing, with a
high degree of interconnection through intelligent networking and cognitive automation
between the participating agents, and by shifting information into cloud-based applications
for real-time data management [3]. This complex evolutional concept provides scalability to
increase manufacturing flexibility, offer comprehensive information exchange, and enable
virtual information representation in everyday internet-enabled devices as endpoints [4].
The evolution of the IIoT paradigm in industrial networks incorporates intelligent re-
configurable systems to process the production plant data flow based on various sets of
requirements in a decentralized distributed manner. Distributed systems in shared cooper-
ativity are holistic characteristics of modern factory systems, where data acquisition and
information are processed locally in nodes of distant fields for a given industrial process.
Hence, communication networks in such scattered applications enable the exchange of
aggregated data among these nodes, and achieve mutual synchronization for controlling
the overall production process.

However, industrial communication networks in the IR 4.0 context are currently a
blend of both wired and wireless network technologies. Wired communications mainly
include Modbus TCP/RTU, Fieldbus, EtherNet/IP, EtherCAT, TTEthernet, PROFINET,
etc. [5]. Furthermore, the wireless networks are derived from the IEEE 802 protocol family
such as IEEE 802.11 (Wi-Fi) and wireless personal area networks (WPANs) [6]. These
infrastructures come from various manufacturers in different architecture and dissimilar
hardware specifications, which often cause incompatibility issues and make the commu-
nication subsystems heterogeneous [7]. Collaborative integration of such heterogeneous
systems to accomplish reliable data exchange and industrial processes management leads to
communication interoperability issues among the protocols used and increased complexity
of heterogeneity management challenges at various automation levels. Due to the different
standards and language-based underlying models, data aggregation from heterogeneous
sources at reduced latencies is a crucial challenge. Hence, the primary intention of this
study is to incorporate an open-source unified model across multiple industrial networks
to address communication interoperability issues at different automation levels and man-
agement of aggregated data from the heterogeneous sources in a standardized manner.
Open-source technologies have been chosen over proprietary infrastructures, as they offer
greater configuration options with necessary information, enabling the development of cus-
tom scientific tools and the recreation of physical artifacts without concerns about license
expenditures. Incorporating open-source software is also economically beneficial and can
provide, on average, 87% and even 94% of substantial economic savings involving both
the open-source hardware and software development tools compared to the commercial
proprietary equivalents [8].

To alleviate the issue in the communication network mentioned above, various IIoT
protocols such as Modbus, PROFIBUS, and Distributed Network Protocol 3 (DNP3) can
used named in the industrial domain to address network heterogeneity [9]. However, in
the IR4.0-based context, the Reference Architecture Model for Industry 4.0 (RAMI4.0) [10]
and Industrial Internet Reference Architecture (IIRA) [11] specify the reference models for
next-generation factories to align with IR4.0 compliant standards. These reference models
recommend Open Platform Communication Unified Architecture (OPC UA) as the major
connectivity standard to implement underlying communication layers for interoperable
information exchange between diverse industrial applications and to enable seamless infor-
mation exchange across heterogeneous networks in the IR4.0 context [12]. According to
the discussions above, OPC UA, as a promising IEC-62541 standard, has been chosen in
this study to establish a unified platform among system components to aggregate hetero-
geneous data and automate interoperability among the system components in real-time.
OPC UA is a vendor-neutral service-oriented-architecture (SOA) for industrial automa-
tion and Machine-to-Machine (M2M) communication [13]. It exhibits client–server or
publisher–subscriber model-based communication, where data exchange takes place over
encrypted TCP/IP through SSL, TLS, and AES [14]. OPC UA offers several combinations
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to map the client–server interactions, such as TCP-transported, binary-encoded, Hypertext
Transfer Protocol (HTTP)-transported, Extensible Markup Language (XML)-encoded, and
Simple Object Access Protocol (SOAP)-based services [15]. It defines object-oriented data
descriptions through the group of nodes referred to as the information model. This reusable
model allows the integration of other standards and provides transport and semantic
interoperability to exchange information across the heterogeneous network [16]. Such an
object-oriented information model provides great potentiality for OPC UA applications in
various domains [17]. OPC UA exhibits the flexibility to adapt from embedded devices with
small service sets to Windows, macOS, and Linux platforms with full functionalities [18].

IR4.0 compliant infrastructures experience syntactic interoperability to manage domain-
specific data and semantic interoperability while exchanging data with shared meaning [19].
The OPC UA paradigm is lacking in the cross-domain era to interact with the external
services. Hence unlocking the network capabilities of OPC UA is well demanded to share
the resources with other domains. Besides, OPC UA applications are largely missing
the granularity of web and AI technologies for developing adaptive platforms to virtu-
ally represent information and perform remote process supervision. OPC UA involves
SOAP/TCP binary-based services whose complexity is incompatible with the resource-
constrained devices that lead to energy and latency overhead [20]. Hence, OPC UA is not
suitable for these devices without significant modification. Although OPC UA exhibits
bulk data, it still lacks storage infrastructure. Small-scale traditional industries usually
involve supervisory/monitoring systems for resource management. However, modern
smart factories produce bulk data to process, which ask for structurally-accumulated stor-
age systems for resource allocation [21]. The cloud paradigm is an excellent choice in this
aspect, which offers data logging, location-independent bulk resource management, and
ubiquitous content access. As addressing interoperability is a prerequisite requirement of
IR4.0 systems, another intention of this study is to overcome the semantic and syntactic
interoperability issues of the OPC UA-enabled applications in order to seamlessly integrate
heterogeneous-aggregated data with other domains without any restrictions. Such phenom-
ena can enable interoperable M2M communication from manufacturing execution systems
(MESs) to enterprise resource planning (ERP) [22]. The path towards bridging OPC UA
with other domains needs to involve a middleware protocol such as the Constrained Appli-
cation Protocol (CoAP), Message Queue Telemetry Transport (MQTT), Advanced Message
Queuing Protocol (AMQP), Representational State Transfer (REST), etc. [16]. Among them,
the REST approach reaches almost every domain as a universal communication solution to
harmonize communication and shows relatively better services in unstable networks [23].
Indeed, REST is a free and open-source software (FOSS) architectural style that can share
information seamlessly with different agents and support open-source and proprietary
systems. It is a protocol-independent, client–server architecture that exhibits a set of con-
straints for stateless application development. REST also provides uniform interfaces,
mostly HTTP for resource representation via Uniform Resource Locator (URL) [24]. Such
resource representations are compatible with web browsers and arguments are added
with the request URL [25]. These features motivated us to use REST for establishing
communications between OPC UA with different technologies.

Several proprietary solutions allow the REST interface to bridge OPC UA with the
other domains. For instance, KEPServerEX [26] offers three predefined REST URLs to read,
write, and browse OPC UA data. However, the browse service of KEPServerEX provides all
the configured “tags” without node attributes. HyperUA [27] offers non-standard mapping
by encoding OPC UA resources into the URL and provides an HTTP interface to access
OPC UA node credentials for web clients. This approach asks for client-side HyperUA API
implementation to interact with the server. The data FEED OPC suite [28] also incorporates
the RESTful API to access OPC UA resources. These proprietary solutions lack customiz-
ability according to user requirements and configurability facilities to fabricate developed
infrastructure with a deeper understanding and better limit awareness. Moreover, various
adaptation approaches have also been taken with the OPC UA binary protocol to achieve
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the RESTful extension. Grüner et al. [29,30] proposed resource-oriented information models
for RESTful sessionless extension of OPC UA. They enabled stateless service invocation
and modified caching headers to reduce handshake signals and exchange stateless requests,
and evaluated OPC UA over UDP to minimize the communication overhead. A similar
concept was taken in [31], through the HATEOAS approach for interconnecting OPC UA
nodes. However, these approaches do not meet the fundamental postulates defined by
Fielding [24], and are therefore unable to integrate loosely-coupled distributed systems
with other domains. Another study in [32], which follows the definition of REST postulates,
proposed a Java OPC UA stack facilitating data integration between the OPC UA and
HTTP/REST services. This approach provides access to the OPC information in a REST-
based server to the RESTful clients. This approach also involves OPC UA sessionless service
to achieve statelessness, does not have mapped interfaces to exchange OPC UA resources
with the web domain. Although the OPC UA specification introduced a sessionless invoke
method from Version 1.04 (OPC Foundation. Scottsdale, AZ, USA, 2018), most of the stacks
still have not implemented the full functionalities for this version. Taking account of these
studies, it can be commented that the protocol modification approach to making OPC UA
adaptable with web technologies is not sufficient. OPC UA cannot be considered fully
stateless due to it maintaining the established connection status with the clients, which is
not compatible with the web domain.

A more appropriate approach will involve a gateway module in the middle to bridge
the OPC UA with other domains. Incorporating REST is the best choice, as this paradigm
is more compatible with the web domain than the other options, and can map the OPC UA
resources into REST representation under the required specification. In [33], mapping of
OPC UA server credentials as REST resources was proposed to investigate the conditions
of heterogeneous industrial devices from monitoring applications. This approach involves
a Java SDK-based OPC UA implementation that causes a processing burden for resource-
constrained embedded devices. Furthermore, the solution involves proprietary protocols
and enterprise applications to monitor the condition of heterogeneous field devices. In [34],
an OPC UA-based gateway with an information server was proposed that integrates
available production systems in an Industry 4.0 factory to allow supervision from the cloud,
MES, or HMIs consumers. However, the functionalities of this gateway are limited to
pre-defined templates that lack scalability and require custom configuration per cite. In
another study in [35], an OPC UA server–client architecture-based gateway was proposed
for the oil and gas industry. Here, the server collectively gathers Oracle simulator data and
the client transfers these data to the NoSQL Oracle cloud server through the RESTful API to
be store and share with enterprise applications. The configurability of this proposed system
is limited by the Oracle IoT Cloud-based proprietary software, which lacks adaptability
with other vendors. In [36], a declarative control concept through a REST-based OPC
UA client decoupling approach was proposed to improve automation in a distributed
system. Although this attempt enabled interoperability through the REST-based decoupling
approach, the control functionalities were designed in a highly complex graph model
through the OPC UA Browse-Service. Another attempt in [20] was made to integrate OPC
UA with web technologies to address interoperability. In this approach, a lightweight
middleware was proposed that maps the OPC UA resources into HTTP requests to monitor
them from the RESTful web platforms, and also incorporates an HTTP frontend to execute
the web platform requests to the OPC UA server. However, this attempt exhibits two crucial
drawbacks. First, the absence of uniform interfaces lacks the scalability that is an important
aspect of stateless communication. Second, mapping the OPC UA server responses into
JSON or XML to achieve interoperability makes the situation more brittle.

Although the previous literature makes valuable contributions to RESTful extension of
the OPC UA to integrate data with web technologies, it still exhibits certain limitations, such
as the involvement of proprietary software limited by configurability, the mapping of server
responses into JSON or XML-based representation causing processing burden for resource-
constrained devices, the absence of uniform interfaces to integrate decentralized distributed
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system components, and the lack of experimental analysis to validate the proposed solu-
tions. The proposed architecture overcomes these limitations through concrete strategies,
and its implementation was validated by integrating with proprietary/open-source plat-
forms and performing extensive performance analysis. To alleviate these limitations and
achieve the research goals, the following questions are investigated in this research:

RQ1: What is the appropriate stack to develop an open-source vendor-neutral full-
stack OPC UA platform for data aggregation in the heterogeneous distributed system?

RQ2: How do we extend the OPC UA functionalities with other domains through the
uniform REST interfaces, in order to be compatible with the web and embedded devices?

RQ3: What is the most suitable open-source software framework to develop a web
service client for remote supervision of the OPC UA resources and perform interoperable
M2M communication with a low communication overhead?

RQ4: How do we integrate open-source cloud service functionalities with the OPC
UA environment to achieve cost-effective aggregated bulk data management?

This study implemented an open-source cross-platform OPC UA server as the com-
munication wrapper to abstract the underlying networks, aggregate data from the hetero-
geneous sources, and address technical and communication interoperability of distributed
systems. The proposed framework also developed a cost-effective REST-based OPC UA
middleware module to bridge the OPC UA resources with other domains through uniform
resource representations to address syntactic and semantic interoperability. This inexpen-
sive middleware module acts as an OPC UA client to obtain the server address space
node credentials and map these collected resources into the prescribed web requests, in
order to share the aggregated resources with the external services. As a proof of concept,
we developed a RESTful standalone web service client and cloud platforms to collect the
address space node credentials from the middleware, present these received resources
virtually to perform remote process supervision, and enable aggregated bulk data man-
agement by allocating the received data in the cloud database. The middleware module
can also share its resources with other existing open-source and proprietary platforms
for data management, storage, and visual analysis. Furthermore, the Telegram Bot API
functionalities were integrated with the middleware script to perform OPC UA tasks by
invoking messages as commands from Telegram messenger. The overall architectural
framework of the developed system is depicted in Figure 1.

Current industrial practice involves OPC UA-based propriety infrastructures, usually
encapsulated for commercial purposes, and caters to the specific data transfer protocol. The
proposed framework shows salient suitability in the IR4.0 context due to its simplified data
flow, ubiquitous content accessibility, and open-source low-cost integration capability. The
open-source architecture of the proposed system enables high design flexibility, allowing
it to adapt from embedded devices with small service sets to Windows/Linux platforms
and industrial automation systems with full functionalities. This scalable architecture has
been tailored for engineering purposes, where the targeted users are students, researchers,
and small and medium scale industries, to support seamless aggregated heterogeneous
data management with several application domains for wider resources usability. The
contributions of this proposed system summed up as:

1. We implemented an open-source vendor-neutral cross-platform OPC UA server
to address communication interoperability and enable seamless aggregated data
exchange across the heterogeneous distributed system at different automation levels;

2. We proposed an open-source REST-based OPC UA middleware to unlock OPC UA
network capabilities to address semantic and syntactic interoperability to integrate
aggregated data with other domains such as web, Telegram, and cloud services;

3. We developed a standalone web service client to receive OPC UA resources from the
middleware, enable OPC UA address space remote supervision, and provide end-user
application support to perform interoperable M2M communication;

4. We implemented a cloud platform named ThingsSentralTM (http://thingssentral.io:
443/) to collect and store the middleware data in a dedicated database for further

http://thingssentral.io:443/
http://thingssentral.io:443/
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visual data analysis, and aggregated bulk data management. The proposed framework
also synchronizes Telegram messenger as the remote commander unit to perform
remote supervision and notify users about the event occurrences;

Figure 1. Architectural framework of the proposed system.

The rest of this paper is structured as follows. The contextualization of the analysis
framework and the systematic development procedure of the proposed system is described
in Section 2. Section 3 validates the adaptability of the developed system in real-time
scenarios by integrating the aggregated data from a proprietary DeviceXPlorer and Prosys
OPC UA server to the web service and the ThingsSentralTM and ThingSpeak cloud plat-
forms. In Section 4, the performance analyses of the developed system deployed in a
Raspberry Pi and Intel NUC PC are discussed in terms of platform resource utilization and
operational time requirements. Finally, detailed discussions on the experimental results, the
identified limitations, and future research scopes of the proposed framework are mentioned
in Section 5.

2. Materials and Methods

In this section, the detailed development procedure of the OPC UA server to aggregate
data from heterogeneous sources, a middleware module to integrate these data to the
other domains, and a web service and cloud platform to collect, represent, and store
these aggregated data are described with necessary figures, flow charts, and algorithms.
Furthermore, the Telegram messenger as a remote commander and notification service is
synchronized with the proposed framework. The materials involved and the methods used
to develop the entire system are described below.
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2.1. Proposed Framework

The participants of modern and IR4.0-compliant factories are dynamically intercon-
nected through loosely coupled distributed systems, bounded by specific requirements to
achieve a highly flexible manufacturing environment. Thus, addressing interoperability
of multi-vendor systems is a prerequisite requirement of IR4.0-compliant infrastructure
to aggregate data from the heterogeneous individual components. Besides, the ability to
integrate different technologies is the paramount necessity of intelligent manufacturing
systems to present information with the wider domain and enable interoperable M2M
communication. Motivated by this realization, this study utilized the OPC UA paradigm to
address the heterogeneity of underlying components, and utilized the REST paradigm to
enable interoperability with web-based applications. The proposed system incorporates
the IEC-62541 compliant OPC UA server as a communication wrapper whose informa-
tion model stores and presents semantic information of the underlying networks through
information contextualization. This feature enables the salient suitability of the devel-
oped implementation to aggregate data from distributed sources across the heterogeneous
network. The proposed framework also introduces a middleware module to integrate
aggregated resources of the OPC UA server with the other domains to address syntactic
and semantic interoperability. This middleware module is an OPC UA client to collect
heterogeneous resources from the server information model under the agreement of OPC
UA specifications, also acts as a REST client to map the collected resources into web requests
to share with the web and cloud services. As a proof of concept, a RESTful web service
has been developed as the end-user application to collect the aggregated OPC UA server
resources transferred from the middleware and present them virtually to perform OPC
UA address space remote supervision over the internet. This web service client can also
invoke requests to the OPC UA server through the middleware module to perform M2M
communication without being compatible with the OPC UA standard. Furthermore, a
cloud platform named ThingsSentralTM was been developed and deployed at a publicly
accessible address (http://thingssentral.io:443/) to store the aggregated OPC UA server
resources transferred from the middleware in a dedicated database table structure for
further data process analysis, both historically and graphically. Furthermore, the proposed
framework also synchronized the Telegram messenger application with the middleware
module to perform tasks as a remote commander and notify users about instantaneous
event occurrences in an autonomous manner without continuous human investigation. The
proposed framework was integrated with several open-source and proprietary platforms
(as discussed in Section 3) to examine the adaptability and robustness of the developed
implementation on real-time aggregated data management capability in both the education
and industrial fields. The developed system can successfully integrate data from real-time
heterogeneous infrastructures to several application domains with low platform resource
utilization and operational time. The performance of the developed system was investi-
gated through various experimental analyses deployed in a Windows-based Intel NUC
PC and a Linux-based Raspberry Pi to examine cross-platform aggregated data integra-
tion capabilities with the other domains (as discussed in Section 4). These analyses were
conducted by varying the number of OPC UA server address space nodes and connected
clients in each platform, and the corresponding CPU, network, and power consumption
rate were observed to achieve the best performance figures. The operational time require-
ments of the entire framework were also investigated, such as the average time required to
update the server address space nodes, as resource update time; the average estimated time
to collect the OPC UA server resources by the middleware, as service time; and the time
to share these collected resources successfully with the external services, as response time.
The remaining subsections discuss the detailed development procedure of the proposed
system with the necessary information.

http://thingssentral.io:443/
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2.2. OPC UA Server Implementation

The OPC UA server exhibits an information model in an object-oriented address space
that uniformly represents objects via type definitions. This address space defines physical
objects as nodes of different node classes and constitutes a graph of hierarchical nodes
connected by the reference [37]. Nodes with necessary attributes are the key components
to define information, where the address space allows access to these node credentials for
OPC UA clients [38]. In this study, the end device measurements were updated in the OPC
UA server dedicated address space variable nodes under the corresponding object node.
The OPC UA clients can either obtain individual data or periodic updates from the address
space through the established TCP/IP sessions [39]. Figure 2a illustrates the structure, and
Figure 2b shows the data transport schemes offered by the OPC UA server–client model.

Figure 2. OPC UA server–client model: (a) structure; (b) data transport schemes.

By default, the OPC UA Specification is assigned port 4840 for the UA Binary format,
whereas the standard HTTP port 80 and secured HTTP port 443 are dedicated to the hybrid
and XML-based data transport schemes. However, only one port can be assigned per
communication channel for a selected data transport scheme, which is ideal for the firewall
configuration [40]. The OPC Foundation has defined an extension of the Publish-Subscribe
model (PubSub) for the OPC UA specification starting from Version 1.04 [41]. However, due
to the lack of open-source cross-platform full-stack OPC UA Publish-Subscribe support, this
study utilized the server–client model to develop the OPC UA environment. The OPC UA
standard has been profusely applied in the industrial domain to interconnect multi-vendor
equipment to address interoperability and harmonize the underlying communications. The
OPC UA server uses a complex information model to represent information from these
diverse system components in a structural manner. Such a complex structure requires an
extensive understanding of this data model to access resources, creating difficulties for
clients deployed in resource-constrained devices. Thus, the selection of an appropriate
OPC UA protocol stack needs to focus on a customizable open-source implementation
with economic maintainability and easier expandability in order to be compatible with
dynamic systems, including embedded devices. Several proprietary and open-source OPC
UA stacks under various licensing policies are currently available to implement a complete
OPC UA server–client environment. The selection of the optimum protocol stack for this
study was based on inexpensive full-stack platform-independent open-source lightweight
implementation. Considering the key features of several OPC UA stacks mentioned in
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Table 1 [42], this study utilized the open-source Python-based FreeOpcUa stack [43] to
answer RQ1. This platform-independent library module is flexible and scalable enough
to be deployed even in embedded devices such as the Raspberry Pi. It supports multi-
threaded operations to manage connections, sessions, and resources in separate threads. It
is also able to exchange UA structure in the low-level interface and alter server resources in
the high-level interface. This protocol stack offers custom address space generation and
also provides necessary OPC UA agreement-based service sets to manage and share server
resources with the OPC UA clients via both the node path and node id through established
TCP/IP channels. Table 1 summarizes the key specifications of some OPC UA protocol
stacks.

Table 1. Key specifications of some popular OPC UA protocol stacks.

Criteria Eclipse
Milo

FreeOpcUa
C++

FreeOpcUa
Python Node-Opc-Ua OPC UA.NET Open62541

Language Java C++ Python JavaScript C# C
Licensing Eclipse LGPL LGPL MIT RCL, MIT MPLv2.0
Certificate None None None None Yes None

Implementation Server
and Client

Server and
Client

Server and
Client

Server and
Client Stack Server and

Client
UA-TCP UA-Binary

√ √ √ √ √ √

HTTPS UA-Binary
√ √

HTTPS UA XML
√ √

GetEndPoint
√ √ √ √ √ √

FindServer
√ √ √ √ √ √

AddNodes
√ √ √ √ √

AddReference
√ √ √ √ √

DeleteNodes
√ √ √ √

DeleteReference
√ √ √ √

Browse
√ √ √ √ √ √

Read
√ √ √ √ √ √

HistoryRead
√ √ √

Write
√ √ √ √ √

Methods
√ √ √ √

CreateMonitoredItem
√ √ √ √ √ √

CreateSubscription
√ √ √ √ √ √

Publish
√ √ √ √ √ √

Basic128Rsa15
√ √ √ √

Basic256
√ √ √ √

Basic256Sha256
√ √ √ √

Anonymous
√ √ √ √ √ √

Username Password
√ √ √ √ √

X.509 Certificate
√ √ √

Platform Linux,
Windows

Linux,
Windows

Linux,
Windows

Linux, Mac,
Windows Windows Linux,

Windows

The address space located in the server is considered as an OPC UA core that stores
data [44], while the service set is considered as another core to exchange this information
with OPC UA clients [45]. The fundamental OPC UA entity is a request–response-based
client-server model encoded in SOAP/XML/JSON/HTTPS/OPC UA binary format via
standard TCP/IP [46]. This study involves a binary encoding format, as the embedded
systems failed to support XML-based processing. The default prescribed format of the OPC
UA server endpoint URI needs to be maintained as [opc.tcp://Platform IP Address: Port
Number (default 4840)] to allow clients to discover the server in a network. The OPC UA
server developed for this study collects data from the external sources periodically, updates
the corresponding address space variable nodes with these data, handles the requests
of the connected OPC UA clients, and also responds to the client requests through UA
binary formatted response messages. All these phenomena need to be performed in a
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parallel manner at once without blocking any other code executions. Therefore, the Python
multi-threading concurrency was utilized to support all these functionalities in different
threads, while keeping the OPC UA core functionalities in the main thread. The process
flow chart used to develop this OPC UA server is shown in Figure 3.

Figure 3. Process flow chart of the developed OPC UA server.

The developed OPC UA server code execution is categorized into three subsections.
The first subsection establishes communication with the external sources and periodically
collects information from these data sources. The second subsection updates these collected
data into the corresponding address space variable nodes under the dedicated object. The
third subsection manages communication and shares the address space node credentials
with the connected OPC UA clients through the established TCP/IP sessions. This address
space was configured with nine objects, with 63 variable nodes with a dedicated node id
for each. End device measurements are periodically updated in these dedicated variable
nodes. The algorithm designed to implement the code execution of these functionalities is
mentioned in Algorithm 1.

The OPC UA industrial standard interconnects equipment of different networks at
different automation levels. It offers transport and semantic-level interoperability through
the graph-based OPC UA data model. A Graphical User Interface (GUI) was designed
for the OPC UA server application using the Python-based tkinter module [47]. This
library is a standard, object-oriented, cross-platform Python built-in package that provides
a low-level interface to create an interactive GUI for the Python script. Figure 4 shows the
GUI application of the developed OPC UA server.
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Algorithm 1. OPC UA Server Development Algorithm.

Input: Request messages from the OPC UA clients/middleware module.
Output: OPC UA server endpoint URI and node credentials in UA binary format.
1: function StartOPCUAServer()
2: Construct server endpoint URI as opc.tcp://platform IP address:port
3: Create address space and define nine objects with associated variable nodes.
4: Start the OPC UA server with discoverable endpoint URI.
5: while (server.is_listening) do
6: Call Rand() function to get periodic simulated random numbers.
7: Update variable nodes by node.set_value(variables)
8: Wait 1000 ms for the next iteration.
9: end while
10: function Listening(Request)
11: Listen continuously for the OPC UA client requests.
12: while (Request.available) do
13: Parse the NodeID, value, credentials from the request.
14: root = server.get_root_node()
15: Objects = len(root.get_children())
16: if (Request == “Read”) then
17: for (i = 0; Objects; i++) do
18: if (NodeID in root.get_children(i)) then
19: Name = root.get_children()[i].get_browser_name()
20: Value = root.get_children()[i].get_value()
21: Concatenate = Name + ‘=’ + Value
22: TagCredentials += Concatenate + ‘,’
23: end if
24: end for
25: Send TagCredentials to the client
26: elif (Request == “Write”) then
27: for (j = 0; Objects; j++) do
28: if (NodeID in root.get_children(j)) then
29: Write = root.get_node(NodeID).set_value(Value)
30: end if
31: end for
32: end if
33: end while
Begin
34: Start a thread calling StartOPCUAServer() to run the OPC UA server.
35: Start another thread calling Listening() to handle OPC UA client requests.
Finish
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Figure 4. GUI application of the developed OPC UA server.

2.3. REST-Based OPC UA Middleware Implementation

The intention in implementing the REST-based OPC UA middleware was to establish a
communication bridge between the OPC UA server with the external web service for remote
process supervision, and with the cloud platform to store address space node credentials
in a dedicated database server for further data processing, analysis, and decision making.
The middleware was implemented with the same open-source Python FreeOpcUa stack
used to develop the OPC UA server [43]. This study involved several methods to perform
the OPC UA functionalities with the middleware through the server-offered service sets
mentioned in Table 2.

Table 2. List of key methods used to develop the middleware module.

Method No. Method Name Method Scopes

1 client.connect(Server Endpoint URI) Connect with the server through the endpoint URI.
2 get_root_node().get_children() Server address space objects under the root node.
3 get_object_node().get_children() List of available variable nodes of a specified object.
4 get_node(node_id) Get a node credentials via passed node id.
5 get_node(node_id).get_browse_name() Get the variable node name via passed node id.
6 get_node(nodeid).get_value() Read variable node contents via passed node id.
7 get_node(nodeid).set_value(Value) Write value in a node via passed node id.

The entire middleware script was categorized into four subsections, where the code
execution of each subsection was performed asynchronously in individual threads. The
first subsection is responsible for opening the connection and establishing a TCP/IP session
with the OPC UA server using Table 2, Method 1. It is also responsible for locating the
external service availability in the network and obtaining user-requested object names
from the middleware application GUI to share with the external services. The second
subsection makes periodic requests to the connected server to obtain the address space
node credentials by invoking Method 2 mentioned in Table 2, and checks the availability
of user-queried object names in the received server object names. Mismatch among the
user-supplied and server-received object names will produce an error message. A match
between them instructs the middleware script to iterate through each object and collect
the available variable node id of the corresponding object via Table 2, Method 3. For
each node, the script collects the node name and corresponding value from the address
space through invoking Method 5 and Method 6 as mentioned in Table 2. The third
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code execution subsection of the middleware script constructs individual web requests
by concatenating these received node credentials as the request query string parameter in
conjunction with the platform address, request path, and token id for the available external
services according to the prescribed request format mentioned in Table 3. The flow chart to
implement this REST-based OPC UA middleware functionalities is shown in Figure 5.

Table 3. Prescribed format to construct the web and cloud request.

Web Service: http://192.168.0.194:8080/OPC?data=\protect\T1\textdollarObject1Name*Node1=Value1|...|NodeN=
ValueN\protect\T1\textdollar

ThingSpeak: https://api.thingspeak.com/y=\{\}&fieldn=valuenupdate?api_key=\{\}&field1=value1&...&field8=value8

ThingSentral: http://thingssentral.io:443/postlong?data=userid@Node1|Value1@......@NodeN|ValueN@

Figure 5. Process flow chart of the developed REST-based OPC UA middleware.

A GUI was designed for this middleware application using the Python built-in tkinter
library package to issue commands and configure the specifications of the external services
graphically instead of by traditional console-based interaction [47]. The developed REST-
based OPC UA middleware module can transfer the OPC UA server resources with several
existing proprietary and open source IoT platforms, as most of these platforms, such as

http://192.168.0.194:8080/OPC?data=\protect \T1\textdollar Object1Name*Node1=Value1|...|Node N=Value N\protect \T1\textdollar 
http://192.168.0.194:8080/OPC?data=\protect \T1\textdollar Object1Name*Node1=Value1|...|Node N=Value N\protect \T1\textdollar 
https://api.thingspeak.com/y=\{\}&fieldn=value n update?api_key=\{\}&field1=value 1&...&field8=value 8
http://thingssentral.io:443/postlong?data=userid@Node1|Value1@......@Node N| Value N@
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IoTivity sponsored by the Open Connectivity Foundation (OCF), SiteWhere from SiteWhere
LLC, ThingsBoard from ThingsBoard™ umbrella, DeviceHive distributed under Apache 2.0
license, and ThingSpeak from MathWorks®, offers RESTful interface for data management,
remote visualization, and rapid IoT-based application development [48]. This middleware
also supports both proprietary and open-source OPC UA infrastructure, as well as industrial
monitoring/supervisory software that offers reliable and seamless information exchange
with different platforms without compatibility with IR4.0 or REST interfaces (as described in
Section 3). As a proof of concept, the ThingSpeak platform [49] was configured to perform
aggregated data integration phenomena through this developed middleware module. An
average response time of 1.2 s was recorded for the middleware requests while sharing five
address space variable node credentials to the ThingSpeak platform. However, the free
subscription service of the ThingSpeak platform offers eight data fields to manage remote
sensor data, one status, and three location fields to store device elevation, latitude, and
longitude per channel. Furthermore, this cloud platform exhibits a 15 s interval rate to
update successive data payloads in the JSON format. These are the crucial bottlenecking
factors for a fast-paced real-time application to aggregate, store, and visualize bulk data
streams. This study developed a cost-effective cloud platform named ThingsSentralTM

that can support aggregated bulk data management through the REST paradigm, which
is not limited to eight data fields at a 15 s data transfer rate. As a proof of concept, all the
63 node credentials of the developed OPC UA server address space as 63 data fields were
transferred periodically to the ThingsSentralTM platform at a 0.5-s interval rate. The REST-
based OPC UA middleware module facilitates sending these data through web requests,
and an average of 0.45 s cloud response time was observed for the corresponding request, as
discussed in Section 4.7. Figure 6a shows the ThingsSentralTM cloud tab of the middleware
application and Figure 6b shows the ThingsSentralTM dashboard that represents ‘Pi HTTP
Server’ address space object’s CPU usage variable node credentials.

This REST-based OPC UA middleware, which acts as an OPC UA client and makes
periodic requests for the OPC UA server node credentials, was the approach taken to
answer RQ2. It also acts as a REST client that sends web requests to the REST-aware-based
web and cloud platforms to share the address space node credentials using the open-source
Python requests module. This web request URL comprises an endpoint URI in conjunction
with the HTTP request method. The endpoint URI is composed of the platform web address
where the external service is running, the resource path as the root of the resource naming
hierarchy, and the payload in the form of query string parameters. Both the web and cloud
platforms incorporate a REST API that expects prescribed HTTP Get requests from the
middleware, as mentioned in Table 3.

The middleware as an OPC UA client interacts with the server through the estab-
lished communication stack to convey requests from web service clients, such as altering
or synchronously accessing the server resources. It also periodically shares the server
updates asynchronously as a REST-aware-based client with all the available instances of the
ThingsSentralTM cloud and web service clients present in the network. This study involved
the HTTP GET method to share the OPC UA server node credentials with the external
services through web requests. ‘OPC’ and ‘postlong’ are the request paths to make web
requests to the web and cloud services, for which the REST APIs of these platforms are
expected to receive data. The ‘&’ keyword in the request is used to join multiple parameters
to share several data in the same request URL. After constructing the request URL, the
middleware script sends the HTTP Get requests to these external services and waits for
the corresponding response. Getting status code ‘200′ from these services as the acknowl-
edgment of a successful request completion repeats the process. Figure 7a shows the web
service client tab of the middleware application and Figure 7b shows the dashboard of the
developed web service clients statistically representing the ‘ESP8266 Modbus TCP’ address
space object credentials, as well a line graph taking the last 40 data of the ‘Light intensity’
variable node.
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Figure 6. (a) Middleware application ThingsSentralTM tab; (b) data monitoring in ThingsSentralTM.
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The last subsection of the middleware script deals with the Telegram Bot API service
and binds the Telepot module in the individual thread. This module starts in a separate loop
and continuously listens for the message in the telegram server. Upon a message uploaded
in the Telegram server, the callback function of the Telepot module receives the packet
dictionary from the server and extracts the chat id, user name, update id, and message as
the command. This command request is examined with the scripted command arguments.
A match between the user-supplied command request and the scripted command calls the
associated function to perform the requested OPC UA server-specific task. The algorithm
to implement the code execution of the middleware functionalities based on the process
flow chart (Figure 5) is shown in Algorithm 2.

One of the significant features of the developed middleware is performing both read
and write bidirectional communications without any prior knowledge of the underlying
protocols. Furthermore, the ability to limit the number of communication signals simplifies
the overall data flow across the system with a low communication overhead. According to
the OPC UA agreement, exchanging resources need to establish a server–client connection
through several service calls. Besides, multiple individual messages need to be exchanged
between the server and client for having a single node attribute (value, type definition,
encoding, etc.). This amount of communication signal increases while serving several
clients through individual sessions that ask for additional network throughput and the
platform CPU time to process requests and manage individual established sessions. This
phenomenon creates a barrier for OPC UA applications running on resource-constrained
devices. However, the middleware module, which acts as a single OPC UA client to collect
the server resources through a single established TCP/IP channel and share them with the
available external services in a stateless manner, can considerably reduce the number of
communication signals and exchanged messages, the network throughput, and the platform
CPU involvement. This scalable middleware module was tailored for engineering purposes,
where targeted groups are students, researchers, and small- and medium-scale industries
that require heterogeneous data management, analysis, and monitoring over the internet.
The developed open-source REST-based OPC UA middleware module provides uniform
interfaces that are fully compatible with web browsers, allowing an affordable aggregated
heterogeneous data exchange with several domains and real-time bulk data management
through cloud platforms. These features enable high design flexibility, allowing this module
to be adapted from low-cost embedded systems with small service sets to the Windows,
macOS, and Linux platforms and industrial systems with full functionalities to support
cost-efficient seamless real-time operation in small and medium industries from the sensor
to ERP level.
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Figure 7. (a) Middleware application client tab; (b) middleware data monitoring in web client.
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Algorithm 2. REST-based OPC UA Middleware Module Development Algorithm.

Input: OPC UA Binary Data, User Query Request, and Telegram Commands.
Output: Request URL to the web and cloud platforms. Notify for Telegram commands.
01: function ConnectServer()
02: try client = Client.Connect(ServerURL)
03: if (client) then break;
04: except pass
05: function MakeReq (Platform, Address, Path as arguments)
06: Get the root nodes as Query = client.get_root_node().get_children()
07: for (i = 0; len(Query.get_children(i)); i++) do
08: if (client.get_object_node().get_children(i) in Query) then
09: Name =Query.get_children()[i].get_browser_name()
10: Value =Query.get_children()[i].get_value(); Concatenate1= Name+Value;
11: ClientBuilder += “$” + ServerObject(i) + “*” + Concatenate1
12: CloudBuilder += Concatenate2; PCloudBuilder += Concatenate3
13: end if
14: if (Platform == ”web”) then
15: ReqURL = Address + “Path?” + ClientBuilder
16: elif (Platform == ”ThingsSentral”) then
17: ReqURL = Address + “Path?” + CloudBuilder
18: elif (Platform == ”PCloud”) then
19: ReqURL = Address + “Path?” + PCloudBuilder
20: end for
21: try Req = Get(ReqURL) do
22: if (Req.Status == 200) then break;
23: except pass
24: function StartTelegramWebHook()
25: while (Message available in Telegram server) do
26: Parse the message and store in chat_id, UserName, command variable.
27: end while
28: if (command is valid) then
29: Call associated function for the corresponding command request.
30: Bot.sendMessage(chat_id, Response)
31: end if
Begin
32: Start a thread calling ConnectServer() function to connect with OPC UA server.
33: Call MakeReq (web, localhost, OPC) to send OPC UA credentials to the web.
34: MakeReq(ThingsSentral, thingssentral.io, postlong) to send in ThingsSentralTM.
35: Call MakeReq(Pcloud, Address, update) to send credentials to the cloud.
36: Start a thread calling StartTelegramWebHook() to run Telegram Bot.
Finish

2.4. Web Service Client Development

The advantageous features of REST addressing interoperability as stated in Section 1,
and the benefits of RESTful web services in industrial environments [25,29] motivated
us to implemented a REST-aware-based web service client using the Xojo cross-platform
application development tools to answer RQ3. Xojo facilitates the implementation of
desktop, console, mobile, and web applications on multiple platforms such as macOS,
Windows, Linux, Raspberry Pi, and iOS [50]. It utilizes HTTP 2.0 features to develop
web-based applications that support almost every internet browser, and provides stable
built-in controls to integrate database servers, HTML, and JavaScript-based third-party
plugins with the application. Multi viewport meta tag scripting allows these applications
to browse from any device with different screen ratios. The developed web service client
is fully REST-aware-based; hence, it can be identified as a RESTful web service [51] that
enables communication with system components in a stateless manner. Such stateless
communication ensures sharing the same resources with several web service client instances
asynchronously without maintaining the connection credentials indicating the requests
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from each instance are independent of any stored context. The process flow chart to develop
this web service is shown in Figure 8.

Figure 8. Process flow chart of the developed web service client.

The core code execution of this web service handles middleware requests, in which
the code execution initiated from the user interface is performed in the session class. The
user interface subsection takes user inputs, passes them to the Xojo core server to execute,
and presents the server response in the corresponding browser table. This developed web
service acts as a standalone REST server that continuously listens to the middleware web
requests. A REST API was scripted, which handles middleware requests and extracts
the entire query string parameter from the prescribed request for the ‘OPC’ request path
only (as mentioned in Table 3). The API then parses this extracted query string on the
‘$’ delimiter to obtain the OPC UA server address space object, and splits again on the
‘*’ delimiter to extract the object name and corresponding node credentials. These node
credentials are split later on the ‘|’ keyword, where the name and associated value are
extracted by parsing each node credential on the ‘=’ delimiter. The web service script then
updates the corresponding GUI controls with these parsed data. The web service offers
a set of robust interface controls to monitor the node credentials visually without being
compliant to the OPC UA standard, and allows synchronous requests to alter the server
resources, for which the OPC UA server is bound to send responses facilitated by the
middleware. Figure 9a shows a dashboard of the developed web service that represents
the ‘PiTCP’ object credentials, and Figure 9b shows the dialogue box to write a value in the
‘Room Light Status’ node of the ‘RS485′ object.
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Figure 9. Web client GUI: (a) ‘PiTCP’ dashboard; (b) writing value in the server address space node.
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The insight of the UaExpert client shows the developed OPC UA server address space
with nine object nodes, where the ‘Pi TCP Server’ object exhibits six variable nodes (Fig-
ure 9a(2)). The developed web service contains nine web pages; each represents one OPC
UA server address space object node credential toggled by a menu button (Figure 9a(7)).
For instance, the PiTCP dashboard represents all the variable node credentials of the ‘PiTCP’
address space object in separate container controls, which are retrieved periodically from
the middleware web request (Figure 9a(3)). Furthermore, the historical entity of these
node credentials is shown in tabular form (Figure 9a(4)) and graphically through a line
graph (Figure 9a(5)). Each GUI container utilizes a contextual menu (Figure 9a(8)) with
three sub-menu options: Data Chart, Historical Data, and Write Tag. Before writing in
an OPC UA server address space node, a valid node id (Figure 9b(2)) and value to write
(Figure 9b(3)) need to be provided in the write dialogue box. The script then sends an HTTP
POST request to the middleware taking this node id and value. Upon receiving a POST
request, the middleware module parses the payload, communicates with the server, and
writes the value passed for that node. The developed web service allows sharing the same
application resources with multiple instances. This feature constitutes accessing a single
application from several platforms without installing anything, while the resources remain
common for all the instances. This web service exhibits server–client architecture-based
request–response message exchange phenomena that allow it to deal with multiple clients
asynchronously in a stateless manner.

2.5. ThingsSentralTM Cloud Platform Development

This study developed a standalone REST-aware-based cloud platform named
ThingsSentralTM and deployed it on a publicly accessible web server with a dedicated
web address (http://thingssentral.io:443) to answer RQ4. This platform was implemented
using the Xojo application development tools, while cloud hosting was supported by an
Apache webserver. ThingsSentralTM provides facilities for inexpensive aggregated bulk
data integration for remote clients structurally in a MariaDB database server, and also
enables data analysis and graphical representation based on user queries for further inves-
tigation [52]. Storing data in the ThingsSentralTM platform involves a preparation phase to
create the desired number of sensor credentials. The ThingsSentralTM GUI facilitates data
management in the dedicated database table under an authorized user id and individual
projects. Users need to create the project, location, and node credentials under a user id
verified by the platform. The creation of the desired number of sensor credentials belonging
to this node id constitutes a hierarchical tree-like structure to prohibit cross-referencing
among the various user data. The ThingsSentralTM platform assigns a unique sensor id for
each credential as the identity to store and retrieve data from the associated database server.
Figure 10 shows the sensor id created for this study to store the address space credentials
in the ThingsSentralTM.

ThingsSentralTM allows the usage of the same application from multiple instances
through two code subsections. The core code execution handles the HTTP Get-based
prescribed web requests from the middleware, parses data from the request query string
parameter for a valid request path, and stores the parsed payload in a database table
under the assigned sensor id. The session-based subsection performs user input–output
functionalities with the Xojo core server. The ThingsSentralTM cloud platform does not rely
on the established connection among the communicating devices; instead, it performs a
request–response-based message exchange. The process flow chart of the ThingsSentralTM

cloud platform is shown in Figure 11.

http://thingssentral.io:443
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Figure 10. ThingsSentralTM cloud platform Sensor Settings page.

Figure 11. Process flow chart of the ThingsSentralTM cloud platform.
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ThingsSentralTM cloud platform exhibits short-lived, connectionless communication,
and can deal with multiple clients asynchronously. A REST API was integrated with this
platform and scripted such that it only allows HTTP Get-based prescribed URL requests,
as mentioned in Table 3. For the request path ‘postlong’, this API extracts the request
query string parameter on the ‘@’ delimiter to extract each node credential. These extracted
node credentials are split on the ‘|’ keyword to obtain the value and sensor id. The script
then makes a SQL query to insert these parsed data into the dedicated database under
the corresponding sensor id. Several Arduino, Raspberry Pi, SIM800l, and NodeMCU-
based gateway nodes were tested with the ThingsSentralTM platform, and excellent data
integration performance was observed. Figure 12 shows the last 30 stored ‘CPU Usage’
variable node data of the ‘Pi Modbus TCP’ address space object in the ThingsSentralTM.
These data were retrieved from the ThingsSentralTM database through the dedicated
sensor id (0000206010402). The ThingsSentralTM platform utilizes an individual node id
(Figure 12(4)) to represent one OPC UA server object, under which the corresponding
sensor ids were created. These node ids belong to a location id (Figure 12(3)) and project id
(Figure 12(2)) whose information can be retrieved from the database for a given sensor id
(Figure 12(6)). Also represent both statistically (Figure 12(7)) and graphically (Figure 12(8))
in the ThingsSentralTM GUI.

Figure 12. Data monitoring from the “Sensor Data” page of the ThingsSentralTM cloud platform.

ThingsSentralTM is a scalable, and user-friendly cloud platform that offers rapid IoT
application deployment for raw sensor data management for remote clients. Its GUI allows
the creation of a customizable private dashboard for authorized supervision, or a public
dashboard to monitor data globally. Data representation in the ThingsSentralTM dashboard
is performed graphically, facilitated by the several widgets, which are dynamically config-
urable according to user preferences under the date-time of event occurrence. This platform
is currently under investigation by Universiti Kebangsaan Malaysia (UKM) engineering
department students in several projects [53]. The algorithm designed to implement the
web and cloud platform functionalities is shown in Algorithm 3.
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Algorithm 3. REST-Aware-Based Web Service and ThingsSentralTM Cloud Platform Development Algorithm.

Input: Web request from the middleware. Sensor ID, Command Type (Statistics/Chart/View/Download),
Query Type (Historical/N/csv/txt), From Date, To Date, Number to Query. NodeID & Value to Write.
Output: Present OPC UA server node credentials and store in the MariaDB database. Command to write
value in the OPC UA server node. Present all/historical database records graphically and statistically based
on sensor id.
01: function HandleURL()
02: Start the application in a standalone mannner and listen for the middleware URL request.
03: while (Request.available) do
04: Split request on ‘?’ and store in URLRequest array. Split the first index point of URLRe-
quest on the ‘/’ and store
in PathType variable. Store the last index point of the URLRequest in Data.
05: if (PathType == “OPC”) then
06: Split data on the ‘$’delimiter and store in ObjectNodeTags array.
07: for (i = 0 to length.ObjectNodeTags, i++) do
08: Split ObjectNodeTags[i] on the ‘*’ delimeter & store Ist index in Object & 2nd index in Tags.
09: if (Object in ObjectList) then
10: Split Tags on the ‘|’ delimiter & store in TagCredentials array.
11: for (j = 0 to length.TagCredentials, j++) do
12: Split TagCredentials[j] on the ‘=’ delimiter.
13: Store first index point of TagCredentials in Name and 2nd index in Values array.
14: Update GUI, List Box, and Data Logger File taking these credentials.
15: end for
16: else break
17: end for
18: elif (PathType == “postlong”) then
19: Split Data on the ‘@’delimiter & store in SensorData array.
20: for (i = 0 to length.SensorData, i++) do
21: Split SensorData[i] on the ‘|’ delimeter & store 1st index in SensorID, 2nd in Value Array.
22: Make query as sql = “SELECT SensorID, SensorValue, DateTime FROM DatabaseTable”
23: rs = mdb.SQLSelect(sql)
24: if (rs not empty) then
25: while (rs not reached to the last field) do
26: row.column(SensorID, SensorValue, DateTime) = SensorID, Value, Time
27: mdb.InsertRecord(DatabaseTableName, row); rs.MoveNext
28: end while
29: end if
30: end for
31: else pass
32: end while
33: function WriteServerTag(Value, id as Arguments)
34: Collect middleware URL, id, value from the GUI and store in MiddlewareURL, NodeID, and Value.
35: Payload = {‘Nodeid’:id, ‘value’:Value}; response = HTTP.POST(MiddlewareURL, data=Payload)
36: function ExecuteCommand(Command, QueryType, Sensorid as Arguments)
37: Get Start Date, End Date, Limit from the GUI and store in From, To, Num. Connect with the MySQl Server.
38: if (QueryType == Historical) then
39: Collect historic data from the database for the given sensor id within the specified time and store in sql.
40: elif (QueryType == N) then
41: Collect N number of data from the database for the given sensor id and store in sql.
42: rs = mdb.SQLSelect(sql)
43: if (rs is not nil) then
44: while (rs not reached last field) do
45: Value = rs.Field(SensorValue); Time = rs.Field(DateTimeAcquired)
46: Join Time and Value on the ‘,’ and store in Concatenate Variable; Builder += Concatenate + EndOfLine
47: if (Command == “Statistics”) then Listbox.AddRow(Value, Time)
48: elif (Command == “Chart”) then PlotGraph(Time, value)
49: else pass
50: end while
51: end if
52: function UserRequest(Command, QueryType, SensorID as Arguments)
53: if (Command == “Write”) then
54: Call WriteServerTag(QureyType, SensorID)
55: elif (Command == “Statistics”) then
56: Call ExecuteCommand(Statistics, QueryType, SensorID)
57: elif (Command == “Chart”) then
58: Call ExecuteCommand(Chart, QueryType, SensorID)
Begin
59: Start a thread calling HandleURL() to collect data from the middleware request.
60: Call UserRequest(Write,Value,sensorid) function to Write Data in the OPC UA Server address space.
61: Call UserRequest(Statistics,Historical,sensorid) to monitor sensor data historically in the application GUI.
62: Call UserRequest(Statistics,N,sensorid) to monitor latest N number of data in the application GUI.
63: Call UserRequest(Chart,Historical,sensorid) to monitor sensor data graphically in a historical manner.
64: Call UserRequest(Chart,N,sensorid) to monitor N number of selected sensor data graphically.
Finish

2.6. Telegram Messenger as the Remote Commander Service

The proposed system synchronizes the open-source Telegram bot API with the mid-
dleware script to perform OPC UA server-specific tasks via messages as commands from
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the Telegram messenger. Configuring the Telegram bot with a unique bot token id was
achieved by chatting with the ‘Bot Father’ in Telegram messenger. This token id is the
bot identification in the Telegram server, which needs to be assigned when developing
applications using this bot. The Python Telepot module was included in the middleware
script to manage the Telegram bot API functionalities in a webhook PUSH API manner [54].
Webhooks are beneficial, as they proactively provide data when generated, instead of using
a request–response-based mechanism [55]. The command arguments scripted to perform
remote commander functionalities by the Telegram messenger are listed in Table 4.

Table 4. List of command arguments scripted for the Telegram remote commander.

Commands Command Scope in OPC UA Server

Commands? Get the list of all the scripted commands.
Server Terminals? Get all the server address space object node mames.
Server Tags? Get all the OPC UA server variable node names.
Server nid? Get all the OPC UA server variable node id.
ServerWritable Get the list of OPC UA server writable variable nodes.
@Write.NodeName@Value Write a value mentioned in the passed node name.
ClientDatalog Get the Client Data Log file.
CloudDatalog Get the Cloud Data Log file.

Messages issued from the Telegram bot are uploaded to the Telegram server as JSON
data packet dictionaries with chat id, user name, message, update id, etc. Upon a message
packet dictionary update in the Telegram server, the Telepot call back function collects
and parses the packet and evaluates the parsed message as a command with the scripted
command arguments. A match between them triggers the associated function to perform
the corresponding OPC UA server-specific tasks and notify the command requestor through
the chat id. Figure 13 shows the UaExpert OPC UA client and a command issued from the
Telegram bot to alter the address space nodes.

Figure 13. NUC deployed OPC UA server address space access from UaExpert and Telegram bot.
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Telegram service was incorporated for its cross-platform accessibility and mobile
usability, which ensures faster mitigation action without continuous human investigation.
Furthermore, incorporating the Telegram bot in the Telegram group allows access to the
same resources with the broader community anytime, anywhere, over the internet.

3. Performance Evaluation of the Proposed System

Figure 14 shows the data flow sequence in the entire system framework. Upon
initialization, the OPC UA server creates an address space with the desired number of
variable nodes, periodically calls the helper function to obtain sensor values (Figure 14(1)),
and updates the values returned from the helper function in the dedicated address space
variable nodes (Figure 14(2)). The connected OPC UA clients make requests (Figure 14(3,5))
to the OPC UA server to obtain these address space resources, and the server responds to
the valid client requests (Figure 14(4,6)). The middleware, as an OPC UA client, also sends
periodic requests to the OPC UA server (Figure 14(7)) to obtain these node credentials. Upon
receiving the server response (Figure 14(8)), the middleware script then constructs web
requests concatenating the received address space resources and sends the requests to the
ThingsSentralTM cloud (Figure 14(9)) and web service (Figure 14(12)). The ThingsSentralTM

cloud (Figure 14(10)) and web service (Figure 14(13)) receive and parse the payload from the
request and send Response Code 200 to the middleware for successful request completion.
ThingsSentralTM cloud platform later stores these parsed data in a dedicated database table
(Figure 14(11)). The GUI of both the web and cloud platforms allows the investigation of
selected sensor data graphically and statistically by retrieving the data from the database
server. It also offers to download the data in several formats (Figure 14(14–17)). The web
service client (Figure 14(18)) and the Telegram messenger (Figure 14(20)) can request that
the middleware perform OPC UA server-side tasks. Upon successful completion of the
requested tasks, the middleware responds to these services for each request individually
(Figure 14(19,21)).

The OPC UA paradigm provides a discoverable endpoint URI to share the server
address space credentials with the OPC UA clients. As an OPC UA client, the developed
middleware module has sufficient realization of this paradigm to integrate with propri-
etary OPC UA servers such as DeviceXPlorer from Takebishi, NI LabVIEW from National
Instruments, SIMATIC WinCC from Siemens, etc. Open-source OPC UA server simula-
tors from Prosys, Integration Objects, Matrikon OPC, Unified Automation, etc. are also
supported for OPC UA-based application testing, simulation, and validation purposes.
Incorporating REST and the open-source design of the presented middleware module
can feed the aggregated data from these OPC UA servers to the developed web service,
the ThingsSentralTM cloud, and several RESTful platforms such as ThingsBoard, IoTiv-
ity, ThingSpeak, etc. In this sense, different proprietary and open-source technologies
can exchange information, which enables high design flexibility for affordable seamless
aggregated heterogeneous data integration and real-time monitoring. As a proof of con-
cept, the proprietary DeviceXPlorer OPC UA server (DXP) and the open-source Prosys
OPC UA simulation server were integrated with this middleware module to aggregate
data from heterogeneous sources. The ThingSpeak open-source IoT platform [49], the
developed web service client, the ThingsSentralTM cloud, and Telegram messenger were
configured to integrate data from these aggregated OPC UA servers to the web domain.
The open-source Prosys OPC UA simulation server address space constitutes an object
class, with one node class of several simulation variable nodes such as counter, random,
sawtooth, sinusoid, square, and triangle, with necessary attributes. A Science, Technology,
Engineering, and Mathematics (STEM) trainer kit was integrated with the proprietary
DXP OPC UA server deployed in a Windows-based Intel NUC PC. Two Delta DVP-12SE
Programmable Logic Controllers (PLC) from this STEM kit were connected with the DXP
OPC UA server to create a dynamic heterogeneous network. One of them included an
analog extension module to interface with analog devices and communicate with the DXP
server through the COM port via a Modbus RTU RS485 interfacing link (PLC-1). The
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other PLC interfaced with some discrete devices and communicated with the DXP server
through Ethernet port via ModbusTCP protocol (PLC-2). Upon establishing the connec-
tions, two object nodes, named ‘Analog’ for PLC-1 and ‘Digital’ for PLC-2, were created
in the DXP server address space. Each of these object nodes was configured with the
necessary variable nodes for accessing and storing the PLC data through the corresponding
memory register address. Running these servers provided discoverable an endpoint URI,
[opc.tcp://{platform address}/OPCUA/SimulationServer] for the Prosys simulation and
[opc.tcp://{platform address}/52240] the DXP server to share the semantic information of
their corresponding address space node credentials with the OPC UA clients. Figure 15
depicted the evaluation setup for investigating the performance of the developed system
with the proprietary and open-source software. The middleware periodically interacts with
both the DXP and Prosys OPC UA servers as an OPC UA client to access their resources in
two different threads through the established TCP/IP sessions in a synchronous manner. It
also shares these collected server credentials asynchronously as a REST client with the web
service, ThingsSentralTM, and the ThingSpeak platform through the prescribed request
format, as mentioned in Table 3. A version of this middleware is currently being used as a
gateway node in several IoT-based final-year undergraduate student projects at Universiti
Kebangsaan Malaysia (UKM). Another modified version is currently supporting factory
data management for several factories in Malaysia [56].

Figure 14. Data flow sequence in the entire system framework.
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4. Performance Analysis and Results

The developed system was subjected to various performance test analyses such as
platform CPU utilization, bandwidth consumption, and service, update, and response
time requirements to investigate the implementation’s robustness and identify the best
performance figures. These experimental observations are discussed below.

4.1. Testbed Setup

Each performance analysis was conducted by deploying the OPC UA server, OPC UA
client, middleware module, and the web service clients on two platforms:

Platform 1: Windows Intel NUC PC (2.4 GHz Core i3 dual-core, 4GB DDR4 RAM);
Platform 2: Linux-based Raspberry Pi 3B+ (1.4 GHz Quadcore 64-bit, 1GB SRAM).
Furthermore, these performance analyses were investigated under two test cases:
Test Case A: Varying the number of OPC UA server address space variables from

1–63 nodes, and sharing these node credentials with a single OPC UA client;
Test Case B: Managing all the 63 OPC UA server address space variable nodes together

and sharing these node credentials with up to 20 OPC UA clients.
A Windows-based UaExpert [57] and an Android-based Prosys OPC UA client [58]

were connected with the developed OPC UA server to investigate the cross-platform
address space browsing. The experiments were carried out on a local network with
50 megabytes per second (MB/s) average measured bandwidth. A TP-LINK Archer C1200
router was configured to route the communication signals across the system. As the security
policy of OPC UA affects its communication, the security function was disabled and no data
encryption scheme was used. The measurement stability was ensured by repeating each
experiment 10 times; the average of individual measurements has been reported. Figure 16
shows the testbed setup for conducting the experimental analyses.
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4.2. Network Utilization Analysis

This performance analysis investigated the average bandwidth consumed by the
developed system deployed on both platforms under both test cases. The Python-based
psutil net_io_counters method was used to measure network utilization in MB/s [59]. This
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method monitors system-wise network statistics and offers per-network information. The
middleware was scripted such that it exchanged two pairs of messages in each call with
the connected OPC UA server for a single address space node name and value. Thus, with
the increased number of nodes to query by the middleware, the number of the exchanged
message was increased, which required increased bandwidth. Figure 17 shows the average
bandwidth utilized by the system under the first test case on both platforms.

Figure 17. Average bandwidth utilization with varying the OPC UA server address space nodes.

From Figure 17, averages of 0.2121 MB/s and 0.3991 MB/s bandwidth were utilized to
share a single address space node credential. These measurements were recorded as 1.0287
and 0.9116 MB/s to share all the 63 address space node credentials with a single OPC UA
client on both platforms. Hence, averages of 0.8166 MB/s and 0.5124 MB/s additional
bandwidth consumption were recorded to obtain all the node credentials, which were 1.6%
and 1.1% of the available testbed network. Thus, with the increased nodes, bandwidth
utilization also increases, showing a rising trend in Figure 17. Average network utilization
under the second test case on both platforms is shown in Figure 18.

Figure 18. Average bandwidth utilization with varying the connected OPC UA clients.

From Figure 18, averages of 0.6996 MB/s and 0.6662 MB/s bandwidth utilization
were observed to share all the 63 address space node credentials with a single OPC UA
client. These measurements were recorded as 4.9185 MB/s and 1.4968 MB/s while sharing
63 address space node credentials with the 20 OPC UA clients running on both platforms.
Hence, averages of 4.22 and 0.83 MB/s additional bandwidth consumption were recorded
to share all the node credentials with 20 OPC UA clients, indicating 7.8% and 1.7% of the
available testbed bandwidth utilization. Thus, sharing node credentials with increased
clients asks for additional bandwidth requirements, showing a rising trend in Figure 18.
However, such small bandwidth consumption by the developed implementation is not a



Sensors 2022, 22, 1952 31 of 39

bottleneck factor. Higher network utilization may occur if multiple OPC UA servers send
address space node credentials with several clients.

4.3. Power Consumption Analysis

In this performance analysis, the amount of power consumed by the Raspberry Pi
3B+-deployed OPC UA server and the middleware module was investigated under both
test cases. The platform power consumption was estimated by connecting the INA219
current measuring sensor to the Pi’s main power supply. The Python INA219 library [60]
facilitated extracting the bus voltage, current, and power consumption from this sensor
through the Pi’s Inter-Integrated Circuit (I2C) interface. Before conducting the analysis,
the Pi ran for a certain period without the server and middleware module. An average of
2.345691 watts of power consumption was measured, which was considered to be the Pi’s
base power usage. Figure 19 shows the average power consumed by deploying the system
on a Raspberry Pi 3B+ under both test cases.

Figure 19. Average Pi power consumption with varying the OPC UA server nodes and clients.

The green dashed line in Figure 19 represents the Pi’s base power consumption. The
blue bar represents the first test case, which showed an average of 2.3871 watts of power
consumed to manage a single address space node. Sharing all the 63 node credentials with
a single OPC UA client utilized an average of 2.9044 watts of power. Hence, 0.5588 watts of
additional average power was consumed to manage and share all the address space nodes
with a single client, compared to the Pi base power.

The orange bar represents the second test case, indicating an average power consump-
tion of 2.9060 watts to manage and share all the 63 address space nodes with a single
client. These measurements were recorded as 3.2312 watts to manage these available node
credentials with 20 connected OPC UA clients. Hence, compared with the base power, an
average of 0.3252 watts of additional power consumption was recorded in the second test
scenario. However, although such small power consumption is not a bottleneck issue, it is
crucial for powering the Pi with a secondary source that might not last for long in the case
of continuous operation.

4.4. CPU Utilization Analysis

This performance test analyzed the CPU usage of the developed system on both
platforms under both test cases. The Python-based psutil cpu_percent() method was used
to investigate the percentage of platform CPU usage [59]. This method returns the CPU
usage rate by measuring CPU times before and after a specified time interval. Figure 20
shows the average CPU usage by the system on both platforms under the first test case.
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Figure 20. Average percentage of platform CPU utilized by the developed system with varying the
OPC UA server address space variable nodes.

From Figure 20, averages of 3.64% and 15.75% of the CPU were utilized, respectively,
on both platforms to manage a single address space node and share it with a single OPC
UA client. These average CPU utilization measurements were recorded as 26.39% and
41.02%, respectively, to manage and share all the 63 available node credentials with a
single OPC UA client, indicating an additional 22.75% and 25.27% average platform CPU
usage. An average of 14.62814% of additional CPU was utilized by the Raspberry Pi 3B+-
deployed implementation compared to the Intel NUC PC. Hence, with increased nodes to
manage, the average percentage of platform CPU usage also increases. Figure 21 shows the
average CPU usage of the developed system deployed on both platforms with and without
involving the middleware module under the second test case.

Figure 21. Average percentage of platform CPU utilized with varying clients.

From Figure 21, averages of 14.02% and 14.10% of CPU were utilized, respectively, on
both platforms with 63 node credentials by a single client without involving the middle-
ware module. These measurements were recorded as 26.50% and 33.56% while involving
the middleware. Hence, an additional 12.47% and 19.45% of the average platform CPU
was utilized when deploying the middleware due to it performing several functionalities
through individual threads. Averages of 42.01% and 92.49% platform CPU usage were
recorded while serving 63 node credentials with 20 OPC UA clients, indicating an addi-
tional 28% and 78.38% of average CPU utilization on both platforms without involving
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the middleware. This high platform CPU usage rate can be decreased significantly involv-
ing the middleware module. From Figure 21, averages of 30.55% and 40.87% platform
CPU usage were recorded to manage 63 address space nodes and share their credentials
with 20 web clients through the middleware. This indicates 4% and 7% additional CPU
utilization while serving 20 clients, instead of 42.01% and 92.49% CPU consumption on
both platforms. This phenomenon shows a horizontal trend in Figure 21, with the CPU
utilization rate remaining steady no matter how many web service clients must be served.

4.5. Resource Update Time Analysis

In this experiment, the OPC UA server resource update rate was analyzed with and
without involving the middleware module on both platforms. Experimental results showed
that the average CPU and resource update interval rate increases slightly with the increased
address space nodes. However, handling large-scale clients increases the server session
management overhead, platform CPU utilization, and resource interval rate considerably.
Figure 22 shows the average resource update time requirement for the increased clients on
both platforms with and without involving the middleware module.

Figure 22. Average OPC UA server resource update interval time with varying clients.

According to Figure 22, averages of 2.36 s and 3.86 s resource update time were
observed on both platforms while managing all the 63 address space node credentials and
sharing them with a single OPC UA client without involving the middleware module.
These measurements were recorded as 1.14 s and 3.60 s, showing averages of 1.22 s and
0.26 s less resource update time required on both platforms to share the same amount of
node credentials with a single web service client. However, managing all the 63 node
credentials with 20 OPC UA clients requires an average of 10.16 s and 24.37 s resource
update time, indicating 7.78 s and 20.51 s more resource update time required without
involving the middleware module. The Pi-deployed server requires an additional 14.22 s
more average server resource update time than the NUC one. These scenarios showed a
gradual rising trend in the resource update rate for the NUC and an exponential rise for
the Pi-deployed OPC UA server with the increased clients, as shown in Figure 22. The
middleware module handles this situation by sharing node credentials with the available
web service clients present in the network through a single established channel. From
Figure 22, averages of 1.21 s and 4.07 s resource update time requirements were recorded
on both platforms to manage all the 63 address space node credentials and share them
with 20 web service clients, instead of 10.16 and 24.37 s while serving 20 OPC UA clients.
This scenario showed a horizontal trend for both platforms, as shown in Figure 22, and
improves the server resource update time requirement with the increased clients.
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4.6. Middleware Service Time Requirement

This performance analysis investigates the average time required by the middleware
to obtain the server address space node credentials as an OPC UA client, which is referred
to as service time. Indeed, the service time is the interval between the instance of response
received from a server to the time of the request made by an OPC UA client. Figure 23
shows the average service time required by the REST-based OPC UA middleware on both
platforms under the first test case.

Figure 23. Average service time requirement with varying the server address space nodes.

Figure 23 shows averages of 0.0357 s and 0.0526 s of service time required by the
middleware module to obtain a single address space node credential. These measurements
were recorded as 0.1697 and 2.1051 s, respectively, on both platforms to obtain 63 address
space node credentials. Hence, averages of 0.1339 and 2.0524 s additional service time were
required to obtain all the node credentials by the middleware on both platforms. Thus,
with increased nodes to query, the average service time also increases, showing rising trend
in Figure 23. The average middleware service time requirement with varying web service
clients on both platforms is shown in Figure 24.

Figure 24. Average service time requirement with varying the number of web service clients.

According to Figure 24, averages of 0.1664 s and 2.3301 s service time required were
recorded to obtain 63 address space node credentials by a single web service client. Sharing
these 63 node credentials with 20 web service clients through the middleware required an
average of 0.1779 s and 2.4660 s on both platforms. Hence, with the increase in web service
clients, the average service time requirement remains almost the same on both platforms.
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This phenomenon shows a horizontal trend in Figure 24, no matter how many web clients
are present in the network.

4.7. Middleware Response Time Analysis

This performance analysis investigated the average response time required by the
REST-based OPC UA middleware requests to share the address space credentials to the
web and ThingsSentralTM cloud platform. Response time is the amount of time required to
receive a response from the destination node as an acknowledgment of the source request.
This measurement starts while sending a request and finishes upon receiving the response.
This study used the Python request module to send requests and measure the absolute
time difference between issuing the request and receiving the corresponding response [61].
The analysis results showed that sharing the increased number of address space node
credentials through the web request requires additional response time, as it increases the
length of the query string parameter. The graphical representation of the average web
service client and ThingsSentralTM cloud response times under the first test case are shown
in Figure 25a,b.

Figure 25. (a) Average web service response time with varying the server address space nodes;
(b) average ThingsSentralTM cloud response time with varying the server address space nodes.

From Figure 25a, averages of 0.1145 s and 0.1176 s of response time were recorded
on both platforms for the middleware requests to the web service to share a single ad-
dress space node credential through the query string parameter. These response time
measurements were recorded as 0.2177 and 0.2428 s on both platforms while requesting
the ThingsSentralTM cloud service (Figure 25b). For sharing all the 63 address space node
credentials through a single request, the average client response times were observed as
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0.3794 and 0.4959 s (Figure 25a), and the average ThingsSentralTM cloud response times
were recorded as 0.4303 and 0.4665 s (Figure 25b), respectively, on both platforms. Hence
an average of 0.2649 s client and 0.2125 s ThingsSentralTM cloud additional response time
was required to share all the NUC-deployed server node credentials. While sharing the Pi
3B+-deployed server’s available node credentials, an additional 0.3783 s client and 0.2237 s
ThingsSentralTM cloud average response times were recorded. However, such low response
time is not a bottleneck issue for fast-paced real-time applications.

5. Discussion and Conclusions

This study demonstrates the concept of a cost-effective aggregated data integration
approach to web and cloud platforms through a platform-independent open-source OPC
UA wrapper and a REST-based OPC UA middleware module. The developed system
showed tremendous prospects for dealing with cross-platform interoperability across het-
erogeneous networks and can perform real-time operation among different technologies
with low platform resource utilization and operational time. The OPC UA binary-based
solution overcomes communication interoperability through harmonization between dif-
ferent communication standards, can run in resource-constrained embedded devices, and
can interconnect independent distributed system components according to the demanded
specifications. Incorporating the REST paradigm in the middleware enabled stateless
communication between the distribution systems and web platforms. Such a phenomenon
enhances the OPC UA syntactic- and semantic-level interoperability to support seamless
real-time information exchange among the open-source and proprietary infrastructures
from several domains at once without any restrictions. This middleware also offers allows
access and alteration of the OPC UA server resources by the web clients without any prior
knowledge of OPC UA or compliance with this standard. Furthermore, the developed web
service client is highly compatible with HTTP interfaces, which can be deployed on various
platforms ranging from web browsers to embedded systems for performing interoperable
M2M communications. The proposed framework shows salient suitability in the IR 4.0
context for its simplified data flow, ubiquitous content accessibility, and open-source low-
cost integration capability. Performance evaluation in real-time scenarios validates that
the developed framework can successfully integrate aggregated data from heterogeneous
sources with the MES/ERP and open-source/proprietary platforms to enable a highly
flexible manufacturing system in an open-source nature. The open-source design paradigm
of the developed implementation offers high configurability to customize the system at
any time without concerns about license expenditures. This also enables high design
flexibility, from embedded devices with small service sets to Windows/Linux platforms
and industrial automation systems with full functionalities. Besides, such open-source
architecture provides the facilities to fabricate the developed infrastructure with substantial
cost savings, with a deeper understanding and better limit awareness than commercial pro-
prietary equivalents. According to the experimental results, network and power utilization
by the developed implementation were observed as bottlenecking issues on either platform
under both test cases, and can be considered negligible. However, performance analysis
indicates that the Raspberry Pi-deployed implementation requires comparatively higher
platform resource utilization and service and response times than the Intel NUC due to its
hardware limitations. With increased nodes and clients to manage, the average Raspberry
Pi CPU utilization also increases gradually. This situation was significantly improved by the
middleware, which acts as a single OPC UA client to collect server address space resources
through a single established TCP/IP channel with low service time, and shares it with
the external services as a web request with low response time. The middleware module
considerably reduces communication signals, the number of exchanged messages, network
throughput, and platform CPU involvement, while performing overall system functional-
ities. The web service client running in a local network exhibited a lower response time
than the ThingsSentralTM cloud platform deployed in a remote web server. This additional
operational time required to collect all the OPC UA server node credentials and share them
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with the ThingsSentralTM is not a bottlenecking issue to performing real-time fast-paced
operations. However, the experimental analysis found that the Raspberry Pi-deployed
implementation with full functionalities and serving large-scale OPC UA clients in the same
platform utilizes a higher CPU percentage than the Intel NUC PC-deployed infrastructure.
The CPU times to update all the OPC UA server address space nodes and share them with
multiple OPC UA clients running in the same Raspberry Pi led to session management
overhead and considerably increased the average platform CPU utilization. This high
session management overhead while managing the increased number of clients through
individual TCP/IP channels drove the CPU to reachin saturation state, gradually raising
the CPU temperature for a long time of operation and, in rare cases, causing unexpected
sudden thermal shutdowns. However, this behavior was noticed when deploying the
clients in individual stations instead of in the same Raspberry Pi. Such behavior presents
a barrier to deploying the entire infrastructure with full functionalities serving a large
number of OPC UA clients in the same resource-constrained Raspberry Pi, compared to the
Intel NUC PC. In the future, this Python FreeOpcUa stack-based implementation will be
refurbished with the Open62541 OPC UA protocol stack. This open-source full-stack OPC
UA server–client implementation also involves a UA-TCP and UA-Binary transport scheme
that has relatively low CPU demand, making it highly suitable for embedded systems [62].
Publish–subscribe-based application layer protocols such as AMQP, XMPP, and MQTT
will be studied to integrate the middleware data with other popular cloud platforms such
as Azure from Microsoft, BlueMix from IBM, and MindSphere from Siemens. Additional
graphical plugins and data analysis tools will be included with the web service client to
represent data in a more meaningful way. Furthermore, a multifactor authentication-based
self-disposing dynamic token scheme will be implemented in the middleware request to
perform more secure communication over the internet.
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