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CHAPTER 5

COVID-19: prediction, screening, and
decision-making

5.1 Background

The novel coronavirus (nCoV) outbreak, which was identified in the late 2019s, requires
special attention because of its future epidemics and possible global threats. Beside clini-
cal procedures and treatments, since artificial intelligence (AI) promises a new paradigm for
healthcare, several different AI tools that are built upon machine learning (ML) algorithms are
employed for analyzing data and decision-making processes. This means that AI-driven tools
help identify COVID-19 outbreaks and forecast their nature of spread across the globe.

In 2003 the novel coronavirus was identified in patients with SARS, and it is not a surprising
event in 2020. Beside clinical procedures and treatments, artificial intelligence (AI) has sig-
nificantly contributed. Several different AI tools are employed to analyzing data and decision-
making processes. Their models are varied based on their data types [1–7] Often, machine
learning requires a clean set of annotated data, so classifiers can be well trained (supervised
learning). Even though we have a rich state-of-the-art literature, we failed to reach the point:

“To model an accurate classifier, how big the size of training samples should be?”

Deep learning (DL), as an example, requires a large amount of data to be trained. Do we still
wait for collecting fairly large amount of data? If so, then how big data is big? The primary
idea behind the use of DL is not only to avoid feature engineering but also to extract distinct
features (e.g., pixel-level nodule in image data) [8].

In what follows, we discuss on predictive modeling and imaging tools for COVID-19. We
consider a broad view of predictions (and possible pitfalls) and medical imaging tools in ac-
cordance with the dataset size.

5.2 Predictive modeling and infectious disease outbreaks

The primary idea of the predictions is to make states and citizens aware of possible threats/
consequences. However, for COVID-19 outbreak, state-of-the-art prediction models are failed
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Figure 5.1: Global trend of COVID-19 confirmed cases during the first 98 days. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of

this chapter.)

to exploit crucial and unprecedented uncertainties/factors, such as hospital settings and test
rate, changes in demography, population density (including immunocompromised people),
and poverty. With a high rise in deaths caused due to nCoV, immunocompromised persons
(e.g., lung cancer) are at high risk. No prediction models consider immunocompromised
population in terms of death cases (including recovery). Predictions can be short-term and
long-term, and they rely on the aforementioned factors [4,10]. Such continuous and unprece-
dented factors lead us to designing complex models, rather than just relying on stochastic
and/or discrete ones that are driven by randomly generated parameters. In the literature, pre-
diction models are limited to data visualization, and they are hardly extended to simulating the
data, so trends can be visualized.

To amplify/visualize COVID-19 outbreak, it requires data visualization tools. Data visualiza-
tion can help estimate the trend. Figs. 5.1 and 5.2 are two examples. In Fig. 5.1, we provide
an example of how we can show the COVID-19 trend for confirmed cases. Similarly, the trend
of global death cases is shown in Fig. 5.2. Not to be confused, a visualization tool cannot be
considered as the prediction model. Unfortunately, as mentioned earlier, in the literature, most
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Figure 5.2: Global trend of COVID-19 death cases during the first 98 days.

of the prediction models are limited to data visualization. As an example, data simulations
always help better understand the particular event(s). However, it must be limited to educa-
tion/training. In simple words, simulations help us build up our intuition about how diseases
work in a way that words and even static charts cannot. For visualization, distribution can be
of great help (see Fig. 5.3).

Predictive analytical results hit media a lot even though tools are limited to education and
training. Note that, more often, due to unprecedented nature of the situation and many uncer-
tainties related to diseases, inaccurate information was predicted. As an example, on March
31, 2020, the White House projected 100 K to 240 K Coronavirus deaths in the next two
weeks.1 Later, on April 8, 2020, we had another media statement2 “not every model agrees:
America’s most influential coronavirus model just revised its estimates downward” as previ-
ous prediction was too far from actual values (84,575 death cases in the U.S., dated May 14,

1 Fox News (Andrew O’Reilly, March 31, 2020) URL: https://www.foxnews.com/politics/trump-tells-americans-
to-prepare-for-a-very-painful-two-weeks-as-white-house-releases-extended-coronavirus-guidelines.

2 The Washington Post (William Wan and Carolyn Y. Johnson, April 08, 2020) URL: https://www.
washingtonpost.com/health/2020/04/06/americas-most-influential-coronavirus-model-just-revised-its-estimates-
downward-not-every-model-agrees/.

https://www.foxnews.com/politics/trump-tells-americans-to-prepare-for-a-very-painful-two-weeks-as-white-house-releases-extended-coronavirus-guidelines
https://www.foxnews.com/politics/trump-tells-americans-to-prepare-for-a-very-painful-two-weeks-as-white-house-releases-extended-coronavirus-guidelines
https://www.washingtonpost.com/health/2020/04/06/americas-most-influential-coronavirus-model-just-revised-its-estimates-downward-not-every-model-agrees/
https://www.washingtonpost.com/health/2020/04/06/americas-most-influential-coronavirus-model-just-revised-its-estimates-downward-not-every-model-agrees/
https://www.washingtonpost.com/health/2020/04/06/americas-most-influential-coronavirus-model-just-revised-its-estimates-downward-not-every-model-agrees/
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Figure 5.3: Using the first 115 days data (global): Confirmed cases (left top); Recovered cases
(right top); and Death cases (left bottom).

2020). Media did not intentionally broadcast/announce inaccurate information; instead, the
estimated values were based on prediction models. Not to be confused, authors are not aimed
at blaming neither media nor prediction models.

Artificial and augmented intelligence (A2I) play crucial roles in understanding data by using
multiple different tools/techniques. They include data analytics, machine learning, and pat-
tern recognition, where anomaly detection is a primary element [1,9]. Predictive modeling
requires exploiting comprehensive data. Missing one or two features/factors can deviate pre-
dictive values from actual ones. More often, discrete models rely on their input parameters
and are application dependent. In case of continuous data (e.g., COVID-19), where there exist
unavoidable uncertainties, these models behave differently. As a result, these models provide
incoherent results. The primary reason behind this is lack of understanding about the partic-
ular events, that is, data sentiments and additional unavoidable uncertainties/factors, such as
hospital settings/capacity, number of tests on a daily basis, demographics, and population
(density) and their vulnerability in that particular region. In particular, we observed that the
higher the population density, the higher the spread rate, and New York City is an example.
This brings an idea that the same exact models with exact input parameters cannot be repli-
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cated to other regions. Also, immunocompromised (plus old) people need to be considered in
their models; Italy is an example.

In the literature, we found three different model types for COVID-19 predictions: a) SEIR/SIR
models, b) agent-based models, and c) curve-fitting models [10]. Categorically, inspired
by [10], let us briefly discuss them.

1) SEIR/SIR models:

Medical Research Council (MRC) Centre for Global Infectious Disease Analysis used
a nonpharmaceutical intervention (NPI) model, which employed SEIR approach. In a
similar fashion, Columbia University used SEIR model and forecasted number of severe
cases, hospitalizations, critical care, ICU use, and deaths under different social distanc-
ing scenarios for 3-week and 6-week periods starting from April 2, 2020.3 University of
Pennsylvania used CHIME, COVID-19 Hospital Impact Model, and predicted for the next
three months.4

2) Agent-based models:

A group of research centers and universities, Fogarty International Center, Fred Hutchison
Cancer Center, Northeastern University, University of Florida, and more employed the
agent-based COVID-19 prediction model.5 They forecasted based on two different sce-
narios: a) no mitigation and b) stay-at-home. Compared to actual data, their range can be
considered even though the range is really wide.

3) Curve-fitting models:

Curve-fitting model can be described by considering Fig. 5.4, where polynomial re-
gression models are studied. As COVID-19 predictions are complex by nature, linear
regression (described by the linear model ŷ = w1x + wo) does not fit, and there-
fore no estimation is possible. In such a case, considering higher-order models would
be a better fit, and that would bring an idea of higher-order polynomial regression
(ŷ = wkx

k + · · · + w2x
2 + w1x

1 + wo). In the figure, we address a better fit by
tuning a parameter k by taking an error rate for each degree of freedom (DoF) into ac-
count. In other words, we fix the value of k when we find the best fit. In Fig. 5.4, k = 6
is the best fit for this data, and we conclude the regression model. Let us summarize
the data:

3 Mapping tool: https://cuepi.shinyapps.io/COVID-19/. Columbia University (June 23, 2020, last accessed).
4 CHIME v1.1.5 (2020-04-08): https://penn-chime.phl.io.COVID-19 Hospital Impact Model for Epidemics

(CHIME). University of Pennsylvania (April 2020).
5 COVID-19 Model: https://covid19.gleamproject.org/#model. Northeastern University, Fogarty International

Center, Fred Hutchison Cancer Center, and University of Florida (May 15, 2020, last accessed).

https://cuepi.shinyapps.io/COVID-19/
https://penn-chime.phl.io.COVID-19
https://covid19.gleamproject.org/#model
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Figure 5.4: Curve fitting model using global data (the first 71 days data): polynomial regression
model (predictions with different orders).
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Error for each DoF (%): [32.94, 36.35, 23.08, 4.76, 4.6, 5.94, 4.27, 4.73]
DoF (selection): 6

Weights: [4.452−5,−5.31−3,3.79−1,−1.911,4.892,−1.923,2.833]
Model:

ŷ : 4.452−5x6 − 5.31−3x5 + 3.79−1x4 − 1.911x3 + 4.892x2 − 1.923x1 + 2.833

On the whole, curve-fitting model is brittle. It does not predict the long-term behavior. In
Fig. 5.4, we predict possible confirmed cases for the next five days.
Los Alamos National Laboratory (LANL) and the Institute for Health Metrics and Evalu-
ation (IHME) employed a curve-fitting technique.6,7 LANL’s best guess was for Califor-
nia state as of April 08, 2020, 4,082 deaths (compared to 2,974 actual deaths, dated May
14, 2020). IHME’s predictions varied over time.

In the literature, models are transparent enough in terms of how they were built. However,
their predictions were far from actual values. Not to be confused, as input parameters vary,
their models forecasted different results. Besides, no models integrate factors, such as so-
cial distancing and/or 100% lockdown. Other than aforementioned three different models,
the authors used machine learning and/or deep learning models that are built on statistics and
probabilities.

In machine learning, we call such models “garbage-in garbage-out”,8,9 as they predict values
far from what they are. Stochastic models require fairly large amount of data to tune/stabilize
their randomly generated parameters. Unlike the data-independent or discrete model, we are
now required to employ mathematically proved data-driven models that have luxury to dy-
namically tune parameters over time.

It is a time to revisit how complex a model can be if we consider unprecedented events/factors
(including social factors). As scientists, we do not like to limit to win over others in terms of
validation; we rather focus on developing a prediction tool that is scalable and generalizable
for any upcoming infectious disease outbreaks. Within the scope, it is a time to see whether
deep neural networks10can be realized with thousands of parameters. Studying all data analyt-
ical tools is limited to education and training [5,6]. In case we consider using data science and

6 Confirmed and Forecasted Cased Data Model: https://covid-19.bsvgateway.org. Los Alamos National Labora-
tory (June 20, 2020, last accessed).

7 The Institute for Health Metrics and Evaluation (IHME) COVID-19 Model: https://covid19.healthdata.org/
united-states-of-america (June 20, 2020, last accessed).

8 “Garbage In, Garbage Out: How Anomalies Can Wreck Your Data–Heap–Mobile and Web Analytics.” heapan-
alytics.com (May 7, 2014).

9 Steve Goldstein. “Oops — Rick Perry says broken clock is right once a day”. The New York Post (Retrieved
September 19, 2019).

10 Nancy Koleva. “When and When Not to Use Deep Learning”. https://www.dataiku.com (May 1, 2020).

https://covid-19.bsvgateway.org
https://covid19.healthdata.org/united-states-of-america
https://covid19.healthdata.org/united-states-of-america
https://www.dataiku.com
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deep learning models, their numbers of hyperparameters could potentially supersede the size
of input data. In such a case, the model technically works for hyperparameters, not for input
data. This is an alarming event for data science and machine learning scientists.

To sum up, the existing literature includes heavily parameterized computationally expensive
tools. They neither consider unavoidable social factors nor include immunocompromised
population density in that particular region. Besides, impact of immunocompromised per-
sons (e.g., lung cancer) on mortality and/or recovery rates in COVID-19 era was not revis-
ited [4,11]. This brings an idea of nested statistical models, where the parameters must be
data-driven, and the social factors are considered as weights. The parameters are statistically
adjusted based on social factors, and therefore they are dynamic in nature. Then such data-
driven parameters (in terms of weights) are integrated with another statistical model for a
better prediction. This, in long-term, could benefit to predict any possible infectious disease
outbreaks.

5.3 Need of medical imaging tools for COVID-19 outbreak screening

Collecting large amount of data is not trivial, and we have to wait for a long time. Most of
the reported AI-driven tools are limited to proof-of-concept models for coronavirus case. AI
experts state that limited data may skew results away from the severity of coronavirus out-
break. The Wall Street Journal11 reported that coronavirus reveals limits of AI health tools:
some diagnostic-app makers hold off updating their tools, highlighting the shortage of data
on the new coronavirus and the limitations of health services billed as AI when faced with
novel, fast-spreading illnesses (Parmy Olson, February 29, 2020). In a nutshell, social medias,
newspapers, and health reports, we note that conventional AI-driven tools for real-world cases
(with less data) may not provide optimal performance.

Unlike other healthcare issues, for COVID-19, to detect COVID-19, AI-driven tools are ex-
pected to have AL-based cross-population train/test models that employ multitudinal and
multimodal data [1]. In Fig. 5.5, we provide a better understanding of AL (in dotted red cir-
cle) with deep learning (DL) for all possible data types. In AL, expert’s feedback is used in
parallel with the decisions from each data type. Since DL are data dependent, separate DLs
are used for different data types. The final decision is made based on multitudinal and mul-
timodal data. For a quick understanding, two different image data are shown in Figs. 5.6
and 5.7 with clinical manifestations (for COVID-19).

11 The Wall Street Journal, Coronavirus reveals limits of AI health tools (accessed February 29, 2020)), https://
www.wsj.com/articles/coronavirus-reveals-limits-of-ai-health-tools-11582981201.

https://www.wsj.com/articles/coronavirus-reveals-limits-of-ai-health-tools-11582981201
https://www.wsj.com/articles/coronavirus-reveals-limits-of-ai-health-tools-11582981201
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Figure 5.5: For time-series data, a schema of active learning (AL) model is provided.

Figure 5.6: A chest CT image shows ground-glass opacities (check arrows in the right middle and
lower lobes) [20].

5.4 Deep neural networks for COVID-19 screening

Following previous research papers, let us summarize deep neural networks (DNNs). As men-
tioned earlier, among radiological imaging data, Chest X-rays (CXRs) are of great use in

observing COVID-19 manifestations. For mass screening, using CXRs, a computationally ef-
ficient AI-driven tool must detect COVID-19-positive cases from non-COVID ones (including

healthy cases as well).
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Figure 5.7: Bilateral focal consolidation, lobar consolidation, and patchy consolidation are clearly
observed (check lower lung in chest X-ray).

Table 5.1: Data collection (publicly available [12–14]).

Collection # of positive cases # of negative cases
C1: COVID-19 162 –
C2: Pneumonia 4280 1583
C3: TB (China) 342 340

TB (USA) 58 80

5.4.1 Truncated Inception Net: COVID-19 outbreak screening using chest X-rays [7]

Motivated by the fact that X-ray imaging systems are more prevalent and cheaper than CT
scan systems, we proposed a deep learning-based CNN model, which we call Truncated In-
ception Net (see Fig. 5.8). Our aim is to detect COVID-19 positive cases from non-COVID
and/or healthy cases using chest X-rays.

To validate our proposal, we employed six different types of datasets by taking the follow-
ing CXRs into account: COVID-19 positive, pneumonia positive, tuberculosis positive, and
healthy cases [12–14] (see Table 5.1). For better understanding, activation maps are shown in
Fig. 5.9.

The model achieved an accuracy of 99.96% (AUC of 1.0) in classifying COVID-19 positive
cases from combined pneumonia and healthy cases. Similarly, an accuracy of 99.92% (AUC
of 0.99) in classifying COVID-19 positive cases from combined pneumonia, tuberculosis, and
healthy CXRs was reported. We proved the viability of using the proposed Truncated Incep-
tion Net as a screening tool. For more information, we refer to [7].
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Figure 5.8: Truncated Inception network [7]. It presents the internal structure of an Inception
module. Multiple-sized kernels (e.g., 3 × 3 and 5 × 5) are used to convolve with the input image,

to extract features of varied spatial resolution.

Table 5.2: Generated parameters (for an image of size 25 × 25).

Layer Parameters
Convolution 280
Dense 1 310,016
Dense 2 514
Total 310,810

5.4.2 Shallow CNN for COVID-19 outbreak screening using chest X-rays [2]

In [2], we proposed a light-weight CNN-tailored shallow architecture that can automatically
detect COVID-19-positive cases using CXRs. We aimed no false negatives in our experi-
ments. The shallow CNN-tailored architecture was designed with fewer parameters as com-
pared to other deep learning models. For this, we refer the readers to Fig. 5.10 and Table 5.2.

The shallow CNN-tailored architecture was validated using 321 COVID-19-positive CXRs.
In addition to COVID-19-positive cases, another set of non-COVID-19 5856 cases (publicly
available, source: Kaggle) was taken into account, consisting of normal, viral, and bacterial
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Figure 5.9: Activation maps generated by the second convolutional layer (Conv2D), the second
inception module (Mixed1): COVID-19 case (top), pneumonia case (middle), and tuberculosis

case (bottom).

pneumonia cases. For a better visual understanding, feature maps for COVID-19 and pneu-
monia cases are shown in Fig. 5.11. Using 5-fold cross-validation, we achieved the highest
possible accuracy of 99.69%, sensitivity of 1.0, where AUC was 0.9995. The results were
taken for a comparison with other existing deep learning models. For a comparison, the same
exact set of experimental datasets was applied to other popular DL architectures, such as Mo-
bileNet [15], InceptionV3 [16], and ResNet50 [17]. The results are provided in Table 5.3.
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Figure 5.10: A shallow CNN architecture.

Figure 5.11: Feature maps: COVID-19 case (top), and pneumonia case (bottom).
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Table 5.3: Performance comparison with other deep learning models (using balanced dataset).

Metrics InceptionV3 MobileNet ResNet50 Proposed CNN
Sensitivity 1.0000 1.0000 0.9252 1.0000
Specificity 0.9751 0.9938 0.9751 0.9938
Precision 0.9757 0.9938 0.9738 0.9938
False positive rate 0.0249 0.0062 0.0249 0.0062
False negative rate 0.0000 0.0000 0.0748 0.0000
Accuracy (%) 98.75 99.69 95.02 99.69
F1 score 0.9877 0.9969 0.9489 0.9969
AUC 0.9877 0.9969 0.9355 0.9995
Parameters 26,522,146 7,423,938 49,278,594 310,810

Figure 5.12: A CNN-tailored deep neural network (DNN) [3].

5.4.3 DNN to detect COVID-19: one architecture for both chest CT and X-ray
images [3]

For COVID-19 screening purpose, multiple image modalities would provide higher confi-
dence in decision-making. As chest CT and X-rays provide consistent COVID-19 manifesta-
tions [18,19], both can be considered. They can help predict, screen, and diagnose COVID-19
positive cases.

Within this scope, imaging with chest CT and X-ray images is widely used in mass triage sit-
uations. In the literature, AI-driven tools are limited to one data type, either CT scan or CXR,
to detect COVID-19 positive cases. Integrating multiple data types could possibly provide
more information in detecting anomaly patterns due to COVID-19. A CNN-tailored DNN that
can collectively train/test both chest CT and X-rays is shown in Fig. 5.12, and its correspond-
ing parameters are provided in Table 5.4.

Using a data collection (see Table 5.5), such a DNN architecture achieved an overall accu-
racy of 96.28% (AUC = 0.9808). Performance scores (using a complete dataset CXRs + CT
scans) are provided in Table 5.6.
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Table 5.4: Generated parameters (different layers of the CNN architecture).

Layer Output dimension Parameters
Convolution 1 96 × 96 × 32 2432
Convolution 2 45 × 45 × 16 8208
Convolution 3 20 × 20 × 8 1160
Dense 1 256 205,056
Dense 2 50 12,850
Dense 3 (Output layer) 2 102
Total – 229,808

Table 5.5: Dataset collections.

Collections COVID-19 cases Non COVID-19 cases Total
CXR [20,21] 168 168 336
CT [20,22] 168 168 336
CXR + CT 336 336 672

Table 5.6: Performance scores (using complete dataset CXRs + CT scans).

Metrics Scores
Sensitivity (Recall) 0.9792
Specificity 0.9464
Precision 0.9481
False positive rate 0.0536
False negative rate 0.0208
Accuracy (%) 96.28
F1 Score 0.9634
AUC 0.9808

The uniqueness behind this work is that no existing models worked on two different modali-
ties, chest CT and X-ray images. It opens a new window for machine learning scientists that
two modalities can be used in one DNN.

5.5 Discussion: how big data is big?

In what hollows, we elaborate on the use of image data for COVID-19 screening, where the
focusing point is their performance in accordance with the dataset size. As mentioned earlier,
we consider both image modalities, chest CT and X-ray images. For a thorough study, we
refer to [23].
1) Chest CT imaging for COVID-19 screening:

For COVID-19, we elaborate on the use of chest CT imaging methods based on the per-
formance by taking dataset size into account (see Table 5.7).
Farid et al. [24] devised a CNN-based approach to classify COVID-19 and SARS im-
ages (51 each class). Using 10-fold cross validation, they reported an accuracy of 94.11%.
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Table 5.7: Chest CT imaging tools, their datasets, and performance measured in Accuracy (ACC), Area Under
the Curve (AUC), Specificity (SPEC), and Sensitivity (SEN).

Authors (2020, 2021) Dataset size Performance (in %)
ACC, AUC, SPEC, SEN

Farid et al. 2020 [24] Dataset (Kaggle): 102 images
COVID-19 +ve (51) + SARS (51)

94.11,99.4,−,−

Hasan et al. 2020 [25] Dataset: COVID-19 and SPIE-AAPM-NCI: 321 images
COVID-19 +ve (118) + pneumonia (96) + normal (107)

99.68,−,−,−

Loey et al. 2020 [26] Dataset: 742 images
COVID-19 +ve (345) + COVID-19 -ve (397)

82.91,−,87.62,77.66

Li et al. 2020 [27] Dataset: 3,322 images
COVID-19 +ve (468) + CAP (1,551) + non-pneumonia (1,303)

−,0.96,96,90

Ardakani et al. 2020 [28] Dataset: 1,020 images
COVID-19 +ve (510) + COVID-19 -ve (510)

99.51,99.4,99.02,100

Alshazly et al. 2021 [29] Dataset: 2,482 images
COVID-19 (1,252) + other (1,230)

99.4,−,99.8,99.6

Ni et al. 2020 [30] Dataset: 14,435 images
COVID-19 +ve (2,154) + pneumonia (5,874)

82,86.54,63,96

Chen et al. 2020 [31] Dataset: 30,764 images
COVID-19 +ve (13,734) + normal (17,030)

96,−,94,98
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A notable study was conducted by Hasan et al. [25], who used handcrafted features from
Q-deformed entropy to distinguish between lung scans, pneumonia, and COVID-19 CT
slides. They achieved 99.68% accuracy on 321 subjects. Loey et al. [26] used five differ-
ent DNN architectures, namely AlexNet, VGG16, VGG19, GoogleNet, and ResNet50. On
dataset of 742 images, they achieved an accuracy of 82.91%, sensitivity of 77.66%, and
specificity of 87.62% with ResNet50 classifier (best performance). Li et al. [27] used CT
dataset of size 3,322 subjects (468 COVI-19 cases) and achieved an AUC score of 0.96.
Ardakani et al. [28] utilized 1,020 CT COVID-19 cases and achieved the best accuracy
of 99.51% (with AUC = 0.994 and sensitivity = 100%) from ResNet101 model. Alsha-
zly et al. [29] experimented on two different CT datasets and used seven different DNNs.
They used a k(= 5)-fold cross-validation and achieved accuracies of 99.4% and 92.9%
in the two separate datasets, respectively. They also implemented a Grad-CAM to local-
ize COVID-19 infected regions. In Table 5.7, we only show the distribution of one of the
datasets, which is the largest and with the best performance. Ni et al. [30] implemented
a deep learning model to train and validate with CT data acquired from 14,435 subjects.
The method detects lesions, with segmentation and location with sensitivity and F1-score
of 100% and 97% per-patient basis. The model also achieved a median volume of 40.10
cm3, considering per-lung lobe basis. Chen et al. [31] developed a COVID-19 CT screen-
ing tool validated on 46,096 images and achieved the maximum accuracy of 96%.

2) Chest X-ray imaging for COVID-19 screening:
As before, in Table 5.8, we summarize different imaging methods and their performance
in accordance with the dataset size. Let us briefly summarize them. Alqudah et al. [32]
used 79 images, and the performance was 95.2% (accuracy). Horry et al. [33] used 400
images, and the achieved best performance was 83% (precision). Mukherjee et al. [2]
used 260 X-ray images (130 of them were COVID-19 cases), and an accuracy of 96.92
was reported. Rahimzadeh and Attar [34] used 180 COVID-19 cases and obtained an
overall accuracy of 99.5. Nour et al. [35] used a dataset of size 2,033 images (219 of them
were COVID-19 cases), and their performance was 96.72% (accuracy). Brunese et al.
[36] used a dataset of size 6,523 images, where 250 of them were COVID-19 cases. An
accuracy of 97% was reported. Khan et al. [37] used 1251 images (COVID-19 cases =
284), and they achieved an accuracy of 89.6%. Marques et al. [38] used 1,508 images
(COVID-19 cases = 504), and they achieved an accuracy of 96.70% (multiclass).
Needless to mention that the aforementioned research papers (see Tables 5.7 and 5.8)
have used different feature extractors, decision-making processes, and experimental se-
tups. More importantly, for COVID-19, their dataset sizes are varied over time, and so the
sources are. For a fair analysis, let us not discuss on their methodologies and/or techniqut
rather focus on the dataset size. We then elaborate on the strength of machine learning
and deep learning algorithms by taking the following factors into account, such as fitting,
transfer learning in the era of deep learning, and data augmentation.
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Table 5.8: Chest X-ray imaging tools, their datasets, and performance measured in Accuracy (ACC), Area Under
the Curve (AUC), Specificity (SPEC), and Sensitivity (SEN).

Authors Dataset size Performance (in %)
ACC, AUC, SPEC, and SEN

Alqudah et al. (2020) [32] COVID-19 dataset: 71 images
COVID-19 +ve (48) + COVID-19 -ve (23)

95.2,−,100,93,3

Horry et al. (2020) [33] COVID-19 dataset: 400 images
COVID-19 +ve (100) + normal (100) + pneumonia (100)

−,−,−,80

Mukherjee et al. (2020) [2] COVID-19 dataset (Kaggle): 260 images
COVID-19 +ve (130), COVID-19 -ve (130)

96.92,99.22,100,94.20

Rahimzadeh and Attar [34] COVID-19 dataset: 15,085 images
COVID-19 (180) + pneumonia (6,054) + normal (8,851)

99.50,−,99.56,80.53

Nour et al. (2020) [35] COVID-19 dataset: 2,905 images
COVID-19 (219) + pneumonia (1,345) + normal (1,341)

98.97,99.42,99.75,89.39

Brunese et al. (2020) [36] 2 COVID-19 X-ray datasets, NIH Chest X-ray: 6,523 images
COVID-19 (250) + pulmonary (2,753) + normal (3,520)

97,−,98,96

Khan et al. (2020) [37] Dataset (Kaggle): 1,251 images
COVID-19 (284) + bac (330) + viral (327) + normal (310)

89.5,−,−,100

Marques et al. [38] A chest (pneumonia) and a COVID-19 dataset: 1,508 images
COVID-19 +ve (504) + pneumonia (504) + normal (500)

99.63,97,−,99.63
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For easy understanding, we organize research papers, in both Tables 5.7 and 5.8, in ac-
cordance with the dataset size. In machine learning, we state that the bigger the data, the
better the performance. This is true as we are looking at collecting all possible COVID-
19 manifestations, rather than just increasing number of images. We have not observed
better results from bigger datasets. If so, then how big data is big? Machine learning tools
require to learn all possible manifestations related to particular diseases (COVID-19 in
our case) not just the size of the dataset. However, the dataset size opens the possibility of
having new cases (i.e., manifestations), which is always not the case.
Underfitting and overfitting situations are not explicitly discussed/analyzed in all these
aforementioned COVID-19 screening tools (see Tables 5.7 and 5.8). They rather engaged
in producing better performance scores by tuning (hyper)parameters, due to which biased
results are possible.
In general, transfer learning works relatively greatly in computer vision. It may not work
as expected for COVID-19 screening when we consider both image data types, chest CT
and X-rays.
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