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Abstract
Purpose: Spatially fractionated radiation therapy (SFRT), which delivers highly nonuniform dose distributions instead of
conventionally practiced homogeneous tumor dose, has shown high rates of clinical response with minimal toxicities in large-volume
primary or metastatic malignancies. However, prospective multi-institutional clinical trials in SFRT are lacking, and SFRT techniques
and dose parameters remain variable. Agreement on dose prescription, technical administration, and clinical and translational design
parameters for SFRT trials is essential to enable broad participation and successful accrual to rigorously test the SFRT approach. We
aimed to develop a consensus for the design of multi-institutional clinical trials in SFRT, tailored to specific primary tumor sites, to
help facilitate development and enhance the feasibility of such trials.
Methods and Materials: Primary tumor sites with sufficient pilot experience in SFRT were identified, and fundamental trial design
questions were determined. For each tumor site, a comprehensive consensus effort was established through disease-specific expert
panels. Clinical trial design criteria included eligibility, SFRT technology and technique, dose and fractionation, target- and normal-
tissue dose parameters, systemic therapies, clinical trial endpoints, and translational science considerations. Iterative appropriateness
rank voting, expert panel consensus reviews and discussions, and public comment posting were used for consensus development.
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Results: Clinical trial criteria were developed for head and neck cancer and soft-tissue sarcoma. Final consensus among the 22 trial
design categories each (a total of 163 criteria) was high to moderate overall. Uniform patient cohorts of advanced bulky disease,
standardization of SFRT technologies and dosimetry and physics parameters, and collection of translational correlates were considered
essential to trial design. Final guideline recommendations and the degree of agreement are presented and discussed.
Conclusions: This consensus provides design guidelines for the development of prospective multi-institutional clinical trials testing
SFRT in advanced head and neck cancer and soft-tissue sarcoma through in-advance harmonization of the fundamental clinical trial
design among SFRT experts, potential investigators, and the SFRT community.
© 2021 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction

Spatially fractionated radiation therapy (SFRT) is a
complex concept of increasing clinical, experimental, and
translational interest. Pilot studies have shown low rates
of toxicities and unexpectedly high tumor responses to
SFRT in bulky metastatic and primary tumors.1-13 The
observed enhanced tumoricidal effects of SFRT are
thought to be related to the vastly inhomogeneous dose
distributions.4,14,15 The inherent advantages of ablative
stereotactic radiosurgery or stereotactic radiation therapy
like dose “peaks,” dispersed throughout the tumor, com-
bined with interlaced low dose in the “valleys,” suited to
preserve the tumor microenvironment and vasculature,
are postulated to promote bystander and abscopal effects
as potential underlying mechanisms for higher tumor
response.15-20 Such mechanisms are of particular interest
in the current era of immune-modulating agents that are
increasingly combined with radiation therapy.21

Multiple single-institution studies have shown high
response and local control rates in cohorts treated largely
palliatively with GRID and Lattice SFRT.1-4 These studies
established the initial dose-response relationships and the
need for combining SFRT with fractionated conventional
radiation therapy.2,3 More recently, smaller, disease-specific
pilot studies in head and neck (H&N),5,6,13 lung,7 and cer-
vical8 cancer, sarcoma,9,10,12 and melanoma11 have
advanced the SFRT concept from palliative treatment to
curative-intent therapy of bulky primary tumors and
showed similarly promising local control. They have also
broadened the SFRT experience from reporting on pallia-
tive responses to providing early data on favorable survival
outcomes in patients with nonmetastatic cancer5-8 while
affording longer follow-up for adverse effect assessment,
which corroborates SFRT’s overall favorable toxicity profile.

Thus, SFRT has the potential to broaden radiation
therapy options for patients with locally advanced bulky
primary, recurrent, and/or metastatic malignancies, for
which with current techniques, the deliverable tumor
dose is often severely compromised by normal-tissue tol-
erance limits.

Based on these hypothesis-generating studies,5-13 well-
designed prospective clinical trials, preferably multi-insti-
tutional studies, are now needed to rigorously study SFRT
as a modality. There is also an unmet need to evaluate
feasibility of SFRT across institutions and technology plat-
forms and to further elucidate its underlying biologic
mechanisms through correlative translational science
within the trial design. To our knowledge, no such phase
3 or multi-institutional prospective trials have been con-
ducted in SFRT to date.

Design of such trials is challenged by SFRT’s profound
departure from familiar uniform-dose concepts and the
requirement of complex biological modeling and nonin-
tuitive dose-prescription metrics. Furthermore, SFRT
platforms, techniques, dose and fractionation schemes
have been variable. Currently, 2 profoundly different
SFRT technologies are in use. GRID therapy,2,4,22 the first
SFRT technology, developed using GRID collimators, has
since evolved into an multileaf collimator (MLC)-based
platform4,6,13 with a different dose profile. Most recently,
Lattice therapy, a 3-dimensional form of SFRT,23-25 has
emerged. These variabilities likely introduce additional
inconsistencies that can hamper trial design and interpre-
tation and therefore require thorough assessment, con-
sensus, and standardization for the specific disease site
under investigation. The challenge is compounded by a
paucity of reviews14,26 and an absence of meta-analyses to
provide guidance to investigators for trial design.

To address these obstacles toward development of
multi-institutional prospective trials in SFRT, we sought
to establish an in-advance common understanding and
consensus among SFRT experts regarding the major
design parameters and feasibility requirements for SFRT
trial development, informed by the collective disease-spe-
cific clinical experience and by physics and biology exper-
tise. The consensus effort comprised 2 major candidate
primary disease sites—H&N cancer and soft-tissue sar-
coma (STS)—and focused on the full range of clinical trial
design criteria, including eligibility, stratification, end-
points, prescription dose and fractionation, target- and
normal-tissue dose parameters, SFRT technology and
technique, systemic therapies, patient assessments, and
correlative science investigations.
Methods and Materials
This consensus effort was conducted as part of the
activities of the Radiosurgery Society (RSS) GRID, Lattice,
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Microbeam and FLASH Radiation Therapy Working
Groups that were established, subsequent to an inau-
gural 2018 RSS−National Cancer Institute Work-
shop,14 to advance understanding of the biology,
physics, and technology, and the clinical applications
of these emerging technologies.

A comprehensive literature search for GRID and Lat-
tice SFRT was performed (Table 1). The literature was
systematically reviewed for studies that reported clinical
outcomes. Studies were critically appraised for entry cri-
teria, treatment parameters, and outcome reporting; and
were tabulated in literature evidence tables (Appendices
E1 and E2).

The overall process and rationale of the consensus pro-
cedure are described in detail in Table 1. Initial draft crite-
ria for clinical trial design were developed among a group
of leading SFRT experts. Design criteria were based on
pertinent clinical trial principles according to the catego-
ries outlined in Table 2 and then were tailored to the indi-
vidual primary tumors.

For each disease site, an anonymous 22-question vot-
ing survey with 1 to 11 subcriteria questions and the
respective literature evidence tables (Appendices E1 and
E2) were distributed to national and international experts
with publications, scientific presentations, and/or clinical
SFRT practice in the respective disease site (voting round
1). Voting for appropriateness and prioritization of each
trial-design criterion was performed on a 1 to 9 scale
(Table 1) with additional optional free-text comments.

For the analysis of voting results, in addition to
descriptive statistics quantifying the appropriateness of
each design criterion, a statistical model was developed
(Table 1) to quantitate the level of agreement among an
overall low number of voters to address the challenge of
the relatively small number of existing disease-specific
SFRT experts.

A disease-specific consensus expert panel of 3 radia-
tion oncologists, a physicist, and a biologist with scientific
SFRT publications and/or presentations was established
for each disease site to develop the consensus recommen-
dations and guideline. The aggregated voting round 1
results were circulated among each disease-specific panel,
reviewed, and discussed in sequential conference calls and
communications, using modified Delphi technique27

principles (Table 1). Remaining controversies and/or new
trial design considerations were subjected to a second vot-
ing round in H&N cancer, followed by iterative panel
review and discussions. For STS, only 1 voting round was
required. Detailed voting results and panel discussions are
presented in the respective consensus tables (Appendices
E3 and E4).

The drafts of the resulting consensus guidelines were
posted on the RSS website for public comment. After
review of the comments, the panel finalized the guideline
as summarized in this article. The detailed guidelines are
presented in Appendices E5 and E6.
Consensus Guideline Recommendations
and Discussion
SFRT Clinical Trial Design Consensus
Guideline for H&N Cancer

The clinical trial design recommendations for H&N
cancer were guided by 3 SFRT outcome studies of multiple
disease sites containing H&N cancer patients2-4 and 3 dis-
ease-specific series of only H&N cancer5,6,13 (Appendix
E1). These studies showed high local and regional control
rates in the neck of 79% to 92% and survival rates of 50%
to 79% in patients with far-advanced tumors5,6 that com-
pared favorably with the regional control rates of 25% to
66% and survival of 30% reported with conventional radi-
ation therapy or radiation therapy and chemotherapy.28-32

These observations provided rationale to test SFRT rigor-
ously in multi-institutional trials of bulky neck disease.
Eligibility

The consensus on eligibility and exclusion criteria is
summarized in Table 3. Recommendations for eligibility
aimed to establish, based on patient characteristics in the
pilot studies5,6 (Appendix E1), a uniform patient cohort
of oropharynx, larynx (high consensus), and nasopharynx
(moderate consensus) primaries with bulky lymph node
involvement. Eligibility should be guided by the lymph
node status, not the status (T-stage) of the primary (high
consensus), emphasizing that the majority of reported
clinical experience with SFRT in H&N cancer is in the
treatment of bulky lymph nodes.2-6,13 Patients with any
T-stage oropharynx, larynx, or nasopharynx cancer and
N3 nodal stage are eligible (Table 3). Similarly, stage N3
skin primaries may be included (high consensus). Eligible
histology includes squamous cell carcinoma, based on the
majority of published experience,5,6,13 both human papil-
lomavirus (HPV) (P16) positive and negative (moderate
consensus). Uncommon primaries and uncommon or
highly radiosensitive histologies are excluded to minimize
confounding variables that may hamper interpretation of
outcome results (high consensus).

The panel unanimously recommended exclusion of
tumors with both carotid invasion and skin involvement,
or both carotid invasion and prior radiation therapy,
based on fatal carotid bleeding after SFRT in a patient
with carotid invasion and prior radiation,6 and in a
patient with carotid invasion and skin involvement
(unpublished).

Patients with prior radiation therapy (moderate con-
sensus), prior surgery, and/or (induction) chemotherapy
(high consensus) are excluded, with the exception of prior
surgery with no prior radiation to the target region. A sep-
arate clinical trial (to follow an initial trial of patients



Table 1 Synopsis of the consensus development process

Sequence Process description

1. Initial literature review Search terms: Spatially fractionated radiation therapy, GRID therapy, Lattice therapy, dose
fractionation, radiation, neoplasms/radiation therapy, neoplasms/pathology, tumor control
Databases: PubMed, Web of Science, Cochrane
Repeat literature search: April 2021

Tabulation of literature into evidence tables (Appendices 1-2)

2. Development of initial
clinical trial design
criteria

Design criteria: Eligibility/exclusion, pretherapy, on-therapy, and posttherapy patient evaluations
(for outcome endpoints), endpoints, stratifications, dose and technical radiation therapy
factors, clinical feasibility of correlative of studies, concurrent therapies, and knowledge gaps
that may be addressed in a trial

Performed by expert group of 3 leaders in general SFRT

3. Voting round 1 Anonymous electronic rating of the appropriateness of the proposed trial design criteria:
21 categories of trial design questions with 1-11 subcriteria, (total of 75 for H&N cancer
and 88 for STS): Voting scale 1-9*
1 knowledge-gap question
1 demographic expertise question

Voters: radiation oncologists, physicists, and biologists with clinical experience in SFRT in the disease site
and/or or publications and/or scientific presentations

4. Vote analysis and statisti-
cal model

Prioritization of agreement on the broader appropriateness categories (appropriate, may be
appropriate, or not appropriate)* while maintaining the nuancing of the 1-9 scale

Agreement categories: high, moderate, and lowy

5. Review/discussion of vot-
ing results by disease-spe-
cific consensus expert
panel (“panel”)

Panel members: 3 radiation oncologists, 1 physicist, and 1 biologist with SFRT publications
or scientific presentations in the specific disease site, physics, or biology, respectively

Consensus development based on voting statistics, literature and the panel’s clinical/scientific experience

Formal consensus video conference call(s) and consensus communications (email, phone)

6. Iterative voting round(s) Implemented for trial criteria with persistently low agreement, or new trial criteria identified by the panel

7. Rereview/discussion of
voting results

As in step 5 (with or without video conference call)

8. Draft guideline
development

Guideline draft and review by panel

9. Public comments Public comment posting for 2 weeks per disease site (by RSS)

10. Repeat literature review As in step 1

11. Review/discussion of
public comments

Review of anonymized public comments, as in steps 5 and 7; guideline revisions as indicated

12. Final guideline Development of final guideline by panel

Voting scale

Voting rank 1 2 3 4 5 6 7 8 9

Voting category Not appropriate
for clinical trial design

May be appropriate
for clinical trial design

Appropriate
for clinical trial design

Vote agreement Definitionsy

High Percentage agreement ≥67% AND if there is any disagreement, it is by at most 1 voting category

Moderate 60%-67% agreement OR agreement ≥67% but votes in both appropriate and not appropriate
vote categories

Low Percentage agreement <60%

Abbreviations: H&N = head and neck; RSS = Radiosurgery Society; SFRT = spatially fractionated radiation therapy; STS = soft-tissue sarcoma.
* Voting scale and categories:
Within each voting category, 3 subranks (eg, 7, 8, and 9) signify ranking as lower, intermediate, and higher appropriateness, respectively.
y Details of vote agreement categories:
Agreement on the rating of each clinical trial criterion was categorized as either low, moderate, or high. Low agreement was defined as the percentage
of agreement on the broader appropriateness category (appropriate, may be appropriate, and not appropriate) of less than 60%. High agreement was
defined as percent agreement > 67% on the appropriateness category AND no disagreement (if any was present) by more than 1 category. Thus, rat-
ings of appropriate and may be appropriate, or may be appropriate and not appropriate for the same clinical trial criterion were allowable under high
agreement if at least two-thirds agreed on a single appropriateness category, whereas ratings of both appropriate and not appropriate could not qual-
ify for high agreement, regardless of the overall percentage of agreement. All others were classified as moderate agreement.
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Table 2 Clinical trial design categories

Design categories Subcategories

Eligible disease sites Primary tumor sites

Eligibility/exclusion
criteria

Disease stage, tumor
size/extent/invasion

Histology, molecular markers

Prior treatment

Patient factors: age,
performance status

Stratifications

Pretreatment evaluations Clinical

Imaging

Histologic investigations

Radiation therapy:
SFRT

SFRT dose

SFRT target volume

SFRT OAR constraints

SFRT technique

Radiation therapy:
Conventional external
beam radiation therapy

cERT dose and fractionation

cERT technique

cERT OAR constraints

On-therapy evaluations Clinical

Laboratory

Imaging

Patient-reported outcomes

Translational studies
(evaluation of clinical
feasibility)

Systemic therapy Cytotoxic agents and timing

Immunotherapy

Posttherapy evaluations Clinical

Imaging

Patient-reported outcomes

Knowledge gaps Clinical

Physics

Biology/translation science

Abbreviations: cERT = Conventional external beam radiation ther-
apy; OAR = organ at risk; SFRT = spatially fractionated radiation
therapy.
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without previous radiation therapy) is suggested for
patients with postradiation recurrences.
Stratifications

Stratifications according to T-stage and HPV status are
recommended based on their strong influence on
outcome. Stratification by SFRT technology—for exam-
ple, GRID versus Lattice therapy (if Lattice is used in the
future)—is recommended because of dosimetric differen-
ces (Table 3).
Endpoints

Local control and treatment related toxicity are recom-
mended as primary endpoints. The feasibility of deliver-
ing SFRT according to the dosimetric and physics
specifications22 (see the section “SFRT: Dose”), disease-
specific survival, overall survival, and quality of life
(QOL) outcomes represent additional endpoints.
Radiation therapy
SFRT: Dose
Based on the outcome data2-6,13 (Appendix E1), the

preferred SFRT dose is 15 Gy/1 fraction to the bulky
lymph node(s). In 2 of the 3 H&N cancer cohorts,
15 Gy/1 fraction was most commonly used and was asso-
ciated with high local control and low toxicity,5,13 provid-
ing the basis for this recommendation. Although a
schedule of 20 Gy/1 fraction was used in 1 cohort6 and in
small proportions of patients in other studies,4,5,13 20 Gy
has been more commonly used in the palliative setting.2-4

Therefore, and in the absence of a dose response relation-
ship favoring 20 Gy, the panel considered 15 Gy/1 frac-
tion the preferred dosing regimen for an initial SFRT trial
(high consensus). The dose at the GTV periphery, which
is generally in the range of 3 Gy for a 15-Gy SFRT dose,33

should be reported.
Standardization of the GRID dose prescription, defined

as the peak dose, is required. In addition, dosimetric and
geometric characteristics of the heterogeneous dose distri-
bution, such as dose volume histogram characteristics
(D10, D50, D90) and peak-to-peak distance, should be
reported according to guidelines further described in the
recent GRID physics and dosimetry white paper.22 Owing
to the different SFRT technologies (eg, collimator-based
and MLC-based GRID) with different dose distribu-
tions,34 the equivalent uniform dose (EUD) for H&N
squamous cell carcinoma (using a/b = 10 Gy) and for
normal tissues (generally a/b = 3 Gy) must be determined
for any trial regimen. Principles of EUD computation in
SFRT, which favor the modified linear quadratic model,
and tumor cell sensitivity considerations are described in
the recent SFRT physics guideline publications.22,25
SFRT: Target volume
The SFRT target should consist of the involved nodal

mass (GTV)4-6,13 by imaging-based delineation, without
an additional margin (high consensus).



Table 3 Eligibility, exclusions, and stratifications in H&N cancer SFRT trials

Eligibility criteria

Disease sites Oropharynx, hypopharynx, supraglottic larynx, glottic larynx, and nasopharynx primary tumors*

Stage, tumor size Stage N3 tumors with any T-stage
Single lymph node or matted nodes with lymph node size totaling >6 cm

Histology and tumor markers Squamous cell carcinoma, HPV negative or HPV positive

Prior therapy No prior therapyy

Patient factors Age >18 y
No upper age limit if eligible based on performance status

Exclusion criteria

Disease sites Salivary gland tumors, paranasal sinus tumors*

Histology and tumor markers Tumors considered radiosensitive, such as lymphoma, multiple myeloma, and leukemic infiltrates

Tumor stage/extent Both carotid artery invasion and skin involvement
Both carotid artery invasion and prior radiation

Prior therapy Recurrent tumors after prior radiation therapy
Recurrent tumors after prior surgeryy

Prior chemotherapy for H&N cancer

Patient factors Active scleroderma (systemic sclerosis)

Stratifications

T-stage grouping Stage T1/2 vs T3/4

HPV status HPV negative vs positive

SFRT technology GRID vs Latticez

Abbreviations: H&N = head and neck; HPV = human papillomavirus; SFRT = spatially fractionated radiation therapy.
* Primary skin cancer with stage N3 lymph node involvement is eligible. There is currently insufficient clinical evidence in favor of specific individ-
ual H&N primary sites for inclusion into SFRT trials (high consensus). Uncommon primary sites, such as salivary gland and paranasal sinus tumors,
should be excluded because of their different spread pattern, often variable histology, and overall low incidence (high consensus).
y Recurrent tumors after prior surgery may be eligible if recurrence consists of bulky neck nodes that were not previously irradiated.
z If Lattice therapy is used in subsequent trials, stratification may include GRID versus Lattice therapy technologies.
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SFRT: Normal organ-at-risk structures
Based on published data4-6,13 and the panel’s clini-

cal experience, critical normal organ-at-risk (OAR)
structures include the spinal cord, brain stem, and
optic chiasm (high consensus). Consideration of the
brachial plexus, carotid artery, and mandible as
OARs may be appropriate (moderate consensus). The
addition of planning organ at risk volume (PRV)
margins to the OAR structures can be considered,
particularly for the spinal cord and brain stem (mod-
erate consensus).
SFRT: Technique
Based on current published data,4-6,13 GRID technolo-

gies are preferred. Collimator-based and MLC-based
GRID therapy may be applied within the same trial
under the condition that the EUD is comparable. While
there was overall support for Lattice therapy as an SFRT
technology in the future, to the panel's knowledge, there
were no published outcome data on Lattice SFRT in
H&N cancer at the time of this writing. Whereas such
published experience is expected to emerge, at this time,
the panel favored GRID therapy technologies for an ini-
tial clinical trial.

Conventional ERT: Dose and technique
Conventionally fractionated external beam radiation

therapy (cERT) must be given after SFRT, because it has
been demonstrated that tumor response is inferior when
cERT is omitted.2,3 The cERT should start within 72 hours
of the SFRT fraction.

For the cERT component of treatment, conventional
definitive dose regimens, specific to the H&N disease site,
are prescribed. PTV doses are generally in the range of 70
to 72 Gy (2-2.12 Gy/fraction) to the gross tumor, 60 to 63
Gy to the high-risk subclinical target, and 50 to 56 Gy to
the low-risk subclinical target (high consensus). Reduc-
tion of the definitive cERT dose below standard dose lev-
els is not recommended because a reduced response rate
of only 25% was reported with cERT doses of less than
75% of the planned definitive dose.13 The use of intensity
modulated radiation therapy is encouraged (high consen-
sus). A simultaneously integrated boost is acceptable for
bulky involvement; however, if used, the dose to the SFRT
GTV should be limited to 69.6 Gy.
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Conventional ERT: OAR constraints
Dose constraints to OARs for the cERT component

follow those of standard practice without consideration of
the dose contribution from the SFRT (high consensus).
The SFRT contributions to OARs must be addressed dur-
ing the planning of the SFRT component of treatment
(see the section “SFRT: Normal organ-at-risk structures”).
Systemic therapy

Agents and timing
Chemotherapy and targeted systemic therapy agents

that are typically considered appropriate in conjunction
with standard-fractionation radiation therapy for H&N
cancer are acceptable for a clinical trial (high consensus).
These agents typically include but may not be limited to
platinum-based chemotherapies, taxanes, and cetuximab.
Chemotherapy can be given concurrently with radiation
therapy for the cERT component of treatment. However,
systemic therapy should not be given during SFRT (high
consensus). Typical schedules that have been used consist
of delivering SFRT (without systemic therapy) on a Fri-
day, followed by cERT and concurrent systemic therapy
start within 72 hours on the following Monday.

Immunotherapy
In the absence of published experience with combina-

tions of SFRT and immunotherapy in H&N cancer, there
was no consensus among voters on this combination. The
panel favored not to include immunotherapy for an initial
trial (moderate consensus) and to test combined therapy
in a subsequent trial using guidance from the ablative ste-
reotactic radiation therapy and immunotherapy experi-
ence, and future SFRT and immunotherapy experience.
Evaluations and assessments

Patient evaluations before, during, and after treatment
are recommended according to the standard of care for
H&N cancer. These are detailed in Table 4 along with
additional trial-specific assessments, specifically QOL
assessments, patient-reported outcomes, and imaging.
Cone beam computed tomography imaging during treat-
ment can be incorporated into trials to establish criteria
for intratreatment response assessment and adaptive ther-
apy that may be required in SFRT.8

The outcome endpoint of local/regional control in the
neck is important but can be challenging to definitively
characterize because of interinstitutional variability in
response assessment and in the use and timing of postra-
diation neck dissection. Determination of local control
should be based on the 3-month posttherapy positron
emission tomography/computed tomography (PET/CT),
using established response criteria; and on the need for
postradiation neck dissection, including pathologic
response at the time of neck dissection.

To enable translational correlative science studies,
specimen collection of blood and urine multiple times
during radiation therapy should be strongly considered
(high consensus). Although pretherapy tumor biopsies
are available for correlative studies, tumor tissue sampling
during the treatment course was considered not clinically
practical or feasible based on the potential clinical risk. If
possible and available, advanced functional and molecular
imaging techniques such as vascular and metabolic imag-
ing may provide noninvasive and non-tissue-altering
approaches to characterize changes in functional tissue
properties in response to SFRT during and after treat-
ment.35-38 Posttherapy patient-reported and QOL out-
comes are recommended (high consensus).
SFRT Clinical Trial Design Consensus
Guideline for STS
As for H&N cancer, trial design recommendations for
STS were based on multidisease series that included sar-
coma patients and disease-specific series (Appendix E2).
This experience comprised 2 studies of largely palliatively
treated cohorts that contained sarcoma patients.2-4 Dis-
ease-specific series of definitively treated patients with
STS have been presented in abstract form,9,10 and 1 out-
come study12 was recently published. These studies
showed high response rates, local control rates of 85% to
100%,9-12 and a limb-sparing rate of 93%9 in bulky (>8-
10 cm) sarcomas, which overall exceeded the outcomes of
standard therapy.39-41 In contrast, with conventional pre-
operative radiation therapy, few patients with bulky sarco-
mas attain local control,42 and overall outcomes are poor.
In high-grade sarcomas, median treatment-induced
necrosis is only 50%,43 well below the recognized tumor
control and survival predictor of ≥90% necrosis.39-44 Col-
lectively, the favorable SFRT pilot results9,10,12 and the
challenge in improving outcomes with other strategies,
including more toxic dose escalation42 or intensified che-
motherapy,45 provide justification for the development of
multi-institutional SFRT trials in STS.
Eligibility

Eligibility and exclusion criteria are summarized in
Table 5. Eligibility recommendations aim to establish a
uniform patient cohort of bulky extremity sarcomas, the
most common presentation, which also have the most
SFRT pilot experience.2,3,12 This eligibility profile reflects
that of the major prior randomized sarcoma trials using
conventional radiation therapy.40,41,46 The panel consid-
ered it important to maintain a patient population that is
consistent with these trial cohorts to allow comparison of



Table 4 Pretherapy, on-therapy, and posttherapy assessments in H&N SFRT trials

Assessments Evaluation/test Pretherapy On-therapy Posttherapy

Clinical H&N examination x x* xy

Fiberoptic laryngoscopy xz xz xy,z

Toxicity assessment n/a x* xy

Imaging CT maxillo/facial/neck x n/a xx

MRI maxillo/facial/neck x n/a xx

CT chest (including liver) x n/a xz

Swallowing study xz n/a xz

PET/CT x n/a xx

On-board imaging (CBCT) n/a xǁ n/a

Laboratory CBC x xz xz

Blood chemistries x xz xz

Histology HPV x n/a n/a

Correlative studies Blood collection x x{ x{

Urine collection x x{ x{

Tumor biopsy x# — —
Functional/molecular imaging x** x** x**

Patient-reported outcomes QOL assessment x x xy

Abbreviations: x = recommended; xz = recommended if clinically indicated; — = not recommended; CBC = complete blood count; CBCT = cone
beam computed tomography; CT = computed tomography; H&N = head and neck; HPV = human papillomavirus; MRI = magnetic resonance imag-
ing; n/a = not applicable; PET = positron emission tomography; QOL = quality of life; SFRT = spatially fractionated radiation therapy.
* Weekly.
y Routine follow-up every 3 months in years 1 to 2, and every 4 to 6 months in years 3 to 5.
x PET/CT, or alternatively (if PET/CT is unavailable), maxillo/facial/neck CT or MRI.
ǁ CBCT imaging during treatment can be included as response assessment.
{ Feasible weekly or at prospective time points and dose levels during or after treatment.
# Tissue from pretherapy biopsies may be procured for correlative studies.
** Functional imaging can be added to a diagnostic imaging session pretherapy and posttherapy and as additional imaging prospectively scheduled
at various time points and dose levels during radiation therapy.
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SFRT outcomes with those of conventional radiation
therapy.

Patients with stage IB-IIIB, grade 2 to 3, bulky ≥8 cm
STS, who are planned to be treated with preoperative
radiation therapy (high consensus), are eligible. Both neo-
adjuvant chemotherapy and no chemotherapy are permit-
ted, reflecting the current practice pattern in STS. Prior
resection, prior radiation therapy, and scleroderma (asso-
ciated with higher risk of toxicities, particularly in subcu-
taneous and skin regions) are exclusion criteria (high
consensus).
Stratifications

Tumor bulk, using the largest imaging-based tumor
diameter of <12 cm versus ≥12 cm, and use of neoadju-
vant chemotherapy versus no chemotherapy (see the sec-
tion “Concurrent systemic therapy: Agents and timing”),
should be stratified (Table 5). Owing to the redundancy
in molecular pathways, molecular marker-based
subclassification or stratification is not recommended for
an initial trial in this rare disease.
Endpoints

The feasibility of delivering SFRT according to the
dosimetric and physics specifications22 (see the section
“SFRT: Dose”), primary tumor response (by imaging and
pathologic response), and resectability are suitable pri-
mary endpoints. Local recurrence-free, metastasis-free,
overall survival, and QOL outcomes present additional
endpoints.
Radiation therapy

SFRT: Dose
A dose range of 15 to 18 Gy in 1 fraction is an appro-

priate dosing regimen for clinical trials (high consensus),
with the higher dose favored. The EUD of the SFRT



Table 5 Eligibility, exclusions, and stratifications in sarcoma SFRT trials

Eligibility criteria

Disease sites Patients with primary sarcomas of extremities, to be treated with preoperative radiation therapy*

Stage, tumor size Unresectable, stage IB-IIIB, bulky tumors ≥8 cm in largest diametery

Histology and tumor markers Undifferentiated pleomorphic sarcoma, myxoid liposarcoma,
or leiomyosarcoma (high consensus)z

Grade 2-3

Prior therapy None except neoadjuvant chemotherapy

Patient factors Age >18 y; upper age limit of 85 y may be appropriate (moderate consensus)

Exclusion criteria

Disease sites Less common primary sites, such as head and neck, intra-abdominal, or retroperitoneal sites

Histology and tumor markers Rhabdomyosarcoma; Ewing sarcoma; chondrosarcoma, Kaposi sarcoma, and angiosarcoma;
malignant peripheral nerve sheath tumorx

Grade 1

Tumor stage/extent Tumors <8 cm in largest diameter

Prior therapy Recurrent tumors after prior radiation
Recurrent tumors after prior surgery
Recurrent tumors after prior chemotherapy

Patient factors Scleroderma (systemic sclerosis)║

Stratifications

Tumor bulk Largest dimension ≤12cm vs >12 cm

Neoadjuvant chemotherapy Neoadjuvant chemotherapy vs none

Abbreviation: SFRT = spatially fractionated radiation therapy.
* Less common primary sites, such as head and neck, intraabdominal, or retroperitoneal sites, should be excluded to reduce unnecessary variability
(high consensus).
y Inclusion of patients with lymph node involvement (which is rare) may be appropriate (high consensus).
z This eligibility profile reflects that of major randomized prior trials in sarcoma with conventional radiation.
x Although some of these histologies have been treated with SFRT, their different natural disease course and rarity was deemed to add confounding
variability to an SFRT clinical trial cohort.
║ Exclusion because of high risk of toxicities, particularly in skin and subcutaneous tissues (high consensus).
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regimen must be determined for sarcoma and for the nor-
mal tissues as described for H&N cancer.
SFRT: Target volume
The SFRT target volume, based on clinical

experience,9,10,12 is the GTV of the primary tumor with-
out an additional margin.
SFRT: OAR constraints
Consideration should be given to excluding sensitive

neural structures such as the brachial plexus from the
SFRT volume and beam path (high consensus). Exclusion
of OARs with a 1-cm margin, usually through secondary
collimation with MLC blocking, are expected to achieve a
negligible SFRT dose. It is also recognized that this may
not be possible if these OARs are involved with a tumor.
The skin surface dose from SFRT should be limited to
<150% of the prescribed SFRT dose based on the STS
brachytherapy experience.47
SFRT: Technique
For an initial clinical trial, GRID therapy is the tech-

nology of choice, because all currently published clinical
experience is in GRID therapy2,3,9,10,12 (high consensus).
Although published data with Lattice in STS are currently
lacking, Lattice therapy may be appropriate in subsequent
trials.
Conventional ERT: Dose and technique
The cERT dose, following the SFRT fraction, is 50 to

50.4 Gy / 25 to 28 fractions to the PTV (high consensus)
per RTOG trial regimens,41,46 using intensity modulated
radiation therapy or a 3-dimensional conformal
technique.41,46 As in standard-of-care radiation therapy,
treatment to the entire extremity circumference must be
avoided (high consensus).

Most commonly, the cERT course begins 1 to 2 days
after SFRT4 and should start ideally within 3 days of the
SFRT fraction. The interval between SFRT and cERT
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should be documented to elucidate any potential effects
on outcome.
Conventional ERT: OAR constraints
Conventional dose constraints to critical normal tis-

sues are applied. The dose contribution from the SFRT is
not counted toward the dose constraints (moderate con-
sensus). For concerns regarding normal-tissue doses, the
OAR dose should be reduced up front when planning the
SFRT by adjusting field size and shape (see the section
“SFRT: OAR constraints”).
Systemic therapy
Agents and timing
Neoadjuvant chemotherapy (prior to radiation ther-

apy) and adjuvant chemotherapy after radiation therapy
completion are acceptable. Agents considered acceptable
in standard-of-care practice are allowable in clinical trials
(high consensus).

Concurrent chemotherapy, delivered during the radia-
tion therapy course, is not considered permissible in an
Table 6 Pretherapy, on-therapy, and posttherapy assessment

Assessments Evaluation/test Pretherapy
On-
therap

Clinical Clinical examination x x *

Toxicity assessment n/a x*

Imaging MRI (extremity) x n/a

CT (extremity) x n/a

CT Chest/abdomen/
pelvis CT

x n/a

PET/CT x n/a

Laboratory CBC x n/a

Blood chemistries x n/a

Histology Tumor necrosis n/a n/a

Correlative studies Blood collection x x#

Urine collection x x#

Tumor biopsy/
specimen

x** —

Patient-reported
outcomes

QOL assessment x x

Abbreviations:x = recommended;xǁ = recommended if clinically indicated;
tomography; MRI = magnetic resonance imaging; n/a = not applicable; PET =
fractionated radiation therapy.
* Weekly.
y Four to 8 weeks after radiation therapy completion.
z Routine follow-up every 3 to 4 months in years 1 to 2, every 6 months in ye
x Magnetic resonance imaging preferred, using Response Evaluation Criteria
{ Tumor necrosis of at least 90%.
# Feasible weekly or at prospective time points and dose levels during and aft
** Tissue from pretherapy biopsies and postradiation specimens (from the de
initial clinical trial (high consensus). Concurrent chemo-
therapy is inconsistently and not widely used in current
practice, providing a rationale for its omission, along with
the potential to introduce confounding variables for the
interpretation of tumor control and toxicity outcomes.
Immunotherapy
Immunotherapy was not considered to be recom-

mended in an initial clinical trial (high consensus) but
can be studied in subsequent trials or as a lead-in study as
more combined STS radiation therapy and immunother-
apy data emerge.
Evaluations and assessments

Evaluations are presented in Table 6. Pretherapy stan-
dard workup includes magnetic resonance imaging or CT
of the extremity and chest, abdomen, and pelvis CT or
PET/CT for metastatic workup.

On-treatment evaluations should consist of a standard
weekly response, toxicity, QOL assessments, and patient-
reported outcomes. Specimen collection of blood and
s in sarcoma SFRT trials

y
Postradiation
therapy/preoperative

Surgical/
histologic

After completion
of all therapy

x y n/a x z

xy n/a xz

xx n/a xx

xx n/a xx

n/a n/a xǁ

n/a n/a xǁ

x n/a x
x n/a x
n/a x{ n/a

x n/a x
x n/a x
— x** n/a

xy n/a x

— = not recommended; CBC = complete blood count; CT = computed
positron emission tomography; QOL = quality of life; SFRT = spatially

ars 3 to 5, then yearly.
in Solid Tumors and quantitative assessment of tumor necrosis.

er treatment.
finitive resection) may be procured for correlative studies.
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urine multiple times during radiation therapy for transla-
tional correlative studies are feasible and strongly recom-
mended (high consensus). Tumor biopsies during the
treatment course are considered not clinically feasible
(high consensus). Uniquely in the preoperative radiation
therapy setting, the surgical specimen after radiation ther-
apy provides an important potential resource for the pro-
spective study of post-SFRT molecular markers in both
tumor and normal tissue.

After radiation therapy, preoperative response assessment
is recommended, preferably with magnetic resonance imag-
ing, using the Response Evaluation Criteria in Solid Tumors,
quantitative imaging assessment of tumor necrosis (>90%
necrosis), and standard clinical examination (high consen-
sus) at 4 to 8 weeks after radiation therapy. Evaluations
should be performed in conjunction with QOL assessments
and patient-reported outcomes (high consensus).

Surgical evaluation, pathologic response
Pathologic tumor response, as routinely assessed in

standard of care, provides an important outcome assess-
ment for SFRT response in STS clinical trials. Assessment
of negative-margin resectability, R0 versus R1 resection,
and pathologic criteria of tumor response including quan-
titative histologic assessment of necrosis of >90%39 is
required (high consensus).

Posttherapy evaluations (after completion of all
therapy)

History and clinical examination are indispensable for
the assessment of function and toxicity outcomes. Clinical
examination and imaging surveillance schedules should
follow the standard of care (Table 6) and be combined
with patient-reported outcomes and QOL assessments in
the routine posttherapy evaluations.
Conclusion
The pilot experience that has defined SFRT dose and
techniques and shown promising tumor control, toxicity
outcomes, and early survival outcomes, has reached an
inflection point that enables the development of multi-insti-
tutional SFRT trials in definitively treated bulky primary
tumors.

SFRT for both STS and H&N cancer share common
properties of high ablative stereotactic radiation therapy
dosing, generally excluding OARs; and are administered
in close time proximity before conventional radiation
therapy or radiation therapy and chemotherapy.

Standardization of the novel, nonconventional physics
and dosimetric parameters with inherent dose and
response modeling of the heterogeneous dose to tumor
and normal structures is essential for the feasibility of
SFRT trials and for their success in generating meaningful
results. The inclusion of well-conducted translational
science into clinical trial design is critically important to
investigate in clinical patients the preclinically observed
biological mechanisms and potential immunologic phe-
nomena of SFRT.15-20 To accomplish this, “liquid biopsy”
concepts, leveraged through serial blood and urine collec-
tions and synchronized prospectively with the treatment
course, may advance our understanding of the underpin-
nings of SFRT response. The challenge of the inability to
procure tumor tissue during the radiation therapy course
to interrogate molecular markers may be alleviated by
prospective functional and molecular imaging. Finally,
physicians’ and physicists’ education was a knowledge
gap identified during this consensus effort and is hoped to
be addressed by these guidelines.

This development of guidelines for clinical trial design
is a novel concept to establish broad consensus (through
ample a priori communication and vetting) among the
respective scientific and clinical communities, well ahead
of clinical trial design and development. We have adapted
existing consensus process models that have been in use
for clinical care guidelines, which are generally based on
ample published data and large numbers of experts. We
applied and further developed these concepts for the
requirements of consensus development in the different
domain of clinical trial design, which has to build on
much sparser, less mature pilot data and fewer experts,
but nonetheless requires agreement among the broader
community to facilitate trial success. Intense engagement
and consensus building among clinical, physics, and biol-
ogy expertise enabled identification of current knowledge
gaps and development of design strategies to address
them in clinically feasible trials.

The trial design recommendations presented herein
are based on the current status of knowledge in SFRT and
the developed common understanding among SFRT
experts and community. Although they may provide
guidance for clinical trial design and embedded transla-
tional studies, new data, longer-term outcome results, and
larger patient cohorts may further refine, adapt, or modify
these initial concepts. Ultimately, these consensus recom-
mendations should be individualized by the respective
investigators and their teams pursuing clinical trials in
SFRT.
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