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Abstract: Biological control is an important process for sustainable plant production, and this trait
is found in many plant-associated microbes. This study reviews microbes that could be formulated
into pesticides active against various microbial plant pathogens as well as damaging insects or
nematodes. The focus is on the beneficial microbes that colonize the rhizosphere where, through
various mechanisms, they promote healthy plant growth. Although these microbes have adapted
to cohabit root tissues without causing disease, they are pathogenic to plant pathogens, including
microbes, insects, and nematodes. The cocktail of metabolites released from the beneficial strains
inhibits the growth of certain bacterial and fungal plant pathogens and participates in insect and
nematode toxicity. There is a reinforcement of plant health through the systemic induction of defenses
against pathogen attack and abiotic stress in the plant; metabolites in the beneficial microbial cocktail
function in triggering the plant defenses. The review discusses a wide range of metabolites involved
in plant protection through biocontrol in the rhizosphere. The focus is on the beneficial firmicutes
and pseudomonads, because of the extensive studies with these isolates. The review evaluates
how culture conditions can be optimized to provide formulations containing the preformed active
metabolites for rapid control, with or without viable microbial cells as plant inocula, to boost plant
productivity in field situations.

Keywords: biofilm; dual biocontrol; secondary metabolites; induced plant resistance; plant pathogens;
insect pests; nematode pests; volatiles

1. Introduction

Globally, there is a strong movement for sustainable and regenerative agriculture,
where plant quality, yield, and soil health are key factors. Additionally, agricultural
methods for disease control are under scrutiny by consumers. These factors increasingly
favor biopesticides as an alternative to a strict synthetic chemical approach to pest control.
The success of chemical pesticides reveals the high standards for efficacy that has to be
matched by biopesticides. Chemical pesticides are formulated to consistently control
plant diseases and pests at a relatively low cost to the user. The chemicals are often
targeted toward one or a group of related pests. However, the use of these chemical
pesticides poses risks such as environmental contamination with residues, development of
resistance to the pesticide in the targets, and impacts on human health [1]. Regulation of
the use of chemical pesticides is constantly changing, and it is challenging to develop and
register new compounds [2]. Furthermore, because the industry has provided pesticides
with specific targets for either microbial plant pathogens, insects, or nematodes, they
are not broad-spectrum. Therefore, different applications, possibly at separate times,
are required for complete plant protection. Multiple applications increase costs to the
farmer. One recent exception is the synthetic pesticide fluopyram, commercialized as
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both a fungicide and nematicide, that has been well received by growers for its reliable
performance [3]. Fluopyram is a succinate dehydrogenase inhibitor that targets various
plant fungal pathogens and kills pathogenic nematodes [3,4]. However, there are nontarget
effects at higher concentrations, including the induction of mammalian tumors [5].

Successful biopesticides will protect the plants while maintaining crop quality and
yield, and nurture soil health while minimizing their hazardous effects on consumers and
the soil environment. However, application of biopesticides in agricultural fields has draw-
backs that research involved in formulation, storage, and applications must overcome [6].
In the field, the survival and efficacy of microbial inocula may be limited by environmental
factors [7]. For example, agricultural chemicals may negatively influence the activity and
survival of beneficial microbes in the field. The formulation of current chemical pesticides
maximizes their efficacy through the development of a stable shelf life and optimal methods
of field application. A long shelf life and stability under storage are problems for live cell
formulations. Compared with the rapid killing effects of some pesticides, time is required
to amass beneficial microbial communities in the rhizosphere. The early observations of
biological control in the field of the take-all fungus, Gaeumannomyces graminis, on cereals
demonstrate how time and repetitive cropping are required to establish a suppressive soil
effective for this pathogen [8].

Laboratory studies have firmly established that certain plant-associated microbes
afford biocontrol of bacterial and fungal plant pathogens as well as plant-consuming
insects and nematodes. Table 1 lists some of the plant-associated microbes where the
microbial metabolites active in biocontrol of multiple plant pests are characterized. Formu-
lations of such biocontrol agents are attractive because they could simultaneously deter
microbial disease and insect/nematode damage to plants. Although endophytic fungal
entomopathogens also limit microbial disease pressure in plants, this review focuses only
on biocontrol bacteria [9,10].

The review is structured into four information sections. Section 2 introduces major
bacterial genera and species for which biocontrol of multiple species by characterized
metabolites are established. The different classes of biocides characterized from these
bacteria are introduced and reveal that some active metabolites are shared between genera.
The findings illustrate widespread variability in the susceptibility of the targets, something
that is true for both different plant fungal pathogens and insect predators. Section 3
focuses on how certain microbial metabolites with direct biocontrol activity also induce
systemic tolerance in the plant to pathogens, damaging insects, or nematode pests. Section 4
addresses the integration of the academic knowledge of biocontrol with industrial expertise
and mechanization for scale-up to formulate commercial preparations for field applications
as biopesticides. The conclusions section summarizes the highlights of the review, showing
the potential for biocontrol of multiple targets by rhizosphere microbes.

Table 1. Rhizosphere bacteria that protect plants against multiple pests (i.e., microbes, insects, and
nematodes) through characterized metabolites and enzymes.

Bacterial Strains Pathogens Pests
Active Metabolites

Reference
Antimicrobial Insecticidal

Gram-positive
bacteria

Bacillus
amyloliquefaciens AG1

Various fungal
pathogens Tuta absoluta Crude protein

extract Biosurfactant [11,12]

Bacillus atrophaeus L193 Botrytis cinerea,
Monilinia laxa Rhopalosiphum padi 2,3-Butanediol Biosurfactant [13,14]

Bacillus subtilis PTB185 Various fungal
pathogens

Aulacorthum solani
Aphis gossypii Lipopeptides Chitinase [15,16]
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Table 1. Cont.

Bacterial Strains Pathogens Pests
Active Metabolites

Reference
Antimicrobial Insecticidal

Bacillus subtilis SPB1
Fusarium solani

Rhizoctonia bataticola
Rhizoctonia solani

Ectomyelois ceratoniae
Spodoptera littoralis Biosurfactant Biosurfactant [17–20]

Bacillus subtilis V26 Botrytis cinerea Tuta absoluta Biosurfactant Biosurfactant [21]

Bacillus
thuringiensis strains Sclerotinia sclerotiorum Plutella xylostella

Salicylic acid,
ethylene, and
jasmonic acid

BT toxin [22]

Bacillus
thuringiensis CMB26

Colletotrichum
gloeosporioides Pieris rapae crucivora Lipopeptide Lipopeptide [23]

Brevibacillus
laterosporus Lak1210 Fusarium equiseti Plutella xylostella Chitinase Chitinase [24]

Paenibacillus
elgii HOA73

Botrytis cinerea
Cladosporium

sphaerospermum

Plutella xylostella
Meloidogyne incognita Chitinase

Crude enzyme,
gelatinase,
chitinase

[25–27]

Paenibacillus
elgii HOA73

Botrytis cinerea,
Rhizoctonia solani,

Fusarium oxysporum f.
sp. lycopersici

Methyl-2,3 dihy-
droxybenzoate

(phenolic
compound)

[28]

Paenibacillus
elgii HOA73

Botrytis cinerea,
Rhizoctonia solani

Protocatechuic
acid [29]

Paenibacillus
polymyxa BMP-11

Various
fungal pathogens Tribolium castaneum 1-Octen-3-ol

benzothiazole
1-Octen-3-ol

benzothiazole [30]

Streptomyces
hydrogenans DH16

Various
fungal pathogens

Spodoptera litura
Meloidogyne incognita NA NA [31,32]

Streptomyces
tanaschiensis

Saccharomyces sp.
Penicillium sp.

Musca domestica
Locusta migratoria Flavensomycin Flavensomycin [33]

Gram-negative
bacteria

Photorhabdus temperata
M1021

Phytophthora capsica,
Rhizoctonia solani,

Corynespora cassiicola
Galleria mellonella Benzaldehyde Benzaldehyde [34]

Pseudomonas fluorescens
CHA0 Pythium ultimum

Spodoptera littoralis
Heliothis virescens
Plutella xylostella

Meloidogyne javanica
M. incognita

Pyoluteorin,
2,4-DAPG *

Pyoluteorin,
2,4-DAPG

extracellular
protease, and
insect toxin

(Fit **)

[35–38]

Pseudomonas
chlororaphis PCL1391

Fusarium oxysporum f. sp.
radicis-lycopersici

Spodoptera littoralis
Heliothis virescens
Plutella xylostella
Galleria mellonella

Phenazine-1-
carboxamide

Potent insect
toxin, HCN,
lipopeptide,

Fit toxin

[38–40]

Pseudomonas
chlororaphis O6

Rhizoctonia solani
Fusarium graminearum
Phytophthora infestans

Meloidogyne hapla
Myzus persicae

Pyrrolnitrin,
phenazines

Hydrogen
cyanide (HCN),

Cyclic
lipopeptides

[41–44]
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Table 1. Cont.

Bacterial Strains Pathogens Pests
Active Metabolites

Reference
Antimicrobial Insecticidal

Pseudomonas
chlororaphis PA23 Sclerotinia sclerotiorum Caenorhabditis elegans Pyrrolnitrin Pyrrolnitrin,

HCN [45,46]

Serratia entomophila
AB2

Aspergillus flavus
Candida albicans

Fusarium oxysporum
Heliothis armigera NA NA [47]

* 2,4-DAPG: 2,4-diacetylphloroglucinol, ** Fit: for P. fluorescens insecticidal toxin.

Targeted virulence against plant pests and other beneficial effects that promote plant
vigor fits the description of these bacteria as probiotics, a term applied to microbes that
improve the growth of their hosts [48–50]. The rhizosphere habitat of the beneficial microbes
enables the plant to be surrounded by overlapping spheres of influence that depend on
different mechanisms for plant protection. This concept is illustrated in Figure 1. Central
and throughout the plant is the induction of systemic resistance through root colonization
by certain beneficials. The formation of biofilms of the beneficial microbes in part physically
protects the root surface. Protection is extended further into the rhizosphere through the
secretion of antagonistic enzymes or metabolites by the biofilm cells. The production of
antagonistic volatiles provides an even greater radius of protection.
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Figure 1. The multiple impacts of biocontrol-active bacteria in the rhizosphere and extending out
into bulk soil. Biocontrol microbes are accepted as plant root colonists while exerting antagonism
against plant pests through several layers of control in the rhizosphere space. Defense by induced
systemic resistance (ISR) may be triggered by metabolites from the biocontrol root colonists. The
patchy biofilms on the root surface provide protective barriers. Aqueous diffusion in soil pore waters
distributes antagonistic metabolites and enzymes secreted by the biocontrol colonists further into
the rhizosphere and biocontrol-active volatiles will diffuse to bulk soil, even to the airspace. These
mechanisms boost the survival of the biocontrol bacteria, with their protection within biofilms and
spread through chemotaxis and swarming at the rhizoplane. Movement of infected nematodes and
insect larvae transport inocula away from the root, and these structures act as hot spots for production
of antagonistic products from the biocontrol microbes.
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2. The Array of Isolates and Their Products for Biocontrol of Multiple Targets

Bacteria with multiple biocontrol potential include genera classified as Gram-positive
cells, such as the firmicutes Bacillus, Paenibacillus, and Brevibacillus; actinomycetes such as
Streptomycete isolates; and Gram-negative isolates, including Pseudomonas, Photorhabdus,
and Serratia (Table 1). For commercial formulation, Gram-positive isolates that sporulate
are advantageous because the spores have an extended longevity over vegetative cells.
Common habitats for these genera are soils. Many are documented to colonize root tissues,
to which they are attracted by chemotaxis towards the gradient of plant root exudates. Cer-
tain isolates display very specific habitats, such as the symbiosis of Photorhabdus luminescens
with entomopathogenic nematodes [51].

Biocontrol-active metabolites are diverse (Figure 2) but can be classified based on
their structural similarity; for example, peptide toxins are implicated in insect and nema-
tode control. Indeed, the most commercially relevant are the toxins produced by Bacillus
thuringiensis, collectively termed BT toxins, which function by generating holes in the
membranes of the insect’s digestive tract [52]. Fit proteins from the fit genes in the genomes
of certain pseudomonads [53] and the related Mcf toxins from Photorhabdus and Xenorhab-
dus [54] that induce membrane disorganization also contribute to insecticidal activity. The
lipopeptide group impacts membrane structures through their surfactant activity [55].
Phenolics such as the phenazine group may cause oxidative stress in the target leading
to cell death, and some may act as iron chelators [56]. The hydrolytic enzymes chitinase,
proteases, and lipases could damage cellular structures [37,57,58]. The combined activities
of proteases and lipases could impair membrane structure. The chitinases could hydrolyze
cell wall polymers in insects, nematode egg coats, and fungi [58].
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Figure 2. Classes of metabolites involved in biocontrol of microbial, insect, and nematode pests for
plants. The biocontrol-active rhizobacteria are highly selective pathogens causing death, or impaired
growth, of plant pests through the production of soluble and volatile metabolites, enzymes, and the
formation of biofilms. Additionally, microbially associated molecular patterns (MAMPs) and certain
metabolites will trigger plant defense systems.

The direct effects, revealed by dose-dependent in vitro studies with purified materials,
generally require high active metabolite or enzyme levels. However, in addition to the
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potential direct effects of the above metabolites and secreted enzymes, there is also a
strong involvement by the same active biocontrol product in activating systemic protection
measures in the plant [59]. Characterized traits of the microbes and functions of the
metabolites with potential biocontrol significance are summarized by type in Figure 2. The
following discussion introduces the rhizosphere habitat for biocontrol agents and, then,
with a focus on firmicutes and pseudomonads, the biocontrol potential of characterized
metabolites produced by different isolates are compared.

2.1. The Rhizosphere Habitat: A Significant Trait of Microbes with Multiple Biocontrol Activities

The rhizosphere is a dynamic space and key to the health and productivity of the
plant. Roots and their exudates supply nutrients to damaging microbial plant pathogens
and a foothold for invasion by pathogenic nematodes and insect larvae. However, the
plant counters these effects by nurturing root colonization by beneficial microbes that shift
the balance towards root and shoot health. Firmicutes and Gamma-proteobacteria, such
as the pseudomonads, are among the most-studied bacteria that are such probiotics for
the plant [60]. Their consumption of simple metabolites, such as the sugars and amino
acids in root exudates [60,61], reduces the ability of root exudation to support the growth
of pathogenic microbes, insect larvae, and nematodes. Further, the microbe’s metabolism
increases the level of protectant secondary microbial products in the soil pore waters.
These protective metabolites may require specific catabolic mechanisms in order to have
persistence and to influence microbial community composition [62]. One example by
Stringlis et al. [63] shows how coumarins in the root exudates favor root colonization
by biocontrol-active microbes with a tolerance to coumarin, whereas this root metabolite
is toxic to pathogen growth. The pools of biocontrol-active metabolites will function to
strengthen the niche of the beneficial microbes, and additionally may trigger systemically
protective changes in the plant to further thwart potential pathogens.

The formation of biofilms by the probiotic cells on root cell surfaces is integral to the
protection process [64]. The biofilm patches shield the root surface cells against direct attack
and provide a sheltered environment for the cells of the beneficial bacterium. Additionally,
the extracellular polymers forming the gel for the matrix encapsulating the cells could
retain released microbial products, so that their concentrations are higher than in the soil
pore water. When insect larvae and nematodes feed on the colonized plant root, they will
ingest these biofilms that are loaded with toxic materials. Interestingly, both resorcinols
and phenazines, identified as phenolics active in biocontrol, are correlated with improved
biofilm formation [45,64,65]. The biofilm would also reduce the ingress of pathogenesis
factors such as enzymes and toxins from any plant pathogens, so that contact with root
cells is lessened.

Studies with a Paenibacillus polymyxa strain confirm that the matrix exopolysaccha-
rides of the biofilm act as a rhizosphere nutrient source and as a structure that inhibits
pathogen attack [66]. Chan et al. [67] indicate that reduced motility of nematodes within
a Pseudomonas aeruginosa biofilm impairs their predatory behavior. Earlier work with the
biocontrol agent Pseudomonas brassicacearum DF41 observed that biofilm formation over
the head of the nematode contributes to the nematode’s demise [68]. This group cites the
activity as being part of the mechanism that limits predation of the beneficial bacterium,
i.e., it is part of the survival features of the biocontrol agent.

Invasion and feeding on root cells are part of the life cycle of the nematodes and insect
larvae that damage plants. In this context, being able to kill these organisms would provide
nutrients for the biocontrol organisms, thus augmenting the carbon-rich metabolites in
the root exudates. A comparison of the root exudate composition shows that colonization
of the roots by beneficial microbes alters the composition of amino acids [69–71]. Some
amino acids presumably supply essential N for microbial growth, which is limited in
the soil pore water. For instance, Boiteau et al. [70] found that the concentration of two
N-containing amino acids in root exudates from Brachypodium decreases after colonization
by Pseudomonas fluorescens. Microbes that are rhizosphere colonists have higher numbers
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of amino acid and sugar transporters than non-colonists [69]. Consequently, the presence
of genes enabling the biocontrol agents to kill protein-rich larvae would be advantageous
for bacterial multiplication, because of the rich supply of complex N-nutrients from the
insect’s body mass [72,73]. Similarly, enzymatic digestion through proteases of the pro-
teinaceous cuticle of nematodes or the chitin of their eggs would increase the N supply to
the bacteria [74].

Infections with nematodes or insect larvae would result in biofilms on these hosts
and the production of the biocontrol-active metabolites and enzymes, providing “hot spot”
reservoirs additional to those at the plant root. Indeed, infection with insect larvae by
biocontrol-active pseudomonads induces the expression of genes supporting antifungal
metabolite production, boosting the value of such pockets of biocontrol microbes within
the soil [40]. Further, any movement by the infected larvae and nematodes would aid
in spreading the biocontrol agent (Figure 1). The concept that biocontrol microbes in the
rhizosphere are spread by contact with and pathogenicity on insects is discussed well in a
review by Pronk et al. [75]. Thus, the infectious ability on the soil fauna boosts the sphere
of influence of the probiotics further from the root surface [60] (Figure 1). These potential
roles by the biocontrol agents of the biofilm in plant protection add to the need to formulate
viable cell preparations that are effective when introduced into agricultural settings.

2.2. Active Products from Bacillus spp.

Four classes of protectants essential in biocontrol by Bacillus spp. are peptide toxins,
lipopeptides, enzymes, and volatile organic compounds. The most effective of these
products are the insecticidal BT toxins, which have been successfully commercialized.
The toxins are produced as sporulation of the Bacillus isolates commences and become
concentrated as an inactive crystal structure within bacterial cells [52]. After ingestion of
the crystals by the insect larvae, conversion to an active peptide dependent on the action of
a larval protease occurs. The recognition of the active peptide by specific receptors on insect
gut cells causes pore formation and loss of selective permeability. The efficacy of digestion
is impaired, and the bacteria enter the circulatory systems to eventually kill the larvae. The
specificity of the receptors in the gut cell membranes leads to products that target certain
insects. The toxins vary in structure and activity; BT from B. thuringiensis shows an LC50 of
0.28 ppm against the second instar larvae of the diamondback moth Plutella xylostella, a
value lower than the LC50 for the toxin from Bt subsp. kurstaki HD1 (LC50 0.47 ppm) [22].
However, BT toxins are not the only control mode, because additional toxic peptides can be
formed even in vegetative cells [76]. Understanding the additive or synergistic effects of
the array of metabolites in biocontrol requires further studies.

Lipopeptides are metabolites commonly secreted by B. thuringiensis and other Bacillus
species [77]. Many lipopeptides have potent activity against insects and are also antifungal
(Table 2). For example, the lipopeptide from B. thuringiensis CMB26 has insecticidal activity
on the larvae of the cabbage white butterfly, Pieris rapae crucivora, and inhibits the growth of
the pathogenic fungus, Colletotrichum gloeosporioides [23]. A single Bacillus spp. strain may
produce several lipopeptides, each with a different potential against plant fungal pathogens.
Two lipopeptides produced by B. subtilis EA-CB0015, iturin A and fengycin C, inhibit the
anthracnose pathogen Colletotrichum acutatum, with a minimum inhibitory concentration
(MIC) at 32 ppm and 124 ppm, respectively [78]. Other Bacillus species also produce iturin
A, and this biocide also disrupts the membranes in cells of the fungal targets [79]. Studies of
iturin from B. methylotrophicus TEB1 show a MIC of 100 ppm against Phoma tracheiphila [80],
whereas iturin from B. amyloliquefaciens MG3 inhibits mycelial growth of C. gloeosporioides
at concentrations less than 50 ppm but is ineffective in restricting spore germination [79].
These examples indicate that timing is crucial for fungal pathogen control on the plant, as
it will depend on whether the spores or mycelial growth of a pathogen is targeted. Another
lipopeptide from B. amyloliquefaciens BO5A inhibits mycelia of F. oxysporum at 10 ppm
although there is no effect on the mycelium of Botrytis cinerea at 100 ppm [81].
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Table 2. Minimum inhibitory concentration (MIC) and lethal dose (LD)/lethal concentration (LC)
50 of secondary metabolites from microbials against fungal pathogens; lethal dose or concentration
against pathogenic insects or nematodes.

Active
Metabolite Pathogen/Pest MIC

(ppm)
LD/LC 50

(ppm) Inhibition Source of Active
Metabolite Reference

Lipopeptide Tuta absoluta 180 ng/cm2 1st Instar
larvae mortality

Bacillus
amyloliquefaciens

AG1
[12]

Lipopeptide Fusarium oxysporum
f. sp. lycopersici 10 Mycelial growth

Bacillus
amyloliquefaciens

BO5A
[81]

Lipopeptide Myzus persicae 22.2 2nd Instar
nymph mortality Bacillus subtilis Y9 [82]

Lipopeptide Ectomyelois ceratoniae 152 3rd Instar
larvae morality

Bacillus subtilis
SPB1 [18]

Lipopeptide Spodoptera littoralis 251 ng/cm2 1st Instar
larvae mortality

Bacillus subtilis
SPB1 [17]

Lipopeptide

Fusarium solani 3000

Mycelial growth Bacillus subtilis
SPB1

[19,20]Rhizoctonia bataticola 40

Rhizoctonia solani 4000

Lipopeptide Colletotrichum acutatum 32 Mycelial growth Bacillus subtilis
EA-CB0015 [78]

Lipopeptide Colletotrichum
gloeosporioides 36.47 Mycelial growth

Bacillus
amyloliquefaciens

MG3
[79]

Lipopeptide Phoma tracheiphila 47.5 Mycelial growth
Bacillus

methyltrophicus
TEB1

[80]

Phenazine-1-
carboxylic
acid (PCA)

Botrytis cinerea 25 Mycelial growth Pseudomonas
aeruginosa LV [83]

PCA Botrytis cinerea 50

Colletotrichum orbiculare 5

Mycelial growth Pseudomonas
aeruginosa GC-B26 [84]Phytophthora capsici 5

Pythium ultimum 5

PCA

Sclerotium rolfsii 29

Mycelial growth Pseudomonas
aeruginosa [85]Fusarium oxysporum 40

Colletotrichum falcatum 50

PCA

Fusarium oxysporum 1.56

Mycelial growth Burkholderia
sp.HQB-1 [86]

Colletotrichum
gloeosporioides 6.13

Botrytis cinerea 1.56

Curvularia fallax 3.13
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Table 2. Cont.

Active
Metabolite Pathogen/Pest MIC

(ppm)
LD/LC 50

(ppm) Inhibition Source of Active
Metabolite Reference

PCA

Gaeumannomyces
graminis

var. tritici
1

Mycelial growth Pseudomonas
fluorescens 2–79 [87]

Rhizoctonia solani 1

Cochliobolus sativus 1–3

Pythium aristosporum 1

Pythium ultimum 25–30

Pythium uttimum var.
sporangiifurum 80–100

Fusarium sp. 25–30

Phenazine-1-
carboxamide

(PCN)
Botrytis cinerea 108.12 * Mycelial growth Pseudomonas

aeruginosa [88]

PCN Rhizoctonia solani 5 Mycelial growth
Pseudomonas

aeruginosa
MML2212

[89]

1-Octen-3-ol Tribolium castaneum 16.75 Adult mortality Paenibacillus
polymyxa BMP-11 [30]

Benzothiazole Tribolium castaneum 3.5 Adult mortality Paenibacillus
polymyxa BMP-11 [30]

2,4-
Diacetylphlo-
-roglucinol
(2,4-DAPG)

Fusarium oxysporum f.
sp. lycopersici 16

Mycelial growth Pseudomonas
fluorescens CHA0 [90]

Gaeumannomyces
graminis var. tritici 16–32

Pythium ultimum 64

Rhizoctonia solani 32–64

2,4-DAPG Xiphinema americanum 8.3 Adult mortality Pseudomonas
fluorescens [91]

* EC50 (ppm).

Regarding insecticidal activity, a lipopeptide from B. amyloliquefaciens AG1 has an
LC50 of 180 ng/cm2 against larvae of the leaf miner, Tuta absoluta, targeting the membranes
in the larval midgut cells [12]. These same larvae are controlled at 278 ng/cm2 by the
lipopeptide from B. subtilis V26, which is also an antifungal that halts mycelial growth of
the gray mold fungus, B. cinerea, at 2 ppm [21].

The surfactin lipopolypeptide from B. subtilis Y9 shows aphicidal activity against the
green peach aphid Myzus persicae at 20 ppm [82]. Similarly, active surfactant lipopeptides
from Bacillus atrophaeus L193 cause the destruction of the cuticle of the aphid Rhopalosiphum
padi [13]. B. atrophaeus L193 also controls fungal diseases caused by B. cinerea and Monilinia
laxa in cherry fruits by producing 2,3,-butanediol, a weakly volatile metabolite [14]. Butane-
diol production is also observed in other plant-associated biocontrol bacteria [92], again
showing the sharing of beneficial traits.

Other dual biocontrol lipopeptides synthesized by B. subtilis SPB1 kill larvae of the
cotton leafworm Spodoptera littoralis, initially through the disruption of midgut function [17].
The lipopeptide also effectively controls two fungal pathogens of potato and tomato, Fusar-
ium solani and Rhizoctonia solani, but at high MICs of 3000 ppm and 4000 ppm, respectively,
compared with an MIC of 40 ppm for Rhizoctonia bataticola [20]. Of note is the finding that
the B. subtilis SPB1 lipopeptides have preventative and curative effects [19]. These findings
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illustrate the strong potential for lipopeptides to combat plant loss due to insects and fungal
pathogens, however, the sensitivities between targets are different.

Although the lipopeptide from B. subtilis PTB185 effectively controls the gray mold
fungus B. cinerea, its chitinase is the major factor combating the aphids Aulacorthum solani
and Aphis gossypii [15,16]. Chitinase of B. firmus also is highlighted as a seed treatment agent
to control nematodes [93]. Several papers discuss the multiple roles of chitinase regarding
its antifungal, insecticidal, and nematicidal activities [58,94]. However, chitinase is not
implicated in the control of the nematode Meloidogyne incognita by a crude supernatant
from B. firmus YBf-10. The efficacy in pot cultures is comparable to that of the chemical
nematicide fenamiphos [95]. In this case, a serine protease and chemical metabolites seem
to be functional in the nematicidal response [96].

Bacillus strains also produce biocontrol-active volatile organic compounds (VOCs).
Two VOCs generated by B. velezensis CT32, 2,4-dimethyl-6-tert-butylphenol and benzoth-
iazole, have strong antifungal activity against wilt in strawberries caused by Verticillium
dahliae and F. oxysporum [97]. These VOCs are documented in the headspace when the
bacillus is grown on nutrient agar. Unidentified VOCs produced by another B. velezensis
strain, isolate VN10, inhibit mycelial growth of Sclerotinia sclerotium with high efficacy (MIC
1 ppm) and reduce the disease caused by this fungus through suppression of its production
of oxalic acid [98].

2.3. Paenibacillus spp. Metabolites and Enzymes

The biocontrol arsenal of Paenibacillus elgii HOA73 displays the common finding that a
multiplicity of metabolites formed by a single isolate is important in biocontrol. Hydrolytic
enzymes (chitinase, protease, and gelatinase), along with the phenolic compounds benzoth-
iazole, methyl 2,3-dihydroxybenzoate, protocatechuic acid, and the volatile 1-octen-3-ol,
are among its biocontrol weapons. The phenolic compounds display promising MIC values
for fungal pathogen control. Methyl 2,3-dihydroxybenzoate inhibits mycelial growth of
B. cinerea, R. solani, and F. oxysporum f. sp. lycopersici at 32–64 ppm [28], and the MIC for pro-
tocatechuic acid is similar for B. cinerea and R. solani at 64 ppm. At 100 ppm, protocatechuic
acid halts the disease progress of gray mold on strawberry fruits [29]. The lipopeptides
from Paenibacillus strains also participate in biocontrol. A lipopeptide from P. polymyxa
shows antimicrobial and anti-insect efficacy [66].

Active enzymes include chitinase, which inhibits spore germination of Cladosporium
tenuissimum and B. cinerea at 100 ppm, whereas spores of Fulvia fulva and C. gloeosporioides
are resilient [99]. The P. elgii HOA73 strain exhibits insecticidal and nematicidal perfor-
mance correlating with chitinase and gelatinase (a type of protease) activities; mortality
of M. incognita J2 juveniles and a reduction in egg mass and galling in tomatoes occur at
50–400 ppm. Other factors may participate in the nematicidal effects and the killing of
second instar larvae of the diamondback moth, P. xylostella. Combining organic sulfur with
the active enzymes acts synergistically [26]. It will be interesting to see how biocontrol
microbes and their products can be combined with other tools to achieve better control.

VOCs from P. polymyxa BMP-11 are implicated in biocontrol. Two VOCs, 1-octen-3-ol
(LC50, 16.75 ppm) and benzothiazole (LC50, 3.5 ppm), are active against the adult red flour
beetle Tribolium castaneum [30]. In vitro work with authentic 1-octen-3-ol shows potent
inhibition of bacteria and fungi at 1–2 ppm [100]. At 100 ppm, 1-octen-3-ol effectively
inhibits mycelial growth of the brown rot fungus, Monilinia fructicola, but fruit treatment
requires about 50 ppm to slow disease progress. Fumigation with 1-octen-3-ol (LD50,
27.7 mL/L air) reduces the effects of the maize weevil Sitophilus zeamais and the production
of mycotoxin by the fungus Fusarium verticillioides (MIC 81.5 mL/L air) [101]. Citronellol,
also produced by P. polymyxa strain BMP-11, inhibits F. oxysporum. Additionally, VOCs from
P. polymyxa KM2501-1 can kill second-stage juveniles of M. incognita through mechanisms
that include acting as a repellent and a fumigant active on contact [102].

These examples suggest that certain VOCs can be applied as fumigants. However,
boosting the plant-associated bacteria in agricultural soils by inoculation would also pro-
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mote beneficial volatile production in the rhizosphere. These methods could be valuable
when raising crops in enclosed spaces, such as in greenhouse cultivation.

2.4. Pseudomonad Products

The weaponry of biocontrol pseudomonads uses the same metabolite classes discussed
for the firmicutes in Sections 2.2 and 2.3 for multiple control activity of nematodes, insect
larvae, and microbial plant pathogens. Toxic peptides, lipopeptides, and volatiles are
significant, as are several classes of phenolic-based structures (Figure 2).

Among the phenolic-based products with biocontrol activity, phenazines are well-
known for their potential as antifungal compounds [103,104]. In general, phenazine-1-
carboxylic-acid (PCA) has higher antifungal activity than phenazine-1-carboxamide (PCN)
or 1-hydroxyphenazine (1HP) [105,106]. Phenazines of different structures can be produced
simultaneously by pseudomonads, dependent on their gene pools [107].

The commercial product Shenqinmycin contains PCA as the major metabolite and has
high efficacy in the field against Phoma infections [108]. The PCA produced by P. fluorescens
2–79 limits the mycelial growth of several plant pathogens; Cochliobolus sativus, G. graminis
var. tritici, and R. solani are inhibited with MICs of 1 ppm, but Fusarium spp. requires
25–30 ppm. Species-dependent sensitivity is seen in the oomycete Pythium, with MIC
values for PCA of 1 ppm for Pythium aristosporum, 25–30 ppm for Pythium ultimate, and
80–100 ppm for Pythium ultimum var. sporangiifurum [87].

Although mycelial exopolysaccharide production from B. cinerea is inhibited at 3 ppm
PCA, the control of postharvest gray mold caused by this fungus requires 25 ppm [83].
The PCA synthesized by P. aeruginosa GC-B26 is active against Colletotrichum orbiculare
as well as the oomycetes Pythium capsici (MIC 5 ppm) and P. ultimum (MIC 5 ppm) [84].
Studies with PCA from P. aeruginosa report activities against Sclerotium rolfsii (MIC 29 ppm),
F. oxysporum (MIC 40 ppm), and Colletotrichum falcatum (MIC 50 ppm) [85]. The effective
dose of PCA is often similar to the doses required for commercial pesticides, for example,
for protection against Phytophthora blight on pepper and anthracnose on cucumber [84].

The control of tomato foot and root rot, caused by F. oxysporum sp. radices-lycopersici,
with P. chlororaphis PCL1391 uses PCN as the major phenazine [39]. As for PCA, effective
doses of PCN are similar to those of chemical products. Extracted PCN, produced by
P. aeruginosa MML2212, effectively controls rice sheath blight caused by R. solani at 5 ppm,
exceeding protection from the chemical fungicide carbendazim. Control of rice bacterial
leaf blight, Xanthomonas oryzae pv. oryzae, by 5 ppm PCN is similar to that by the pesticide
refamycin [89], and control of B. cinerea by PCN from P. aeruginosa at 108 ppm has almost
the same inhibition rate as the chemical fungicide carbendazim. The effective dosages for
PCN and chemical fungicides are higher for effects on spore germination and mycelial
growth of Sclerotinia, requiring about 700 ppm for both PCN and carbendazim [88].

In contrast to their high efficacy for inhibiting various plant fungal pathogens, phenazines
are not as efficient in suppressing insect or nematode larvae. They may impair egg hatching
and promote increased J2 larval mortality of the root-knot nematode M. incognita [109,110].
Among the secondary metabolites produced by P. chlororaphis strain PA23, hydrogen
cyanide (HCN) and the phenolic-based pyrrolnitrin (PRN) are cited as active agents in
killing the nematode Caenorhabditis elegans, for which they also act as repellents. Growing
P. chlororaphis strain PA23 with a nematode as the food source enhances the production
of HCN and PRN [46]. However, mutational analysis of P. chlororaphis PA23 reveals that,
among the secondary metabolites produced by this bacterium, pyrrolnitrin is the major
metabolite involved in inhibiting S. sclerotiorum [45]. Studies with root-knot nematode
juveniles found that HCN production is essential for the nematicidal effects of P. chlororaphis
O6 [41,43].

Induced mortality of the root-knot nematode by P. fluorescens CHA0 requires another
suite of products involving a protease and two phenolic-based structures, pyoluteorin and
2,4-diacetylphloroglucinol (2,4-DAPG), each with demonstrated antifungal activities [36,37].
The production of 2,4-DAPG by P. fluorescens CHA0 also suppresses populations of another
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nematode, Meloidogyne javanica [36], while 2,4-DAPG from P. fluorescens is toxic to Xiphinema
americanum adults with an LC50 of 8.3 ppm. Apparently, 2,4-DAPG does not harm beneficial
entomopathogenic nematodes [91].

The antifungal activity of 2,4-DAPG from pseudomonad isolates is well documented.
It is effective at 50 ppm against the citrus postharvest fungi Penicillium digitatum and Peni-
cillium italicum, a dose that compares favorably to 600 ppm for the chemical fungicide
albesilate [111]. Production of 2,4-DAPG by P. fluorescens CHA0 is a major factor in sup-
pressing the soil-borne disease black root rot in tobacco, caused by Thielaviopsis basicola,
and against G. graminis var. tritici in wheat [90].

Other metabolites play roles in the insecticidal activities displayed by the multi-biocontrol
pseudomonads [38,53]. Flury et al. [40] proposed that a mixture of the cyclic lipopeptide
orfamide A and volatile HCN contributes to the insecticidal activity of P. fluorescens CHA0 and
other pseudomonads [40]. Interestingly, the growth of P. fluorescens CHA0 on insect larvae
promotes the expression of genes involved in producing an array of antifungal metabolites
from this strain [40]. This finding suggests the to this rich nutrition of the bacterium helps
its arsenal of metabolites provide security against competition with invasive microbes
in the rhizosphere and bulk soil. Even though HCN is produced only at low levels by
P. protegens Pf-5, the synthesis of analogs of rhizoxin adds to the power of orfamide A and
a chitinase in the oral toxicity of this isolate to the larvae of the common fruit fly, Drosophila
melanogaster [112].

Proteins termed Fit toxins are another part of the pathogenic mechanism of P. protegens
and P. chlororaphis isolates on lepidopteran larvae [38,53,113]. Ruffner et al. [54] discussed
how the fit gene clusters in the pseudomonads are related to those in two insect pathogens,
Photorhabdus and Xenorhabdus, suggesting horizontal gene transfer of the clusters into
limited pseudomonad genomes.

Hydrogen cyanide, HCN, is an important biocontrol volatile from the pseudomon-
ads and other rhizobacteria including Bacillus isolates [114–116], contributing to a broad
spectrum of inhibitory activities against microbes, insects, and nematodes [40,117]. Root
exudates may exogenously supply the glycine that the microbes use as the substrate for
HCN synthase; carbon dioxide is the other product of the synthase activity [117]. Pro-
duction of HCN is observed in the airspace of closed growth boxes supporting plants
with roots colonized by P. chlororaphis O6 [43,117]. Dependent on concentration, HCN
may be toxic due to the disruption of cellular function through the inhibition of heme
group function [118]. Indeed, root colonization and HCN production by certain isolates
leads to herbicidal activity [119]. However, lower doses of HCN may also be important
through synergistic interaction with other antimicrobial metabolites, such as lipopeptides
or pyrrolnitrin, in enhancing the biocontrol effects.

The inhibition of fungal growth of the foliar plant pathogens Septoria tritici and Puccinia
recondita f. sp. tritici on wheat is attributed to HCN production by P. putida BK8661 [120].
Furthermore, cyanide-producing pseudomonads suppress fungal diseases on canola and
rice [121,122]. Mutation of P. fluorescens CHA0 revealed that HCN is a major player in
controlling black root rot of tobacco, caused by the fungus Thielaviopsis basicola [123,124].
The combination of HCN and 2,4-DAPG syntheses by Pseudomonas sp. LBUM300 protects
tomatoes against bacterial canker caused by Clavibacter michiganensis subsp. michiganensis [125].

Insecticidal effects of HCN production have been revealed by the observed mortality
of second instar nymphs of the green peach aphid Myzus persicae when exposed to volatiles
from P. chlororaphis O6 [44]. This study, and others with different pseudomonad isolates,
showed that HCN production is controlled by quorum sensing [44]. Other studies extend
the insecticidal effects of HCN produced by pseudomonads to flies and termites [126–128].
Combining HCN with lipopeptides of P. protegens CHA0 and P. chlororaphis PCL1391 shows
activity against insects [40]. The nematicidal activities of HCN include killing of the nema-
tode Caenorhabditis elegans by P. chlororaphis PA23, in combination with pyrrolnitrin [122].
A primary role for HCN is implicated in the mortality of J2 juveniles of the root-knot
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nematode, where for tomato, the efficacy of the biocontrol agent was as strong as that of
the chemical nematicide fosthiazate in commercial greenhouses [41,43].

These studies illustrate that the biocontrol-active pseudomonads, like the firmicutes,
strongly influence rhizosphere health, their strength being dependent upon a multiplicity
of potential control mechanisms incited by different metabolites.

2.5. Streptomyces, Brevibacillus, Serratia, and Photorhabdus

As discussed above, secondary products from the firmicutes and pseudomonads
produce many different structures with multiple biocontrol activities. Only a few highlights
are provided in this section to illustrate the expansive diversity in structure and function.
The Gram-positive Streptomyces hydrogenans DH16 secretes metabolites that kill M. incognita
J2 juveniles at 100 ppm [32], inhibit fungal pathogens, and induce mortality to second
instar larvae of Spodoptera litura [32]. A chitinase produced by Brevibacillus laterosporus
Lak1210 has dual performance against larvae of the diamondback moth P. xylostella and the
pathogenic fungi Fusarium equiseti [24].

For other Gram-negative isolates, the volatile benzaldehyde produced by Photorhabdus
temperata M1021 contributes to the antimicrobial effects on Phytophthora capsici, R. solani,
Corynespora cassiicola, and Bacillus spp., as well as insecticidal activity on the larvae of the
greater wax moth Galleria mellonella [34].

Serratia species are a source of many deterrents for plant protection and represent an
understudied resource for soil and plant associations [129]. Ordentlich et al. [130] reported
that chitinase from Serratia marcescens is key for controlling Sclerotium rolfsii; direct lysis
of mycelia of the pathogen was observed. Serratia entomophila AB2 shows a dual effect
on pathogenic fungi and the pod borer Heliothis armigera [47]. Haterumalides, novel and
complex metabolites from Serratia plymuthica A153, suppress the apothecial formation in
sclerotia of Sclerotium with MIC of 0.5 ppm; additionally, oomycetes also are sensitive
to these metabolites [131,132]. Serratia isolates are amongst the several bacterial genera
that synthesize pyrrolnitrin, previously discussed as a pseudomonad product in Section 2.
In combination, pyrrolnitrin and the haterumalides inhibit spore germination of various
fungal plant pathogens at MICs of 0.4–50 ppm [131]. The array of volatiles synthesized
from Serratia isolates also offers biological control potential [133]. Recent work on the
plant-growth-promoting isolate of S. plymuthica A153 correlates impaired growth of several
plant fungal pathogens with the volatiles for which ammonia is identified as an important
component [133]. Activation of the WRKY18-plant stress pathway was noted with volatiles
of Serratia [134].

These examples illustrate that the soil contains a diversity of microbial genera that can
contribute to plant health by affecting the growth and metabolism of potentially harmful
microbe, nematode, and insect challenges. The chosen examples highlight that many soil
isolates thrive in the rhizosphere partly due to the carbon and nitrogen nutrition from plant
metabolites in the root exudates. The examples, summarized in Figure 2, reveal a wide
range of microbial metabolites are involved in the intricate interactions with cohabitors,
and some directly reduce the effects of the plant predators. The sources of these metabolites,
the biocontrol rhizobacteria, become the predators of the plant pests but retain balanced
cohabitation with the plant.

3. Induction of Plant Systemic Resistance Mechanism by Biocontrol Agents

The observations of inhibited growth of fungal pathogens or the death of infested
insect larvae or nematode juveniles established that plant-associated microbes produce
compounds that directly inhibit pathogenic challenges. However, there is another valuable
hidden trait: many microbes trigger the induction of systemic resistance mechanisms
in the plant (Figure 1). The ability of beneficial microbes to induce resistance to both
microbial plant pathogens and herbivorous insects/nematodes is summarized in several
reviews [135,136].
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In addition to causing direct pest antagonism, the microbial stimulation of plant
tolerance also contributes to plant health. The onset of systemic plant resistance can be
traced to the effects of discrete metabolites from the biological agents, indicating dual
roles of these compounds as direct inhibitors of plant pests. This additional significance of
biological control microbes to plant biotic resistance is discussed in Section 3.

Certain antifungal products from biocontrol-active pseudomonads and Bacillus iso-
lates trigger plant resistance, as determined by treatment with the authentic compound.
Additionally, this ability is detected from a comparison of responses that are induced in the
plant by the wild type, but not by mutant cells defective in the metabolite. Resistance in
the plant is seen at a distance from the site of microbial colonization; for example, although
the stimulus is from a root colonizer, leaf tissues are protected against the pathogens. Thus,
the term induced systemic resistance (ISR) is used for this process.

A cross-talking set of pathways involving different plant regulatory signals is in-
volved. Identified pathways included the salicylic acid pathway, the jasmonate pathway,
and an ethylene pathway [137]. Each pathway has a set of defense measures associated
with the specific signal, such that one pathway offers protection against different sets of
challenges [135]. For example, jasmonic acid pathway activation is associated with the
plant’s responses to chewing insects [138], whereas plant cell necrosis by toxins from a
plant pathogen triggers the salicylic acid pathway [139].

Studies with Pseudomonas sp. CMR12a find that mutants lacking phenazine production
fail to induce systemic resistance in rice, whereas it is induced by the wild type cells
and the phenazine metabolite, PCN [140]. Another phenazine, pyocyanin, produced by
P. aeruginosa 7NSK2, stimulates ISR in tomatoes [141]. In tobacco, mutants of P. chlororaphis
O6 lacking in phenazines are unable to induce systemic resistance to the soft-rot-causing
pathogen Erwinia carotovora [142]. The ethylene defense pathway, rather than the salicylic
acid pathway, is induced by P. chlororaphis O6 [143]. One common response to phenazines
in plants is the production of reactive oxygen species, which may be an initiator for plant
defense gene expression changes leading to ISR.

With P. chlororaphis PA23, the production of pyrrolnitrin is a possible activator for low-
level systemic resistance to blackleg in canola [144]. Different compounds, an alkaloid, two
amino lipids, three arylalkylamines, and a terpenoid, are active ISR activators from another
root colonizer, P. fluorescens N 21.4 [145]. These were found by screening the metabolite
pool from this bacterium. The release of 2,4-DAPG from other pseudomonads activates
the jasmonic acid/ethylene pathway for ISR in Arabidopsis [146]. Resistance induction
by 2,4-DAPG correlates with the suppression of take-all in soils [147]. Additionally, the
suppression of root-knot nematode infections in tomato roots is linked to induced resistance
by 2,4-DAPG produced from P. fluorescens CHA0 [36].

Volatiles produced by biocontrol bacteria also trigger resistance [148]. Kishimoto
et al. [149] find that authentic 1-octen-3-ol induces systemic resistance through the jas-
monate pathway. This VOC is produced by several biocontrol microbes, as discussed in
Section 2. Ryu et al. [150] identified 2,3-butanediol among microbial volatiles from Bacillus
subtilis GB03 and Bacillus amyloliquefaciens N937 that induce systemic resistance to gray
mold, and B. cinerea in Arabidopsis, where the ethylene pathway, but not the salicylic acid or
jasmonate pathway, is active. Butanediol production from P. chlororaphis O6 also explains
the induction of systemic resistance to Erwinia in tobacco [92,151].

The lipopeptides produced by many Bacillus species also trigger ISR. Stimulation of
ISR by iturin A and fengycin from indigenous Bacillus spp. offers protection in rice. This
mechanism adds to the direct inhibition of spore germination and mycelial growth to
achieve a high level of plant protection [152]. Park et al. [153] show that several analogs of
iturin A from Bacillus vallismortis strain EXTN-1 activate ISR against Phytophthora capsici
in chili pepper. Indeed, soft rot disease in cherry tomato caused by Rhizopus stolonifera is
controlled by ISR activated by iturin A [154]. In both iturin A studies, an array of plant
genes encoding enzymes associated with plant resistance is expressed.
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The chitinases secreted by many of the biocontrol agents may also participate in
enhanced plant resistance. Increased expression of plant chitinase genes is part of the
changes in metabolism seen when ISR is activated in the plant; the induced proteins are
termed the “pathogenesis-related proteins”. Differences in the array of chitinase isozymes
expressed are dependent on the activation of the salicylic or ethylene/jasmonic acid path-
ways [155,156]. These hydrolytic enzymes degrade chitins/chitosans that are integral
components of the walls of fungi and insects and the coating of nematode eggs [157,158].
However, chitin oligomers derived from such activities are among the group of activators
for innate immune responses in plants [156]. Consequently, the secretion by the bioactive
bacteria of chitinases, often a complex of different isoforms [25], is yet another avenue by
which these microbes can indirectly protect the plant through their potential to activate
plant defenses.

4. Secondary Metabolites and Cell Preparations for Commercial
Biocontrol Formulations

Several biopesticides based on biocontrol metabolites with a control potential as effec-
tive as chemical pesticides are currently marketed for agricultural use. One such example
is fludioxonil, a synthetic fungicide derived by using pyrrolnitrin as a base structure. There-
fore, it belongs to the phenylpyrroles group of pesticides (FRAC code 12). Fludioxonil
inhibits signal transduction in fungi and effectively controls Sclerotinia and Botrytis in vari-
ous crops. Thirty years after its development, there have been few reports of resistance to
fludioxonil [159]. Another commercial product is shenqinmycin, based on PCA. It has been
in use since 2011 to control fungal diseases [160]. Metabolites from Streptomyces spp. are the
foundation for many other chemical pesticides. Insecticides and nematicides that mimic the
natural products from Streptomyces spp. include abamectin, emamectin benzoate, spinosad,
and spinetoram. Blasticidin-S, kusagamycin, streptomycin, oxytetracycline, validamycin,
and polyoxins are marketed to control various bacterial and fungal pathogens with stable
efficacy [161].

Among the commercialized microbial biopesticides with live cells are the products
Serifel®, based on B. amyloliquefaciens MBI600, and Serenade®, formulated with B. subtilis
QST 713. These products control plant diseases caused by bacterial and fungal pathogens.
Their ability to colonize plant surfaces through biofilm formation is one of the factors
cited by the manufacturers for their activity. Another is that they will stimulate the
plant’s resistance mechanisms. Indeed, some products are sold with such claims, such
as LifeGard from Certis, based on the protective isolate Bacillus mycoides, a phyllosphere
colonist [162]. However, findings suggest that they may be less effective than chemical
pesticides in the field, perhaps due to poor survival of the microorganism after application,
a factor that would lower the production of the bioactive metabolites [163–165]. The dis-
cussions below indicate the steps between the initial promising laboratory findings and
successful commercialization.

As illustrated in Sections 2 and 3, there is an abundant array of metabolites connected
to the secondary metabolism of biocontrol isolates that could be exploited to control
multiple targets through ISR or direct antagonism. Dose-dependency is shown in in vitro
and in planta studies and with different pathosystems. Genome sequencing of increasing
numbers of bacteria with soil habitats should promote the prediction of additional active
molecules and identify the microbes that produce them. Determining LC/LD50 and
MIC values using in vitro assays identifies the metabolites with strong direct effects on
targets at low concentrations; these metabolites should be the most lucrative in commercial
applications. The bioactive secondary metabolites may have a long shelf life in formulations
and persistence in the environment. They can be applied as stand-alone products or to
boost the effects of preparations containing appropriate bacterial biocontrol strains.

Maximizing the production of bioactive metabolites can involve different strategies.
One approach is adjusting culture methods to optimize metabolite production. A second
approach is engineering the genome to overproduce the product or express the biosynthetic
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genes under a defined productive promoter in an organism for which industrial scale
growth is established. Using “smart” promoters with beneficial genes could adjust their
production in inoculated plants to only occur under pest challenging conditions. If a
pure compound is desired, methods to extract and purify the targeted molecule need
to be developed. Shelf life and methods of delivery also should be considered during
commercial formulation.

Basic studies reveal that the metabolites are often not constitutively released as cultures
grow but are synthesized at specific development times or after a defined environmental
stimulus. For example, the fit genes are not expressed until the bacterium is within the
insect host, and BT toxin synthesis is withheld until the start of spore formation in the
Bacillus producers [53]. With Pseudomonas and Serratia isolates, many of the compounds are
only produced when quorum sensing is activated, so that there is both a cell density and
nutrient dependency. Such understanding comes from basic science studies to establish the
knowledge of the lifestyle of the microbe and nutritional effects.

The development of superior culture media is vital. For Pseudomonas chlororaphis O6,
glucose represses the synthesis of pyrrolnitrin but promotes phenazine production [42].
The concentration of antifungal metabolites produced by B. subtilis V26 increases up to
93% using potato extract as a carbon source and soybean powder as a nitrogen source. The
optimized formulations result in better control of gray mold in tomatoes [166]. The addition
of ornithine increases the production of the lipopeptide surfactin by B. amyloliquefaciens
HM618, an effective antagonist for the pathogenic fungi B. cinerea and R. solani [167]. The
efficacy of P. elgii HOA73 in controlling gray mold on tomatoes is enhanced by adding chitin
during cultivation [168], presumably because it triggers chitinase production. Polyamine
additions to cultures of P. chlororaphis O6 promote phenazine and pyrrolnitrin levels,
leading to greater protection against the plant fungal pathogens R. solani and Didymella
bryoniae [169].

The media and any stimulants should be cost-effective. Ghribi et al. [170] find that
B. subtilis SPB1 produce more than twice as many lipopeptides through easily available and
cost-effective carbon, nitrogen, and inorganic nutrient sources; the increased lipopeptide
levels correlate with better control of Prays oleae larvae [170]. Waste product use improves
cost-efficiency; for example, potato peel and fish wastes enable the production of active
lipopeptides with MICs for Mucor sp. at 6.25 ppm and Aspergillus niger at 12.5 ppm [171]. An
extended culture time enhances yield [18] and the product’s potential to thwart pathogenic
bacteria and fungi upon application [172].

Programs are under development to systematically modify media to optimize out-
comes. The use of “One Factor at a Time” and “Two Factor at a Time” methods by
Meena et al. [171] increased lipopeptide output by B. subtilis KLP2015 by more than four
times. Ghribi et al. [170] approach optimization statistically, with suggestions that variable
factors such as temperature, moisture, and inoculum age are important. Predicting optimal
culture conditions using a statistical approach with the Plackett–Burman design (PBD)
increased the production of chitinase and beta 1,4-endoglucanase by P. elgii PB1 and also
enhanced antibacterial activity [173]. The use of PBD shows production of the insecticide
avermectin B1 from Streptomyces avermitilis 14-12 to be positively influenced by carbon
and nitrogen sources [174]. Media composition for producing avermectin B1 has also
been optimized using another statistical tool, the Response Surface Method (RSM) [174].
Analysis with RSM additionally optimized the culture parameters for the production of
the antimicrobial actinomycin D from Streptomyces hydrogenans IB310, an outcome also
accompanied by lowered production costs [175].

Several studies have already demonstrated the benefit of genetic engineering in en-
hancing bioactive products. An early study with P. fluorescens CHA0 found that mutations
in the gene rpoD, encoding the housekeeping sigma factor, enhances the production of
the antifungals pyoluteorin, and 2,4-DAPG [35]. The genetic modification of ribosomal
structure in P. protegens Pf-5 is another method for increasing 2,4-DAPG and pyoluteorin
levels [176]. Introduction and expression of a cry gene enables the synthesis of a BT toxin in
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a transformed wild type B. velezensis strain to deliver its native strong antifungal activity
and insecticidal efficacy, as demonstrated by its effects on third instar larvae of the dia-
mondback moth P. xylostella [177]. The transformation of Pseudomonas synxantha 2–79, a
strong producer of PCA, with genes enabling the production of pyrrolnitrin, extends the
protection range of this biocontrol agent to more pathogens in cereals [178]. To heighten
its antifungal potential, a combination of ten mutations in regulatory and synthesis path-
way genes promotes 2-hydroxyphenazine synthesis in P. chlororaphis GP72 four-fold [179].
Changing glycerol utilization in this same microbe improves PCA production [160]. This
effort is justified because of the success of the PCA-based pesticide “Shenqinmycin” and the
availability of glycerol as a waste product from diesel formation [160]. Other groups have
modified different P. chlororaphis isolates to produce PCN and 1-hydroxyphenazines in order
to enhance the range of plant fungal pathogens that are targeted by one isolate [180,181].

Intact whole live or dead cells could also be important in formulations. Dead cells
should still stimulate innate plant resistance mechanisms because the nonviable cells retain
structures that act as microbe-associated molecular patterns (MAMPs) [135,182]. Live cells
are essential for benefitting the biofilm formation as a root protectant layer and providing
continuous sources of VOCs or other biocontrol-active metabolites. Basic research could
show mixtures of beneficial organisms that are additive or even synergistic in providing
crop protection. A mixture of Bacillus species that provides BT toxins and lipopeptides
would be a potent weapon for insect and fungal control. Indeed, combined applications of
B. pumilus PTB180 and B. subtilis PTB185 are compatible with insecticidal activity on aphids
in the laboratory and greenhouse [16]. Additionally, a tripartite mixture of an arbuscular
mycorrhizal fungus, Bacillus pumilus, and Pseudomonas alcaligenes enhances the antifungal
properties and reduces the root disease caused by the root-knot nematode and a root rotting
fungus in chickpea [183].

The studies discussed in Sections 2–4 illustrate how partnerships between basic re-
search science on biocontrol microbes and industry can lead to products for agricultural
applications that improve plant health. Exchanges of successful methods to produce com-
mercial quantities of reliable cultures of pure or mixed microbes already achieved by the
pharmaceutical industry and the agricultural groups are appropriate. For example, pro-
biotics and prebiotics for human and animal health are readily available as “on the shelf”
products to purchase.

5. Conclusions

It is clear that plants have engineered their own protection schemes by exploiting
the intricacies of microbial activities from beneficial microbes that they nurture, especially
in the rhizosphere. Emphasized in this review is the fact that rhizospheric biocontrol
microbes have the weaponry to be pathogens themselves on multiple plant pests, i.e.,
fungal pathogens, insects, and nematodes, while having adapted to cohabit with the plant
roots such that plant health is promoted. Development is needed to commercialize the
varied direct and indirect mechanisms for biocontrol that is revealed by basic research. The
current realization of the importance of nurturing soil health for regenerative agriculture
aligns well with the use of biopesticides. Consumers are aware of the importance of
probiotics for their health, and marketing could better convey their existence and value for
plant health in agriculture. Furthermore, the microbes that can control multiple plant pests
have a high potential to boost crop output regarding quality and yield at this time when
global food security is a major issue.
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