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Abstract

Background: Class 1 integrons are one of the most successful elements in the acquisition, expression and spread of
antimicrobial resistance genes (ARG) among clinical isolates. Little is known about the gene flow of the components of the
genetic platforms of class 1 integrons within and between bacterial communities. Thus it is important to better understand
the interactions among ‘‘environmental’’ intI1, its genetic platforms and its distribution with human activities.

Methodology/Principal Findings: An evaluation of two types of genetic determinants, ARG (sul1 and qacE1/qacED1 genes)
and lateral genetic elements (LGE) (intI1, ISCR1 and tniC genes) in a model of a culture-based method without antibiotic
selection was conducted in a gradient of anthropogenic disturbances in a Patagonian island recognized as being one of the
last regions containing wild areas. The intI1, ISCR1 genes and intI1 pseudogenes that were found widespread throughout
natural communities were not associated with urbanization (p.0.05). Each ARG that is embedded in the most common
genetic platform of clinical class 1 integrons, showed different ecological and molecular behaviours in environmental
samples. While the sul1 gene frequency was associated with urbanization, the qacE1/qacED1 gene showed an adaptive role
to several habitats.

Conclusions/Significance: The high frequency of intI1 pseudogenes suggests that, although intI1 has a deleterious impact
within several genomes, it can easily be disseminated among natural bacterial communities. The widespread occurrence of
ISCR1 and intI1 throughout Patagonian sites with different degree of urbanization, and within different taxa, could be one of
the causes of the increasing frequency of multidrug-resistant isolates that have characterized Argentina for decades. The
flow of ARG and LGE between natural and clinical communities cannot be explained with a single general process but is a
direct consequence of the interaction of multiple factors operating at molecular, ecological, phylogenetic and historical
levels.
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Introduction

In addition to the global causes of death by viruses, bacteria and

parasites, which are a huge burden on public health, the

progressive increase of multidrug resistance in all geographical

regions has been identified as a public health priority according to

the World Health Organization, 2011 (http://www.who.int/

drugresistance). In recent years, research on the function of

antibiotic resistance in non-clinical environments has begun to

receive attention [1,2,3,4]. This interest is based on the idea that a

better understanding of the diversity of patterns and biological

functions of antibiotic resistance mechanisms may eventually help

to control its threats towards human and also animal health. The

role of the environment as a reservoir of strains that have never

before been isolated from humans was demonstrated during the

outbreak caused by enteroaggregative Escherichia coli that had

acquired the genes to produce Shiga toxins in Germany in May

2011. This episode also stresses the negative consequence of

having mechanisms of antimicrobial resistance in these isolates

(blaTEM-1 and blaCTX-M-15), which most likely helped the bacteria

to survive and persist in different habitats [5].

Most of the new research into natural bacterial communities has

focused on antimicrobial resistance genes (ARG) that confer

resistance to antimicrobial drugs, mainly associated with protec-

tion against natural antibiotics or with functional properties

among the metabolic pathways of environmental bacteria [2,6,7].

In contrast, scarce research has focused on the natural occurrence

and role of the genetic platforms (transposons, integrons) that

participate in the capture and dispersion of these genes within and

among genomes, usually known as mechanisms of lateral genetic

transfer [8]. To our knowledge, there are no prospective studies

that analyses the independent occurrence of genetic components

of a particular genetic platform, i.e. the lateral genetic transfer
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determinants such as integrons or transposons with the ARG

elements, considering both ecological and molecular parameters.

Lateral genetic transference is a widespread phenomenon that is

not only largely responsible for the ability of pathogenic and

opportunistic bacteria to resist clinical antibiotic pressures [9], but

also enables exchange of the accessory genome, which is a major

contributor to bacterial evolution [10]. Of the different mecha-

nisms involved in lateral genetic transfer, the class 1 integrons are

one of the most successful elements in the acquisition, abundance,

maintenance and spread of antimicrobial resistance gene cassettes

among gram-negative bacilli isolated from clinical samples

[11,12,13,14]. Although their role has not been yet investigated,

class 1 integrons have been also found in gram-positive clinical

strains, including methicillin-resistant Staphylococcus aureus and

Corynebacterium species [15,16,17,18,19,20], from several hospitals

around the world. The basic structure of an integron possesses a

gene for an integrase (intI), a recombination site (attI) and a

promoter (Pc) that permits the expression of gene cassettes

incorporated in the variable region [21]. Several genetic structures

have been described at the 39 end of the variable region of class 1

integrons [22,23,24,25,26,27,28]. There are three genetic plat-

forms containing and spreading the class 1 integrons described in

clinical samples from Argentina (Figure 1): (i) the most common

one exhibits the well-known 39-conserved segment (39-CS) at the

end of the variable region, which contains the qacED1 gene that is

a deleted form of the quaternary ammonium compounds

resistance gene cassette, qacE, followed by the sul1 gene that

confers resistance to sulphonamides, and finally the orf5 of

unknown function [12] (Figure 1A); (ii) the complete or incomplete

module of Tn402, tniC-tniQ-tniB-tniA [29] (Figure 1B); and (iii) the

39-CS can be invaded by the putative site-specific recombinase

ISCR1, which adds a second variable region that can contain an

important variety of antimicrobial resistance genes such as blaCTX-

M-2 and qnrB10, which are known as unusual or complex class 1

integrons [30,31,32,33] (Figure 1C). Neither class 1 integrons nor

unusual class 1 integrons allow intracellular mobilization of the

intI1 gene per se. However, almost all clinical members of class 1

integrons harbour the IR of the Tn402 transposon, transforming

this genetic platform into a mobile element when the tns genes are

provided in trans [25,34]. In addition, Tn402 targets plasmid and

transposon resolution sites (res) [35], expanding the range of lateral

gene transfer between clinical and natural communities [1]. It is

very important from a clinical standpoint that the association of

genes in the same genetic platform is co-selected under antibiotic

pressure.

The relevant role of natural communities as a reservoir and

original source of class 1 integrons was recently identified

[1,15,36,37]. Since then, their distribution has been reported in

environments with different degrees of human disturbance

[1,15,36,37,38,39,40,41,42]. Overall, it is assumed that 2.65% of

eubacterial cells in non-clinical samples contain a class 1 integron

[41]. However, factors involved in the distribution of non-clinical

class 1 integrons within natural communities remain largely

unknown. What is known with certainty is that the class 1

integrons confer a benefit to the host cell due to their ability to

acquire gene cassettes that could provide advantages for survival in

hostile environments [43,44,45,46,47].

Concerning the molecular evolution of these elements, class 1

integrons were found to be chromosomally located, pre-dating the

association with the Tn402-like transposon in non-clinical

samples, suggesting that the ancestor of the clinical class 1

integron was more like a typical chromosomal integron [1]. The

understanding of the molecular and environmental properties that

contribute to the global success of class 1 integrons is the first step

towards compiling a comprehensive story of how genes, genetic

platforms, bacterial populations and selection pressures interact

with human activities. However, it is difficult to assess the

directionality of the flow of genes among natural environment and

human habitats. The different alleles of the intI1 gene from natural

communities led to the identification of the sources of both

‘‘environmental’’ and ‘‘clinical’’ class 1 integrons [48].

The aim of this study was to analyse the relationships among

‘‘environmental’’ intI1, its genetic platforms and its distribution

with human activities in areas with different levels of urbanization

(Table 1). Our methodology was based on two strategies: (i) we

worked at two scales of analyses, molecular and ecological levels,

and (ii) we evaluated two types of genetic elements from the same

samples, ARG (sul1 and qacE1 genes) and genetic elements

associated to lateral genetic transfer such as intI1, ISCR1 and tniC

genes, called lateral genetic elements (LGE) for convenience in this

paper and which comprise the genetic platforms of class 1

integrons. The first strategy allows the simultaneous analyses of

ecological patterns and molecular mechanisms. The second

strategy is based on the expectation that ARG will respond

differently to LGE regarding the geographical variation of

urbanization due to the different roles of these elements. We

hypothesized that, if LGE serve as a general response mechanism

to environmental stress, they should be present in both ‘‘clean’’

and urbanized habitats, as far as bacteria meet stressful conditions

in ‘‘clean’’ habitats (for example, extreme seasonal or daily

variations in weather conditions). Thus, they should present a

weak relationship with the degree of urbanization. In contrast,

ARG should be closely related to antibiotic pressure, and thus will

present a strong link to geographical variations in urbanization

and human presence. The field work was conducted in Tierra del

Fuego, a Patagonian island from Argentina and Chile (Figure 2),

which is recognized as being one of the last places on Earth that

contains land areas that can still be considered wild or ‘‘clean’’,

given its great extensions of intact, natural vegetation and large

vertebrate assemblages, along with a low human population

density [49].

Results and Discussion

Taxonomic Distribution of the Components of the
Genetic Platforms of Class 1 Integrons

We identified the following bacterial taxa using culture-

dependent methods: c and b classes within the Proteobacteria

phylum (74 and 11 isolates, respectively), the Flavobacteria class

within the Bacteroidetes phylum (3 isolates), Arthrobacter, Streptomy-

ces, Microbacterium and Micrococcus genera within the Actinobacteria

phylum (9 isolates) and the Paenibacillus genus within the Firmicutes

phylum (1 isolate). Whole intI1 genes were identified in 11 isolates

of c-proteobacteria (Table 2). Although intI1 genes were more

abundant in Pseudomonaceae than among other families of the c-

proteobacteria (6/11), Enterobacteriaceae intI1 alleles showed high

sequence diversity (Table 2). The intI1 pseudogenes were mostly

found in c-proteobacteria, but they were also identified in two b-

proteobacteria isolates and in one Actinobacteria isolate, evidenc-

ing the widespread dissemination of this genetic element. The

remaining genetic determinants showed different patterns of

taxonomic distribution as ISCR1 and sul1 were found in c-

proteobacteria and in Actinobacteria, and tniC in c-proteobacteria

and Flavobacteria (Table 2). The qacE1/qacED1 gene showed

different frequencies between taxa (Table 3). Its frequency in c-

proteobacteria (18/74) was almost half of the frequency in the

other taxa (10/23).

Genetic Platform of Class 1 Integrons in Patagonia
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A previous study from Australia found a prevalence of intI1

genes in non-clinical isolates of b-proteobacteria strains in a

similar culture-based method [1]. They also found a great

dispersion of qac genes in environmental samples, and proposed

that selection for qac resistance before the antibiotic era

contributed to the mobilization and widespread of class 1

integrons among the environmental Proteobacteria. They argued

that when antibiotics began to be administrated it would be almost

inevitable that class 1 integrons would come to play a major role in

the dissemination of antibiotic resistance [50].

With the information available from ours and other studies

[48,50], it is possible to build a hypothesis on the role of

environmental c and b-proteobacteria as sources of clinical intI1

genes. In addition, we found that at each sampling site positive for

intI1, ISCR1 was also detected and at least one sul1 and/or qacE1/

qacED1 gene was identified. Although the succession of molecular

steps involved in the acquisition of components of the genetic

platforms of class 1 integrons circulating in hospitals nowadays

(Figure 1) could not be determined, our study showed a scheme in

which the c and b proteobacteria harbouring intI1 genes share

habitats with several other genera belonging to c, b-proteobac-

teria, Actinobacteria and Bacteroidetes, which in turn have the

ISCR1, sul1, tniC and/or qacE1/qacED1 genes. These genes could

have been co-acquired in one bacterial cell by mechanisms

associated with lateral genetic transference and later selected by

antimicrobial pressure within clinical settings and/or by human

activities.

The Sul1 Gene is the Only Genetic Marker Associated
with Urbanization

The frequency of occurrence of sul1 was significantly and

positively related to the level of urbanization, whereas the other

genes, intI1, ISCR1, qacE1/qacED1 and tniC, were not significantly

related to this variable (p.0.05) (Figure 3; Table 3). All 10 sul1

Figure 1. Genetic platforms class 1 integrons described in the clinical samples from Argentina. (A) The typical class 1 integron with the 39-CS
end containing qacED1, sul1 and orf5, (B) the unusual or complex class 1 integrons and, (C) the Tn402-type integrons. Arrows represent the different ORFs:
the violet arrow exemplifies the intI1 gene, the blue arrow represents the sul1 gene, the green arrow stands for the qacED1 gene, the red arrow represents
the tniC gene, and the yellow arrow represents the ISCR1 gene. The degree of colour intensity indicates different alleles for the corresponding gene. Grey
rectangles stand for attCs (light grey) and attIs (dark grey). The dotted lines show the variable region of class 1 integrons (VR-1 is variable region 1). Full
lines between the arrowheads above the integron structure show the expected amplification products using the different primer combinations. In order
to define the different alleles for the intI1 genes the sequences were compared to AN AM412236 (isolates 1AC4, 4SN1, 9SN1 and 9AL34) and AN DQ247972
(isolates 7AN1, 11601AL, 11602SL, 11603SL and 11604SL). The sul1 and tniC alleles show the percentage of identity to AN JF262166 and GQ857074,
respectively. The qacE1/qacDE1 and the ISCR1 sequences (indicated with an asterisk) were 100% identical to the clinical alleles AN HM999792 and
EU722351, respectively. The graphic is not drawn to scale.
doi:10.1371/journal.pone.0039223.g001

Genetic Platform of Class 1 Integrons in Patagonia
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genes obtained by PCR were sequenced and 7 of them exhibited

more than two mutations in 581-bp length compared to the sul1

from clinical isolates (accession number JF262166). In addition,

high sequence diversity of the sul1 gene (83% identity compared to

the sul1 sequence in accession number JF262166) was found in one

strain isolated from a site with low-level anthropogenic distur-

bances (3SC2 isolate, Table 2). In order to analyse the relationship

between ‘‘environmental’’ and ‘‘clinical’’ types of genes we

performed a phylogenetic analysis with sul1 alleles from the

Genbank and from our work (Figure 4). More than 30 alleles of the

sul1 gene were identified in this analysis. Only the sul1 allele from

the 39-CS of the integrons was found in both clinical and non-

clinical isolates.

The high frequency of the sul1 genes in urban sites could be

the consequence of gene flow of the ‘‘clinical’’ sul1 allele from the

hospital towards the open environment to which are added the

Figure 2. Study area. The geographic sites where the sampling was performed are numbered from 1 to 10 (see Table 1). The circles represent low
(white), medium (light blue) and high (dark blue) degrees of urbanization.
doi:10.1371/journal.pone.0039223.g002

Table 1. Sampling sites of Tierra del Fuego Island.

Site Name Date Geographic location Houses Roads Other buildings Urbanization

1 Ushuaia 1 (Pipo River) 22/01/06 S54u 499 5899 W68u 219 0599 .100 .10 10 High

2 Road Nu26 1 (Turbio River) 25/01/06 S54u 479 3799 W67u 159 3699 0 1 0 Low

3 Road Nu26 2 (Turbera Maucasen) 25/01/06 S54u 359 3399 W67 039 3899 6 1 2 Medium

4 Escondido Lake 1 (hotel) 27/01/06 S54u 409 4999 W67u 489 4899 15 2 2 Medium

5 Escondido Lake 2 (stream) 27/01/06 S54u 419 299 W67u 499 3999 0 2 0 Low

6 National Park 1 (Ovando River) 01/02/06 S54u 509 3699 W68u 349 4299 0 2 0 Low

7 National Park 2 (Ensenada Bay stream) 01/02/06 S54u 509 4899 W68u 289 5699 0 1 1 Low

8 National Park 3 (Pipo River) 02/02/06 S54u 499 299 W68u 289 3799 0 1 0 Low

9 Baliza Davidson stream (Moat) 04/02/06 S54u 569 2499 W66u 549 3099 0 1 0 Low

10 Ushuaia 2 (Ushuaia River) 20/01/06 S54u 479 3799 W68u 159 3699 .100 .10 10 High

Degree of urbanization was quantitatively estimated by counting the number of buildings and roads that were contained within a 1 km circular area around each site
(see Material and Methods).
doi:10.1371/journal.pone.0039223.t001

Genetic Platform of Class 1 Integrons in Patagonia
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Table 2. Genetic features of samples isolated in this study.

Isolate Genus Taxonomic Class intI1 Mutationsa
intI1
pseudogene qacE/qacED1 sul1 ISCR1 tniC

1AC1 Arthrobacter Actinobacteria 0 0 0 0 0 0

1AC2 Aeromonas c- proteobacteria 1 0 0 0 0 0 0

1AC3 Vibrio c- proteobacteria 0 1 0 0 0 0

1AC4 Vibrio c- proteobacteria 1 1 0 1 0 0 1

1AC5 Aeromonas c- proteobacteria 0 0 0 1 1 0

1AL1 Enterobacter c- proteobacteria 0 0 0 1 0 0

1AL2 Aeromonas c- proteobacteria 0 0 1 0 0 1

1AL3 Aeromonas c- proteobacteria 0 0 0 0 0 0

1AL4 Streptomyces Actinobacteria 0 0 1 1 0 0

1AL5 Microbacterium Actinobacteria 0 0 1 0 1 0

1ALev1 Arthrobacter Actinobacteria 0 0 0 0 0 0

1SC1 Arthrobacter Actinobacteria 0 0 1 0 0 0

1SC2 Arthrobacter Actinobacteria 0 0 1 0 0 0

1SC3 Arthrobacter Actinobacteria 0 1 0 0 0 0

1SL1 Pseudomonas c- proteobacteria 0 1 0 0 1 0

1SL2 Pseudomonas c- proteobacteria 0 1 0 0 0 0

1SL3 Arthrobacter Actinobacteria 0 0 1 0 0 0

1SL4 Pseudomonas c- proteobacteria 0 1 0 1 0 0

1SL5 Pseudomonas c- proteobacteria 1 0 0 0 0 0 0

1SLev1 Micrococcus Actinobacteria 0 0 1 0 0 0

2AC1 Janthinobacterium b- proteobacteria 0 1 0 0 0 0

2AC2 Pseudomonas c- proteobacteria 0 0 0 0 1 0

2AC3 Pseudomonas c- proteobacteria 0 1 0 0 1 0

2AL1 Janthinobacterium b- proteobacteria 0 1 0 0 0 0

2AL2 Janthinobacterium b- proteobacteria 0 0 0 0 0 0

2AL3 Yersinia c- proteobacteria 0 1 1 0 0 0

2AL4 Pseudomonas c- proteobacteria 0 1 0 1 0 0

2AL5 Janthinobacterium b- proteobacteria 0 0 0 0 0 0

2ALev1 Pseudomonas c- proteobacteria 0 0 0 1 0 1

2AN1 Flavobacterium Flavobacteria 0 0 0 0 0 1

2AN2 Flavobacterium Flavobacteria 0 0 0 0 0 0

2AN3 Paenibacillus Bacilli 0 0 0 0 0 0

3AL1 Janthinobacterium b- proteobacteria 0 0 1 0 0 0

3AL2 Serratia c- proteobacteria 0 0 0 1 0 0

3AL3 Yersinia c- proteobacteria 0 0 0 0 0 0

3AL4 Burkholderia b- proteobacteria 0 0 0 0 0 0

3ALev1 Pseudomonas c- proteobacteria 0 0 0 0 0 0

3ALev2 Pseudomonas c- proteobacteria 0 1 0 0 0 0

3ALev3 Pseudomonas c- proteobacteria 0 0 0 0 0 0

3AN1 Pseudomonas c- proteobacteria 0 0 0 0 0 0

3AN2 Pseudomonas c- proteobacteria 0 1 0 1 1 0

3AN3 Pseudomonas c- proteobacteria 0 0 0 0 0 0

3SC1 Pseudomonas c- proteobacteria 0 1 0 0 0 0

3SC2 Pseudomonas c- proteobacteria 0 0 0 1 0 0

3SC3 Pseudomonas c- proteobacteria 0 0 0 0 0 0

4ALev1 Pseudomonas c- proteobacteria 0 0 1 0 0 0

4SC1 Pseudomonas c- proteobacteria 0 1 0 0 0 0

Genetic Platform of Class 1 Integrons in Patagonia
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Table 2. Cont.

Isolate Genus Taxonomic Class intI1 Mutationsa
intI1
pseudogene qacE/qacED1 sul1 ISCR1 tniC

4SC2 Pseudomonas c- proteobacteria 0 0 0 0 0 0

4SC3 Pseudomonas c- proteobacteria 0 0 0 0 0 0

4SL1 Pseudomonas c- proteobacteria 0 0 0 0 0 0

4SL2 Pseudomonas c- proteobacteria 0 0 0 0 0 0

4SLev1 Pseudomonas c- proteobacteria 0 1 1 0 1 0

4SLev2 Pseudomonas c- proteobacteria 0 0 1 0 0 0

4SN1 Pseudomonas c- proteobacteria 1 1 0 0 0 0 0

4SN2 Burkholderia b- proteobacteria 0 0 1 0 0 0

5ALev1 Pseudomonas c- proteobacteria 0 0 1 0 0 0

5ALev2 Janthinobacterium b- proteobacteria 0 0 1 0 0 0

5AN1 Flavobacterium Flavobacteria 0 0 0 0 0 0

5AN2 Pseudomonas c- proteobacteria 0 0 1 0 0 0

5AN3 Pseudomonas c- proteobacteria 0 0 1 0 0 0

6AL1 Pseudomonas c- proteobacteria 0 0 1 0 0 0

6AL2 Serratia c- proteobacteria 0 1 0 0 0 0

6AL3 Pseudomonas c- proteobacteria 0 0 0 0 0 0

6AN1 Serratia c- proteobacteria 0 1 1 0 0 0

7Alev1 Pseudomonas c- proteobacteria 0 0 1 0 0 0

7ALev2 Chryseomonas c- proteobacteria 0 0 0 0 0 0

7AN1 Serratia c- proteobacteria 1 1 0 0 0 0 0

7AN2 Pseudomonas c- proteobacteria 0 0 1 0 1 0

7AN3 Chryseomonas c- proteobacteria 0 0 0 0 0 0

8ABCSA1 Pseudomonas c- proteobacteria 0 0 1 0 0 0

8Alev1 Pseudomonas c- proteobacteria 0 0 1 0 0 0

8ALev2 Pseudomonas c- proteobacteria 0 0 0 0 0 0

8ALev3 Pseudomonas c- proteobacteria 0 0 1 0 0 0

8AN1 Pseudomonas c- proteobacteria 0 0 0 0 0 0

8AN2 Janthinobacterium b- proteobacteria 0 0 0 0 0 0

9Alev1 Pseudomonas c- proteobacteria 0 0 0 0 0 0

9Alev2 Pseudomonas c- proteobacteria 0 0 1 0 0 0

9AN1 Pseudomonas c- proteobacteria 0 1 0 0 0 0

9AN2 Burkholderia b- proteobacteria 0 1 1 0 0 0

9AN3 Pseudomonas c- proteobacteria 0 0 1 0 0 0

9AN4 Pseudomonas c- proteobacteria 0 0 0 0 0 0

9AN5 Pseudomonas c- proteobacteria 0 0 0 0 0 0

9SC1 Burkholderia b- proteobacteria 0 0 0 0 0 0

9SN1 Pseudomonas c- proteobacteria 1 4 0 0 0 0 0

9SN2 Pseudomonas c- proteobacteria 0 0 0 0 0 0

9AL34 Aranicola c- proteobacteria 1 9 0 0 0 1 0

10AL1 Enterobacter c- proteobacteria 1 5 0 0 0 0 0

10AL3 Serratia c- proteobacteria 0 0 0 0 0 0

10AL4 Pseudomonas c- proteobacteria 0 0 0 1 0 0

10AN2 Pseudomonas c- proteobacteria 0 0 0 0 0 0

10SL1 Pseudomonas c- proteobacteria 0 0 0 0 0 0

10SL2 Pseudomonas c- proteobacteria 1 5 0 0 1 1 0

10SL3 Pseudomonas c- proteobacteria 1 2 0 0 1 0 0

10SL4 Pseudomonas c- proteobacteria 1 3 0 0 0 1 0

Genetic Platform of Class 1 Integrons in Patagonia
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sul1 alleles of non-clinical strains that could be in turn

maintained by the presence of contaminants that co-select for

sulphonamide resistance.

A Wide Dissemination of the qacE1/qacED1 Gene was
Found Between Taxa and Between Different Degrees of
Urbanization in Patagonia

The distribution of the other ARG in this study, the qacE1/

qacED1 gene, was wider among the environmental samples than

found for sul1. Although we found that the qacE1/qacED1 gene

was present in 28 out of 98 isolates and in 12 bacterial genera, this

gene was not significantly related to ‘‘clean’’ or to urban sites

(p.0.05) (Figure 3). We sequenced all qacE1/qacED1 amplicons,

which exhibited 100% identity in 241 bp to the clinical allele

(accession number HM999792). The high frequency of qac gene

cassettes (qacE, qacG and qacH) found in non-clinical samples from

Australia [51] allowed the authors to propose a relevant role for

the qacE1 gene cassette in the origin of the most common genetic

platform of the clinical class 1 integrons. Following their

hypothesis, the common ancestor of class 1 integrons was

embedded in a Tn402-like transposon harbouring a complete

qacE1 gene cassette within the VR-1; this gene was subsequently

deleted by insertion of the sul1 gene and converted into the well-

known qacED1 of the clinical 39-CS of class 1 integrons [1,52,53].

Recently, an environmental permafrost strain which was pre-

sumed to date from to 15.000–40.000 years ago with a typical 39-

CS of clinical class 1 integrons was found in Siberia [54]. If this

finding is not a contamination, it is likely that the 39-CS has been

in nature and probably maintained without interaction with

human activities before the antibiotic era.

Clearly, no matter which genetic platform contains the qacE1/

qacED1 gene, its dissemination as either a cassette or a pseudogene

between clinical and natural communities is widespread around

the world since a long time ago [1,51,53,54] [this work],

emphasizing the adaptive role that it possess for a large variety

of genomes, habitats and possibly different types of stressors.

Multiple Interactions Define the Ecological and Molecular
Behaviour of Each ARG

While we found that the sul1 and qacE1/qacED1 genes were

usually located separately in our non-clinical isolates, both ARGs

are embedded in the widespread 39-CS of class 1 integrons when

they are detected in clinical samples [1,53]. We found both ARG

together in only one isolate, 1AL4, which corresponds to

Streptomyces spp. (phylum: Actinobacteria). The sequence revealed

100% identity over 822 bp with the array of the 39-CS (accession

number EU118148). This finding is probably the result of the flow

of clinical strains harbouring class 1 integrons with the typical 39-

CS from the hospital to site 1. It is likely that a lateral genetic

transfer event to the strain 1AL4 Actinobacteria has happened

since this species is rarely isolated from human infections.

Previous reports have shown that sulphonamide and quaternary

ammonium compound resistances are usually found in bacterial

isolates from natural communities [40,51,55,56,57]. Also, very

relevant for the evolution of multidrug isolates, both ARGs have

been identified as possessing the potential to co-select for

multidrug resistance in non-clinical and clinical samples

[40,56,57,58,59].

However, both ARGs differ from functional, taxonomic

distribution and molecular perspectives when they are analysed

separately. It is well known that the qacE1 gene is a mobile element

since it has all of the features of a gene cassette, whereas the sul1 is

an open reading frame not associated with an attC site. Thus, it is

likely that the mobility conferred by the system’s integron/cassette

could be one reason for the widespread dissemination of qacE1

within natural communities and genomes. The qacE1/qacED1

genes from our non-clinical samples were 100% identical to the 39-

CS of clinical class 1 integrons, showing a different molecular

pattern to the sul1 gene. For the latter gene it is possible to

distinguish its ‘‘clinical’’ or ‘‘environmental’’ origin on the basis of

the different nucleotide sequences, as also shown for alleles of intI1.

The results of this study showed that the sul1 and qacE1/qacED1

genes have a different distribution between sites with different

degrees of urbanization in Patagonia and diverse behaviour from a

molecular perspective, suggesting that multiple interactions define

the abundance of each type of ARG at a particular site. So these

factors need to be analysed in individual studies for each

antimicrobial resistance gene.

Non-clinical Samples from Patagonia are a Reservoir of
ISCR1

The ISCR1 gene was found in c and b-proteobacteria and in

Actinobacteria isolates (n = 11) (Table 2), and it was common in

Pseudomonaceae (8 out of 11 positive isolates), which is the first

description of this site-specific recombinase gene in non-clinical

samples. The sequence of 475 bp from the 11 ISCR1-positive

isolates revealed 100% identity with the clinical allele (EU722351).

In a previous study from our laboratory on clinical isolates, this

gene was present in 40% of 130 Enterobacteriaceae strains and only in

1% of 100 Pseudomonas aeruginosa isolates (data not shown),

suggesting a different taxonomic distribution between clinical

isolates compared to natural communities. The high frequency

exhibited by ISCR1, as well as its distribution in several taxa in

Patagonian samples, could be evidence of the important role of the

open environment as a reservoir of this gene in our geographical

region. The ISCR1 gene was found in bacterial cells in the same

Table 2. Cont.

Isolate Genus Taxonomic Class intI1 Mutationsa
intI1
pseudogene qacE/qacED1 sul1 ISCR1 tniC

10SN1 Pseudomonas c- proteobacteria 0 0 0 0 0 0

10SN2 Pseudomonas c- proteobacteria 0 0 0 1 0 0

10SN3 Pseudomonas c- proteobacteria 0 0 0 1 0 0

10SN4 Pseudomonas c- proteobacteria 0 0 0 0 0 0

The first number of each isolate corresponds to the sampling site (from 1 to 10, see Table1).
aMutations respect to the clinical alleles (AN DQ247972, EU855788 and CP000650). The intI1 gene of the isolates1AC2 and 1SL5 are 100% identical to AN CP000650 and
DQ247972, respectively.
doi:10.1371/journal.pone.0039223.t002
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sampling sites where isolates with intI1, qacE1/qacED1 and/or sul1

were also identified that ensures an encounter among cells and a

putative transference of genes. This pool of genes could be the

source for the emergence of the first strain harbouring blaCTX-M-2

associated with ISCR1 on the genetic platform of a complex class 1

integron that had emerged in a clinical isolate in Argentina in

1989 [31,60].

Abundance and Flow of the intI1 Gene in Environmental
Samples

We found a frequency of 11.2% intI1 genes in 98 isolates by

plating on nutritive agar without antibiotics in 5 out of the 10

sampling sites. This frequency is relatively high in comparison to

those obtained in previous studies. Rosewarne et al. [42] found

only 0.5% of positive strains (4/790 isolates) and Stokes et al. [1]

found 2.1% (4/192 isolates) in a similar model of a culture-based

isolation of non-clinical strains without antibiotics in Australia.

These contrasting results could be the consequence of different

methodologies of isolation, types of habitats, bacterial communi-

ties, and also phylogenetic patterns could be involved in the

abundance of this gene in different geographic regions. When we

analysed the molecular features of the intI1 genes from our study,

we identified two ‘‘clinical’’ genes of the intI1 gene that were found

in the sampling site with the highest level of urbanization (site 1,

Ushuaia city). These two ‘‘clinical’’ intI1 genes could belong to

different clinical strains since they were different alleles obtained

from different species of bacteria: sample 1SL5 was from a

Pseudomonas spp. (accession number DQ247972 with 22.13% of

intI1 genes from Genbank) and sample 1AC2 was from an

Aeromonas spp. (CP000650 with 2.55% of intI1 genes from

Genbank). The remaining nine alleles, which all were ‘‘environ-

mental’’ intI1 genes (n = 5 in Pseudomonas spp., n = 1 in Vibrio spp.

and n = 3 in Enterobacteriaceae) (Table 2), showed sequence diversity

with novel mutations that have never been described before;

neither in non-clinical nor in clinical intI1 genes (Figure 4).

The intI1 gene flow from the hospital to the open environment

has been well established [47,48,50]. Based on the large number of

intI1 alleles found in non-clinical samples [1,48][this study], in

clinical isolates (from GenBank, up until August 2010, Figure 4),

and also found in both types of environments (Figure 4), we

propose that at least two different routes of the acquisition of class

1 integrons could have interacting in hospitals during the

antibiotic era: on one hand, the most common alleles of intI1

(accession numbers DQ247972, AY463797, AM412236 and

DQ315789) must have been the first that were introduced in the

hospital niche and, thereafter, were continuously selected by the

pressure of antibiotics; and, on the other hand, in certain

circumstances, ‘‘environmental’’ intI1 genes must have been taken

from natural communities and thereby began their propagation

and circulation in the clinical habitat under antimicrobial pressure.

In our understanding, this flow of genes from the open

environment to hospitals is also evidenced by the new and

unusual 39ends of class 1 integrons that have been described in

sporadic isolates worldwide. Examples of this are strains harbour-

ing the IRt of Tn402 [61] or IS440-sul3-orf1-IS26 [26] instead of

39-CS. In fact, this latest genetic platform has been described as

harbouring the qacH gene cassette within the VR-1, which has

been detected very frequently in non-clinical samples [26,51]. The

high frequency of different intI1 alleles found in clinical and non-

clinical isolates shown in the phylogenetic tree of the Figure 4 also

suggests that intI1 gene flow between human activities and the

environment occurs in both directions.

The High Frequency of intI1 Pseudogenes Reveals a
Similar Genomic and Ecological Behaviour for Integron
Integrases

The intI1 pseudogenes were found in 9 out of the 10 sampling

sites of Tierra del Fuego Island. From a total of 30 intI1-positive

isolates, the frequency of occurrence of intI1 genes was 11.2%

(11/98) if the entire intI1 gene sequence is considered, and it was

19.4% (19/98) if only the amplification of the integron integrase

motif [62] is taken into account (Table 2). While the complete

sequence of the intI1 gene was only detected in c-proteobacteria,

the intI1 pseudogenes were also found in two b-proteobacteria

isolates and in one Actinobacteria isolate (1SC3). Thus, the range

of dispersion of intI1 genes was increased between different taxa

and between different sampling sites due to the identification of

intI1 pseudogenes. However, this genetic marker was not related

to urbanization, which demonstrates that the entire intI1 gene

and its pseudogenes exhibit a similar ecological behaviour.

A previous bioinformatics study of all families of integron

integrase genes found that 1/3 of intI were pseudogenes [63]. The

prevalence of intI1 pseudogenes in our non-clinical samples was

Figure 3. Mean occurrence (+SD) of LGE and ARG genes and pseudogenes in sites with different degrees of urbanization. Most genes
showed trends towards high occurrences in highly urbanized areas, but only sul1 showed statistical significance in this trend (rs = 0.74, p = 0.01).
doi:10.1371/journal.pone.0039223.g003
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two times higher than that of the entire intI1 gene. This greater

frequency of intI1 pseudogenes observed in this study is evidence of

the significant adverse effects produced by the entire gene in many

different bacterial genomes. On the other hand, this widespread

dissemination also highlights the fact that class 1 integrons possess

a successful mechanism for spreading among natural bacterial

communities. In addition, the intI1 pseudogenes have a different

pattern of distribution if we compare the natural with the clinical

communities. The bioinformatics study we performed on DNA

sequences from clinical strains in Genbank (up until August 2010)

revealed that only Corynebacterium diphtheriae (accession number

BX248353) has an intI1 pseudogene. Thus, the low frequency of

intI1 pseudogenes and, therefore, the high frequency of entire intI1

genes in the clinical isolates from GenBank revealed that the

genomes circulating in clinical communities have possibly been

selected because they have a genomic plasticity that facilitates

maintenance of the entire intI1 gene.

The intI1 Genes Isolated from the Open Environment
were not Related to Urbanization

Although a weak trend towards a high occurrence of intI1 genes

in urban areas was observed, there were no statistical correlations

Figure 4. Phylogenetic trees for intI1 (A) and sul1 (B) genes. Sequences obtained in this study and alleles deposited in the GenBank were used.
The phylogram was obtained with the CLUSTALW application in MEGA v 5.05 program with default parameters. Alleles were indicated with either the
isolated name (sequences obtained in this work) or the accession number (GenBank sequences). The source of each allele is shown by a coloured
square (red is for clinical isolates, green is for environment isolates and blue is for alleles that have been identified in both clinical an environmental
isolates. Asterisks indicate the most common clinical alleles of intI1 (A) and the allele of sul1 embedded in the most common 39CS of clinical integrons
(B). The outgroup branch has been reduced in order to appreciate better the other branches.
doi:10.1371/journal.pone.0039223.g004

Table 3. Wald statistic values obtained from the generalised
lineal model analyses that were applied to the relationships
between gene frequencies and 3 independent variables.

intI1
intI1
mutations

intI1
pseudogen tniC ISCR1 sul1 qacE

Intercept 0.01 10.59 1.35 0.01 0.01 1.80 0.10

Substrate 2.09 1.94 0.12 0.79 0.76 0.05 0.10

Taxa 0.01 0.01 0.17 0.01 0.01 2.94 6.84*

Urbanization 0.01 0.01 0.70 0.01 0.01 7.55* 0.74

*represents p,0.05.
doi:10.1371/journal.pone.0039223.t003
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between the mean occurrence per site of the intI1 genes and its

pseudogenes and the three degrees of urbanization (p.0.05)

(Figure 3; Table 3). In other words, ‘‘environmental’’ intI1 genes

were not significantly more abundant in anthropic environments

than in remote areas from urban centres.

However, previous reports showed that sites close to human

activities have a higher frequency of intI1 genes, as a result of the

intI1 flow from clinical samples to the open environment [42,64].

The discharge of genes should be maintained by the release of

antibiotics at urban sites or by the presence of contaminants as

metals [37,42,64]. The process of co-selection, would be involved

in the maintenance of intI1 genes [42,47], as it is the case for

transposon Tn21, which possesses determinants of resistance to

mercury and usually has a class 1 integron embedded in its genetic

platform [65]. Several studies evidenced the flow of class 1

integrons from humans to wastewater treatment plants, rivers, soil

and domestic and wild animals [64,66,67,68,69,70,71,72]. From a

molecular perspective, a similar scenario was found in our study,

since the ‘‘clinical’’ alleles of the intI1 gene were only found in sites

with a high level of urbanization.

When class 1 integrons were searched for in E. coli strains

isolated from several animal populations subjected to different

degrees of anthropogenic disturbance, the abundance of intI1 was

found to correlate with the closeness to humans [64]. Skurnik et

al. [64] explained the absence of class 1 integrons in wild animals

as a result of never having been exposed to humans. However,

the absence of class 1 integrons in E. coli strains not exposed to

human disturbances can be expected since it has been suggested

that the genome of E. coli is not able to acquire or maintain class

1 integrons without antibiotic pressure [55]. In other study,

Rosewarne et al. (2010) [42] compared the abundance of intI1 in

catchments with different levels of human disturbance from the

Greater Melbourne area of Victoria, Australia, and found a

strong positive relationship between the frequency of occurrence

of this gene and heavy metal pollution. One explanation for our

findings is that the apparently ‘‘clean’’ sites of Tierra del Fuego

Island in fact receive or have received some source of pollution

(flow of intI1-positive clinical strains, antibiotics and/or heavy

metals) that is not associated with the level of urbanization. Some

sites are visited by tourists, but most only have a very low

frequency of visitors in the months when there is no snow. Nor is

it likely to be explained by current pollution levels from heavy

metals, which are concentrated in areas close to the cities in this

region [73,74]. Moreover, the existence of pollution sources in

the past is unlikely as the island of Tierra del Fuego has

remained largely untapped for decades because of its geograph-

ical position and difficulty of access. Therefore, although cases of

contamination could have been sporadic in the past, these could

not explain the persistence of intI1 in non-urban regions. Another

interpretation for our results it is that the lack of correlation

found in our study could be due to the small sample size;

however, the frequency of occurrence of intI1 in ‘‘clean’’ sites of

Tierra del Fuego Island was sufficiently large to deserve

attention. Another hypothesis for explaining the differences

between studies regarding the incidence of intI1 in ‘‘clean’’ sites

could be that there are regions of the Earth in which some lateral

genetic transfer mechanisms might be more abundant, due to

historical processes of regional scale. Independent phylogenetic

processes may have caused the intI1 gene to be differentially

adapted to different bacterial genomes. The consequence would

be that, in certain regions, bacterial species maintain the intI1

gene irrespective of anthropogenic pressure. These type of

analysis, based on molecular and ecological studies but on a

global scale, could be helpful for disentangling the multiple

factors that are involved in the flow and maintenance of the intI1

gene between areas of human activities and natural communities.

Conclusions
Simultaneous analyses at ecological and molecular levels

appeared to be a successful strategy for elucidating the role of

each component of the genetic platforms associated to antimicro-

bial resistance of class 1 integrons.

We found that both ARGs (sul1 and qacE1/qacED1 genes),

which are usually embedded in the most common genetic platform

of class 1 integrons within clinical habitats, showed different

ecological and molecular behaviours in natural communities.

While the presence of the sul1 gene was the only component of the

genetic platforms of class 1 integrons related to urbanization, the

qacE1/qacED1 gene was found to be widespread in natural

communities with different degrees of anthropogenic disturbances,

which highlights the adaptive role of this gene to several different

habitats. The LGE (intI1, ISCR1 and tniC genes) can exhibit high

levels of diversity and different levels of persistence depending on

the habitat and regions of the world. Ecological analysis showed

that the intI1 gene, as well as the ISCR1 genes, which are relevant

mechanisms involved in the spreading of multidrug resistance

mechanisms in clinical isolates in Argentina and worldwide, were

not associated with urbanization in the Patagonian samples. A

total of 30/98 intI1-positive isolates were identified, with a high

frequency of intI1 pseudogenes (19/98), which suggests that

although intI1 has a deleterious impact within several genomes,

it can easily be disseminated throughout natural bacterial

communities. We cannot rule out the possibility that the high

percentage of intI1 and ISCR1 genes that we found in the natural

communities may be one of the factors that contributes to the

increasing frequency of antimicrobial resistance isolates that have

characterized Argentina for decades.

The main conclusion of this study is that the ability of natural

bacterial communities to act as a reservoir and source of multidrug

resistance mechanisms cannot be described by a general process

but depend on multiple factors operating at molecular, ecological,

phylogenetic and historical levels.

Materials and Methods

Study Area
The study was conducted in the south-eastern portion of Tierra

del Fuego Island (Figure 2). The area lies within the Sub-Antarctic

Deciduous Beech Forest, which is characterized by two species of

southern beech, Nothofagus pumilio (Lenga) and Nothofagus betuloides

(Guindo) [75]. Its climate belongs to the sub-polar oceanic type.

Temperatures are cold all year round, with an average annual

temperature of 5.7uC and low annual temperature variations,

ranging from 20.3uC in July to 9.4uC in January. There are two

urban sites: Ushuaia city with 80,000 inhabitants on the southern

coast of the island, bathed in the Beagle Channel, and Tolhuin, a

town of about 8000 inhabitants. The island was only colonized at

the end of the nineteenth century.

All necessary permits for the described field studies were

obtained from Clotilde Lizarralde (Director of the Planning

Department in the science and technology area of the province)

and Laura Malmierca (Tierra del Fuego National Park Man-

agement).

Definition of the Degree of Urbanization
Samples were collected in 10 sites that were selected according

to three distinct levels of anthropogenic disturbance (Figure 2

and Table 1). The degree of urbanization was quantitatively
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estimated by counting the number of buildings and roads that were

contained in a 1 km circular area around each site. These

estimations were conducted using satellite images provided by

Google Earth. We defined a high level of urbanization as being

when the number of buildings was greater than 50 and the number

of routes greater than 5. We defined a low level of urbanization as

being when the number of buildings was less than 5 and the number

of routes less than 2. Two sites were located in Ushuaia City, in the

mouths of the Pipo (Site 1) and Ushuaia (Site 10) rivers; three sites

were in Tierra del Fuego National Park, at a stream that ends in

Ensenada Bay (Site 7), at an upper portion of Pipo River (Site 8) and

at Ovando River (Site 6); two sites were at Escondido Lake, one on

the shore of the lake where a hotel is located (Site 4) and the other

one at a stream that finishes in this lake (Site 5); two sites were along

the Provincial Road Nu 26 in a mountainous area south-east of

Fagnano Lake, one of which was in the intersection of this road with

Turbio River (Site 2) while the other was at Turbera Maucasen (Site

3); and site 9 was located in Moat Farm, in a stream close to the sea

(Figure 2). Sites 3 to 9 had no history of clinical or industrial

activities. Animal husbandry in the studied areas is minimal, and

there is not systematic records of the use of antibiotics on domestic

animals. The sites of Turbio River and Moat Farm are occasionally

visited, mainly in the summer. Sites 1 and 10 were categorized as

being highly disturbed, sites 3 and 4 were categorized as being

medium-level disturbed, and the others were categorized as being

low-level disturbed sites (Table 1).

Sampling Techniques
Samples were collected at each site between 20th January and

7th February 2006. Shallow freshwater sediment and soil samples

from the shore were plated on nutritive agar medium (Britania,

Argentina) without a selection of antibiotics. The plates were

incubated at 4uC for 8 days, after which all individual colonies

from each site and from each plate were plated again in nutritive

agar and incubated at 4uC for 4 days. Then, each colony was

picked out and place onto Luria Bertani broth and incubated at

4uC for 48 h.

Molecular Analysis
Because the goal of this work was to analyse the genetic

platforms of class 1 integrons, we worked with a culture-dependent

technique in order to identify how many ARG or LGE could be

harboured in a single strain. The isolates were identified using

standard biochemical tests, microbiological test strips (API20NE-

Biomerieux, France) and sequencing of 16 S RNA using universal

primers [76]: Arthrobacter spp. (n = 6), Aeromonas spp. (n = 4), Vibrio

spp. (n = 2), Enterobacter spp. (n = 2), Streptomyces spp. (n = 1),

Microbacterium spp. (n = 1), Pseudomonas spp. (n = 56), Micrococcus

spp. (n = 1), Janthinobacterium spp. (n = 7), Yersinia spp. (n = 2),

Flavobacterium spp. (n = 3), Paenibacillus spp. (n = 1), Serratia spp.

(n = 5), Burkholderia spp. (n = 4), Chryseomonas spp. (n = 2), Aranicola

spp. (n = 1).

Then, total DNA was extracted and Polymerase Chain

Reaction (PCR) amplifications were carried out in 50 ml volumes

containing 10 ng of DNA, 16 PCR buffer (Promega, USA),

0.2 mM of dNTPs mix (Genbiotech, Argentina), 0.4 mM of each

primer (Genbiotech, Argentina) and sterile distilled water, and Taq

DNA polymerase (Promega, USA) was added (0.25 U). For the

detection of the intI1 gene, two strategies were used by amplifying

a PCR fragment of 925-bp length (59-cgaggcatagactgtac-39 and 59-

ttcgaatgtcgtaaccgc-39) [32] and another of 483-bp length (59-

acatgcgtgtaa atcatcgtcg-39 and 59-gggtcaaggatctggatttcg-39) [77]

that included the additional motif that it is conserved among

integron integrases [62,78,79]. When only the 483-bp amplicon

was obtained, the HS915 primer (59-cgtgccgtgatcgaaatccag-39) in

conjunction with the HS916 primer (59-ttcgtgccttcatccgtttcc-39)

[80] was used in order to detect a putative, whole intI1 gene. The

detection of intI1 and intI1 pseudogenes was performed by two

people at different times with independent DNA extractions and

repeated at least twice. Also, the presence of sul1 (59-tttgaaggttc-

gacagc-39 and 59-gacggtgttcggcattct-39) [81], qacE1/qacED1 (59-

gcgaagtaatcgcaacatcc-39 and 59- agccccatacctacaaagcc-39) [30],

ISCR1 (59-atggtttcatgcgggtt-39 and 59-ctgagggtgtgagcgag-39) [32]

and tniC (59-ccgagggagagcagctt-399 and 59-ccggtcacggtgcggcg-39)

genes were investigated in all strains. The PCR products were

sequenced after purification using the Wizard SV Gel and PCR

clean-up System kit according to the manufacturer’s directions

(Promega, USA); sequencing was performed on both DNA strands

using ABIPrism 3100 BioAnalyzer equipment (Applied Biosys-

tems, USA). The nucleotide sequences were analysed using

Genetics Computer Group (GCG) and Blast V2.0 software

(http://www.ncbi.nlm.nih.gov/BLAST/).

Definition of ‘‘Clinical’’ and ‘‘Environmental’’ intI1 Alleles
We called non-clinical intI1 genes those that were harboured by

the strains isolated from water, sediment or soil in this work. The

non-clinical intI1 gene can also be an ‘‘environmental’’ or a

‘‘clinical’’ allele as defined by Gillings et al., suggesting a putative

source from natural or clinical communities, respectively [48].

Bioinformatics Study of the intI1 Gene
We identified 47 alleles from clinical samples in Genbank (up

until August 2010); the most common alleles used for defining a

‘‘clinical’’ allele were those with the accession numbers DQ247972

(22.13%), AY463797 (19.15%), AM412236 (18.72%) and

DQ315789 (17.02%).

Phylogenetic Analysis
Phylogenetic evolutionary analysis for intI1 and sul1 sequences

were conducted using MEGA v 5.05 software [82]. Sequences

obtained in this study as well as alleles deposited in GenBank

were included. These sequences were aligned using ClustalW

application in MEGA with default parameters. The evolutionary

history was inferred using the Neighbor-Joining method. The

evolutionary distances were computed using the Maximum

Composite Likelihood method. All positions containing gaps

were eliminated.

Statistical Analysis
The relationship between the environmental characteristics and

the distribution of molecular components of antibiotic resistance

were analysed using two statistical approaches (STATISTICA

package). Generalized linear models (GLM) were applied with the

following characteristics: (1) dependent variable: presence/absence

of intI1, sul1, tniC and ISCR1, and number of intI1 mutations; (2)

independent variables: two categorical variables, substrate (water

or soil) and taxa (c-proteobacteria or other taxa) and one ordinal

variable, degree of urbanization (1, 2 or 3); (3) assumed

distribution of the dependent variable: binomial for presence/

absence data and ordinal multinomial for mutations; (4) link

function: logit.

The GLM was complemented with classic non-parametric tests.

For the role of substrate and taxa in the presence of resistance

genes, we used 262 contingency tables and Fisher’s exact tests,

applied to frequencies of occurrence. For the effect of degree of

urbanization, we applied Spearman’s rank correlations to mean

occurrences of genes per site as a dependent variable.
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Nucleotide Sequence Accession Numbers
IntI1 and sul1 sequences were deposited at GenBank as

accession numbers JN870902 to JN870912 and JX048595 to

JX048604 respectively.
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70. Literák I, Dolejská M, Radimersky T, Klimes J, Friedman M, et al. (2010)

Antimicrobial-resistant faecal Escherichia coli in wild mammals in central Europe:

multiresistant Escherichia coli producing extended-spectrum beta-lactamases in

wild boars. J Appl Microbiol 108: 1702–1711.

71. Bartoloni A, Pallecchi L, Rodrı́guez H, Fernández C, Mantella A, et al. (2009)

Antibiotic resistance in a very remote Amazonas community. Int J Antimicrob

Agents 33: 125–129.
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