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The circuitry comprises a sine wave generator based on direct digital synthesis, a laser
diode driver module, a band-pass frequency filter, a synchronous detector with phase
adjustment circuitry and a low pass filter to form an analog lock-in amplifier, and an
analog-to-digital converter. A 32-bit ARM microcontroller programmed with the open
source Mecrisp dialect of the Forth interpreter language is used to set the frequency, and
read the data from the analog-to-digital converter. The circuitry is tethered via a serial
interface to a personal computer. A graphical user interface written in Phython allows easy
interaction with the microcontroller by sending the appropriate Forth commands. The data
acquired is visualized and stored on the personal computer for further processing. The cir-
cuitry is easy to build as it is based on through-hole devices, except for two necessary sur-
face mount items, which, however, still can be soldered with a fine tipped soldering iron.
The performance of the circuitry was demonstrated by the photoacoustic detection of NO2

using a laser diode with a wavelength of 450 nm.
� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Open Source License
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Hardware in context

The photoacoustic effect arises when a light absorbing material is irradiated with an intensity modulated light beam as
the absorbed energy gets transformed into heat, and hence into pressure waves. These can be picked up with a microphone.
A common use is the quantification of gases, for such applications as industrial hygiene and pollution monitoring or preven-
tion. Recent reviews on photoacoustic gas sensing are available [1,2]. Gases can be detected photoacoustically if the analyte
has a strong optical molecular absorbance band which can be matched with a light source. Wavelengths in the UV-range (e.g.
ozone at 255 nm), the visible (e.g. NO2 at 450 nm) or often in the infrared (e.g. methane at 3.3 mm or CO2 at 4.3 mm) may be
employed. In photoacoustic gas sensing usually a laser diode, with an emission wavelength matching the absorbance of the
analyte, is employed as light source. The photoacoustic cells are usually fitted with an acoustic resonator, mostly in the form
of a tube, and the frequency of the intensity modulation of the light source is matched to its resonance frequency as this
yields the highest sensitivity. For a tubular resonator the frequency is not only dependent on its dimensions but also on
the speed of sound of the gas mixture, however for the usual determination of minor components in air this can be taken
as being constant. The electrical signal obtained with the microphone is processed with a lock-in amplifier in order to sup-
press ambient noise and hence achieve good limits of detection for the gas to be determined. For the experimenter in the
laboratory the electronics for data acquisition usually comprise a series of stand-alone instruments; namely a function gen-
erator to create the modulation waveform, a laser diode driver, a microphone preamplifier, a lock-in amplifier, and if the lat-
ter is not of the newer digital kind, an analog-to-digital data acquisition unit. For a typical set-up see for example our earlier
publication on the sensing of ozone with a red laser diode [3]. The circuitry described herein combines the essential func-
tions required to carry out photoacoustic measurements on a single printed circuit board. The exception is the microphone
preamplifier, which needs to be located close to the pick-up microphone in a separate shielded case. The circuitry could be
built for approximately 380 US$ and replaces an assembly of commercial instrument boxes which cost ca. US$ 7600 to pur-
chase. In particular, commercial lock-in amplifiers cost thousands of US$. The circuitry presented herein includes all the prin-
cipal functions of these instruments, specifically, besides the synchronous detector it also features a phase adjustment and a
bandpass filter at the signal input. But note, while the circuitry is well suited for quantitative measurements at a fixed fre-
quency, it is not as convenient for doing frequency scans. On the other hand, the circuitry is also considerably more compact
than the assembly of commercial instruments, which will be of interest if space is an issue, e.g. for on-site measurements.
Modifications of the circuitry, without the laser diode driver, may also be of interest for other applications requiring a
lock-in amplifier.
Fig. 1. Block diagram of the electronic set-up. The parts within the frame are contained on the single printed circuit board. The circles represent connecting
pins to allow different configurations by placing jumper wires between the functional blocks.
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Hardware description

A block diagram of the circuitry contained on a single printed circuit board (PCB) of the Eurocard size (100 � 160 mm) is
shown in Fig. 1 and the circuit diagram in Fig. 2. The modulation sine wave is created with a function generator IC and then
fed to a laser diode driver module. The same signal is also passed through a phase adjustment circuitry to the reference input
of the synchronous detector. This allows for compensation of the phase shift arising in the photoacoustic cell due to the rel-
atively slow propagation of the sound wave. The photoacoustic signal is picked up with a microphone and boosted with a
preamplifier, located next to the microphone. Its output signal is passed to the main circuitry with a coax cable. It is normally
bandpass filtered to reduce noise before the synchronous detector, and low pass filtered after it. The thus obtained DC signal
is then digitized with an analog-to-digital converter (ADC). Note, that some of the connections between the functional blocks
are not hardwired. This enables a reconfiguration of the set-up to determine the operating frequency for the photoacoustic
cell. A microcontroller serves for setting the frequency of the function generator and for operating the ADC and transferring
the data via USB to a PC for visualization and further processing. The system is controlled with a graphical user interface
(GUI) program running on the PC.
Fig. 2. Circuit diagram.
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The circuitry was kept simple to construct by relying on commercially available modules where possible (function gen-
erator, laser diode driver, microcontroller). It is based on through-hole components for easy solderability, except for two
integrated circuits (ICs) which are not available in the DIP (dual in-line package) format. However, these are of the SOIC
(small outline IC) size, the largest SMD (surface mount device) IC package available, which can be soldered with a conven-
tional soldering iron.

Waveform generator and amplifier

The modulation sine wave is produced with a DDS (direct digital synthesis) IC (AD9833). This replaces a function gener-
ator, which is a stand alone instrument costing several hundred US$. As the IC is only available in a tiny MSOP (mini small
outline package) format, and therefore requires special soldering techniques, a ready made module on a small PCB, which is
available inexpensively, was employed. This contains the complete circuitry necessary for its operation. The signal was high
pass filtered (for removal of a DC (direct current) bias) and amplified by a factor of 2.8 with an operational amplifier (LF411)
to condition it for the laser diode driver module.

Laser diode driver

Laser diodes in photoacoustics require a driver circuitry which modulates the current in proportion to a control signal. As
laser diodes are very sensitive to current spikes (e.g. on turning on) such drivers also include special protection measures.
Therefore a commercially available module (WLD3343) was also employed for this task, which is still considerably less
expensive then commonly employed stand alone laser diode driver instruments. This module is capable of a maximum cur-
rent of 2.2 A, and for cooling requires a heat sink fitted with an active fan.

Bandpass filter

A bandpass filter was added in front of the input of the synchronous detector in order to improve the signal-to-noise ratio
for quantitative measurements. The design of such frequency filters is not trivial and thus for simplification a universal filter
IC (UAF42) available from Texas Instruments was employed. The filter was configured as a 2nd order active bandpass filter.
The centre frequency, bandwidth and Q-factor are simply set by external resistors of appropriate values. The easiest way to
determine these values is by using the software program FILTER42, which can be downloaded from the web-site of Texas
Instruments. But please note, that a MS DOS emulator or a version of MS Windows with a DOS prompt is required to run
the program. The program will calculate resistor values which are actually available for purchase and give a centre frequency
as close as possible to the value specified by the user. In order to allow modifications, the resistors were also not hardsol-
dered onto the board.

Phase shifter

The synchronous detector requires the modulation signal at its reference input. As the photoacoustic signal is delayed due
to the relatively slow propagation of the acoustic wave in the gas, the phase of the reference signal also needs to be adjusted.
Otherwise the signal at the output of the synchronous detector is reduced. The adjustable delay was implemented with a
dual stage phase shifter circuitry (known as an all-pass filter) based on a dual operational amplifier IC. The trimmer resistors
of the two stages allow a wide adjustment range.

Synchronous detector, low pass filter and output amplifier

The synchronous detector is based on a dedicated IC, the AD630 from Analog Devices. This device effectively rectifies the
part of the signal which corresponds to the frequency at the reference input. The resulting pulsed DC signal then needs
smoothing by low pass filtering. This was implemented with a double pole active low pass filter based on an operational
amplifier. Subsequently it is amplified to match the signal to the input range of the analog-to-digital converter (ADC).

Analog to digital converter

The analog to digital conversion (ADC) is performed with a 24-bit delta-sigma converter IC from Analog Devices
(LTC2400), which requires a 2.5 V bandgap voltage reference (AD680) for precise results.

Microcontroller

Two of the components of the circuitry, namely the DDS function generator (AD9833) and the ADC (LTC2400) need to be
connected via SPI (serial peripheral interface) bus to a microcontroller for their operation. Furthermore, the microcontroller
needs to be connected via USB (universal serial bus) to a PC (personal computer) for user interaction as well as visualization
and storage of data. As for the calculation of the frequency setting of the DDS and for the processing of the conversion results
4
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of the ADC a microcontroller with a wide data bus is preferable, a 32 bit M4 Cortex ARM microcontroller (STM32F303K8)
from STMicroelectronics was employed. As a simple solution, a ready made evaluation board (Nucleo F303K8) available from
STMicroelectronics was employed, which includes all auxiliary parts, in particular the USB bridge IC required for the com-
munication with the PC. The software routines for setting the frequency of the AD9833 and for reading the conversions
results of the LTC2400 were written in a version of the programming language Forth, which is available as open source soft-
ware for the STM32F303K8 microcontroller under the name Mecrisp-Stellaris (http://mecrisp.sourceforge.net). Forth is an
interpreter language which is compact (ca. 16 kByte) and can therefore be installed on a small microcontroller. Its interactive
nature facilities the software development and the use of a tethered approach, in which a microcontroller based instrument
is supervised by software running on a PC. For more information on this versatile approach, which was found to be highly
useful in our research laboratory, please consult our tutorial [4]. The graphical user interface (GUI) on the PC was written in
Python 3.

Power supplies

The main circuitry requires a ± 15 V split power supply. The laser diode driver needs a separate unipolar supply with a
voltage and current capability according to the requirement of the laser diode employed (8 V in our case) and a power supply
for the fan mounted on its heat sink. The microcontroller board is powered via the USB of the PC.

� The circuitry replaces several commercial instruments at significantly lower cost.
� The performance is comparable to that achieved with commercial instruments.
� The circuitry can be used as a prototype for further development in portable photoacoustic gas sensing.
� With small modifications the circuitry will be useful for other applications where lock-in detection is required.

Design files

Design files summary
Design file name
 File type
 Open source license
5

Location of the file
PCB.sch
 EAGLE schematic
 CERN OHL v.2.0
 https://doi.org/10.5281/zenodo.6024087

PCB.brd
 EAGLE layout
 CERN OHL v.2.0
 https://doi.org/10.5281/zenodo.6024087

Forth-Words.fth
 Mecrisp Forth program
 CERN OHL v.2.0
 https://doi.org/10.5281/zenodo.6024087

GUI.py
 Python PC program
 CERN OHL v.2.0
 https://doi.org/10.5281/zenodo.6024087
PCB.sch and PCB.brd are the design files in the pcb layout program EAGLE for the circuitry.
Forth-Words.fth is the Forth program to be installed on the STM32F303K8 microcontroller.
GUI.py is the Python GUI program to be installed on the PC.

Bill of materials
Designator
 Component
 Number
 Cost
per
unit -
US$
Total
cost -
US$
Source of materials
 Material type
Nucleo F303K8
 Micro-controller board
 1
 11.00
 11.00
 Mouser.com
 Semiconductor
module
AD9833 BOB
 AD9833 breakout board
 1
 3.00
 3.00
 Aliexpress.com
 Semiconductor
module
WLD3343
 Laser diode driver
 1
 99.00
 99.00
 Teamwavelength.com
 Semiconductor
module
IC1
 L78L33ACZ
 1
 0.50
 0.50
 Mouser.com
 Semiconductor

IC2
 UAF42
 1
 22.00
 22.00
 Mouser.com
 Semiconductor

IC3
 AD680
 1
 15.00
 15.00
 Mouser.com
 Semiconductor

IC4
 TL082
 1
 1.00
 1.00
 Mouser.com
 Semiconductor

IC5
 LF411
 1
 2.40
 2.40
 Mouser.com
 Semiconductor

IC6
 AD630JNZ
 1
 43.00
 43.00
 Mouser.com
 Semiconductor

IC8
 LTC2400
 1
 15.00
 15.00
 Mouser.com
 Semiconductor
(continued on next page)

http://mecrisp.sourceforge.net
https://doi.org/10.5281/zenodo.6024087
https://doi.org/10.5281/zenodo.6024087
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(continued)
Designator
 Component
 Number
6

Cost
per
unit -
US$
Total
cost -
US$
Source of materials
 Material type
IC9
 TL072
 1
 1.00
 1.00
 Mouser.com
 Semiconductor

R5
 Bourns 3296Y-1-501LF
 1
 2.30
 2.30
 Mouser.com
 Trimmer

resistor 500 X

RSense
 Bourns 3296Y-1-100LF
 1
 2.70
 2.70
 Mouser.com
 Trimmer

resistor 10 X

R10, R11
 Bourns 3296Y-1-103LF
 2
 2.90
 5.80
 Mouser.com
 Trimmer

resistors 10 k

C20, C18, C25
 10 mF, 5 mm AVX

TAP106M035CCS

3
 1.20
 3.60
 Mouser.com
 Tantalum

capacitor

C01, C03, C05, CO6,
CO7, CO8, C09, C10,
C12, C13, C14, C16,
C17, C19, C21, C23
100 nF, 2.5 mm Wima
MKS0C031000C00MSSD
16
 0.80
 12.80
 Mouser.com
 Foil capacitor
C04
 330 NF, 5 mm Wima
MKS2C033301C00KSSD
1
 0.65
 0.65
 Mouser.com
 Foil capacitor
C28
 470 nF, 5 mm Wima
MKS2C034701C00KSSD
1
 0.75
 0.75
 Mouser.com
 Foil capacitor
C02, C15
 1 mF, 2.5 mm Wima
MKS0B041000F00KSSD
2
 1.60
 3.20
 Mouser.com
 Foil capacitor
RLIM
 150 X 250 mW, 1%
 1
 0.25
 0.25
 Mouser.com
 Resistor

R9, R33
 1 kX 250 mW, 1%
 2
 0.25
 0.50
 Mouser.com
 Resistor

R1, R4, R6, R7, R8, R12,

Feedback1

10 kX 250 mW, 1%
 6
 0.25
 1.50
 Mouser.com
 Resistor
R32
 10 kX 250 mW, 1%
 1
 0.25
 0.25
 Mouser.com
 Resistor

R31
 10 kX 250 mW, 1%
 1
 0.25
 0.25
 Mouser.com
 Resistor

R2
 18 kX 250 mW, 1%
 1
 0.25
 0.25
 Mouser.com
 Resistor

Wire to board terminal

block

Phoenix Contact
1,888,690
1
 1.90
 1.90
 Mouser.com
 Connector
15 pin female header
 Gravitech 15Fx1-
254 mm
2
 1.20
 2.40
 Mouser.com
 Sockets for the
Nucleo board
7 pin female header
 3 M 929850–01-07-RA
 3
 1.80
 5.40
 Mouser.com
 Sockets for
AD9833 BOB
and WLD3343
Pins
 Vogt 1365a.61
 Pack of
100
5.00
 5.00
 Conrad.ch
 Contact pins
Lugs
 Vogt 1360.28
 Pack of
100
7.70
 7.70
 Conrad.ch
 Cable lugs for
external
connections and
plugged
resistors
In addition to the parts listed in the table, resistors are needed for the bandpass filter according to the required frequency, as
well as a case for housing and connectors of your preference to make the external connections for signal and power.

Build instructions

Printed circuit board fabrication and assembly

The layout for the printed circuit board was created with the CAD program EAGLE (from www.autodesk.com). We man-
ufactured the board ourselves from photoresist coated base material in our chemistry laboratory, a photograph is shown in
Fig. 3. The reader most likely will prefer to order it from a commercial board manufacturer. We have had good experience
with Beta Layout (https://de.beta-layout.com), who accept the EAGLE CAD files. Other board houses may require Gerber files,
which, however, can also be created with the EAGLE application from the native EAGLE files. The board was populated by
hand soldering. It is recommended to use sockets for the electronic modules mounted on the board, and for the more expen-

https://de.beta-layout.com


Fig. 3. The printed circuit board.
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sive ICs. Good quality gold plated sockets should be employed, at least for the parts in the signal amplification path. The con-
nections between the modules which need to be jumpered were made with the help of silver coated pins of 1.3 mm diameter
andmatching wire lugs. These were also used for mounting the resistors which needed to be exchangeable and as test points,
and give a more solid contact than the usual 1/10th inch headers. A 10 kX resistor is placed in the feedback path of the out-
put amplifier. The board should be housed in a grounded metallic box fitted with sockets of the preferred format to enable
the power and external signal connections.

Programming of the microcontroller

The open source Mecrisp-Stellaris Forth interpreter is available for download from https://sourceforge.net/projects/me-

crisp/files/. (Make sure to download Mecrisp-Stellaris, not any of the other Mecrisp variants available from the same repos-
itory. The Mecrisp-Stellaris version employed by us was 2.5.3, but you might want to use the latest update.) After expanding
the package locate the file ‘‘mecrisp-stellaris-stm32f303k8.bin” and copy it to the home directory of your computer. The
Nucleo board includes a programmer/debugger so that no separate programming hardware is necessary. Simply connect
the Nucleo board to the computer via a USB cable (USB 2.0 with Micro B plug). One of the possible methods for the instal-
lation of the Forth software package on the microcontroller is based on a utility program called ST-Link running on a PC. For
Windows this can be downloaded from the web-site of STMicroelectronics (www.st.com), for a Macintosh (and Linux) it may
be installed easiest using the package manager Homebrew. Flashing Mecrisp-Stellaris on the Nucleo board with the ST-Link
utility then requires two steps (type on the command line or in the terminal):

1. Erasure of the flash memory: st-flash erase
2. Flashing the binary: st-flash write mecrisp-stellaris-stm32f303k8.bin 0x08000000

Following the successful installation of Mecrisp-Stellaris a fully operational Forth system is now present on the microcon-
troller and it is possible to communicate with it by using a serial terminal emulator program on the PC. We have been using
CoolTerm (https://freeware.the-meiers.org). You will need to identify the port to which the microcontroller is connected
(with CoolTerm the menu item Re-Scan Serial Ports will bring up a list of the available ports, which under Windows will
be ’COM60 or similar). Make a note of the name of the port. Establish a connection with a baudrate of 115200, 8 data bits
8, no parity and 1 stop bit. In the Transmit menu set the transmit character delay to 3 ms and the transmit line delay to
100 ms in order to allow the microcontroller to process the data sent to it without overrun and then click Connect. The rou-
tines for setting the frequency by programming the DDS IC (AD9833) and for reading the conversion results of the ADC
(LTC2400) are compiled on the microcontroller by sending the source file Forth-Words.fth (from the supplemental material)
to the microcontroller by choosing Send Text/Binary File under the Connection tab. To check that all the Forth code has been
embedded in the library on the microcontroller you can type ’words’ followed by a carriage return, and all the compiled sub-
routines (called words in Forth) will be shown line by line. The last entry should be ’LTC2400AVERAGEDREAD’. The Forth
system will indicate that it is ready by issuing an ’ok’. All the words shown are available for interactive execution and testing
via the serial terminal. If you are interested in exploring Forth, our earlier article can serve as an entry point [4].

Setting up the graphical user interface on the PC

The graphical user interface, shown in Fig. 4, to carry out a frequency scan and to acquire signal vs. time data, has been pro-
grammed in Python 3 and should run underWindows,macOS and Linux. The script can be found in the supplementalmaterial
under the nameofGUI.py. It is not necessary to befluent in Pythonprogramming in order touse it, but somebasic knowledge on
7
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Fig. 4. A screenshot image of graphical user interface (GUI).
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howtoworkwithPythonunder the PCoperating systemof your choice is necessary. You should knowhowto install Python3, if
it is not already present, and execute a Python 3 script. Before the script can be run, it also has to be assured that the packages
listed at the beginning of the script are installed on the computer (using the packagemanager pip3 for checkingwhat is present
and for installing missing packages). Consult www.python.org on how to carry out these tasks if you are new to Python.

Operation instructions

Basic setup

Make sure that the Nucleo board is not connected software-wise to your computer via the terminal emulator program
(use the Disconnect menu item in CoolTerm or close the program). Open the Python 3 script (GUI.py) with a plain text editor
and change the name of the port according to the one of your set-up (see section 5.2) in the line ‘‘ser = serial.Serial(’COM60,
115200, timeout = 1)” near the end, and save the modified file. Run the script. In the GUI click the CONNECT button to connect
the system. Then click INITIALIZE to set up the AD9833 and the LTC2400.

Determination of the resonance frequency

A photoacoustic cell should be operated at its resonance frequency for highest sensitivity and if not known it must be
determined before quantitative measurements are carried out. For this either the cell is filled with the gas to be sensed at
8
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the highest possible concentration, or a small loudspeaker driven by the sine wave is placed into the cell to excite its reso-
nance. The frequency for the maximum signal strength can then be found by carrying out a frequency sweep set up with the
GUI. The maximum may be determined by simply monitoring the amplitude of the signal from the microphone amplifier
with an oscilloscope. It is also possible to record the intensity vs. frequency by temporarily feeding the output of the micro-
phone amplifier directly (i.e. bypassing the bandpass filter) to the signal input of the synchronous detector (AD630)(via the
pin labelled SIN). The reference input (RIN) should be connected to the same signal. This configuration does not make opti-
mal use of the circuitry for noise suppression but avoids a bias due to the phase shift of the acoustic signal. The data can be
visualized after the frequency sweep is finished by clicking the START button under the Chart header. The data will also be
saved in a text file for further processing if desired. It is essential that the signal from the output amplifier which is passed to
the ADC does not exceed + 2.5 V as this is the top of the input range of the latter, but it should also not be too small. Check
with a multimeter before connecting the ADC pin to LPO, and if necessary change the feedback resistor fitted to the output
amplifier (between FB1 and FB2) to adjust its gain.

Quantitative measurements at the resonance frequency

Calculate the values of the four resistors, RF1, RF2, RQ, and R2A, for the bandpass filter using the FILTER42 program and fit
the resistors to the pins on the board labelled accordingly using the solder lugs. Reconfigure the connections on the board so
that the bandpass filter is in the signal path from the microphone amplifier to the synchronous detector by connecting the
microphone amplifier to MIN and BP to SIN. Connect the reference input of the synchronous detector (RIN) to the output of
Fig. 5. Images of oscilloscope output obtained with the help of a loudspeaker to illustrate the phase adjustment process. A) before adjustment, B) after
adjustment, 1) original excitation signal, 2) signal picked up with the microphone, 3) reference signal, 4) output of the synchronous detector before low pass
filtering.

9
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the phase shifter (PSO). Now the phase shift is adjusted with the help of an oscilloscope. Preferably a 4-channel model is
employed but at a pinch it is also possible to do this with a 2-channel model. This needs to be done while the cell is filled
with the gas to be determined at the highest possible concentration. The process is illustrated in Fig. 5. Note, that for the sake
of clarity these images were obtained by using a small loudspeaker to create a strong acoustic signal, rather than the pho-
toacoustic cell. The real photoacoustic signal will be weaker and more strongly overlapped with electronic noise. Panel A
shows the screen as it might appear before adjustment. The top trace shows the sine wave excitation signal from the func-
tion generator. The second trace is the signal obtained from the microphone, which shows a significant phase shift compared
to the excitation signal. The reference signal, which is fed to the reference input of the synchronous detector is shown in the
third trace. In this case it is exactly in phase with the excitation signal. The output of the synchronous detector before low
pass filtering is shown in trace 4. As this shows positive as well as negative going components, after low pass filtering the
signal will be attenuated. For optimization the phase of the reference has to be adjusted. Use one or both of the trimmer
resistors until it is in phase with the signal from the microphone as illustrated in panel B of Fig. 5. The output at the
synchronous detector should correspond to trace 4 of the right hand panel of Fig. 5, being symmetrical and entirely in
Fig. 6. Image of an oscilloscope output for the signals for the photoacoustic cell used for validation after phase adjustment. 1) original excitation signal, 2)
phase adjusted reference signal, 3) signal picked up with the microphone 4) output of the synchronous detector before low pass filtering.

Fig. 7. Schematic drawing of the photoacoustic set-up (not to scale).

10
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the negative voltage range. On close examination it becomes apparent that the positive going part of the sine wave of the raw
signal is made negative by the synchronous detector, while the negative going part is left as is, leading to the pulsating neg-
ative voltage of trace 4. The output of the AD630 should then be symmetrical and in the negative voltage range. An illustra-
tion of the appearance of the weaker signals obtained for a photoacoustic cell is shown in Fig. 6. Quantitative measurements
may now be carried out using the controls in the Fixed Frequency section of the GUI.

Validation and characterization

The complete circuitry was tested with a photoacoustic cell set-up for the determination of NO2 employing a blue laser
diode (450 nm, L450P1600MM from Thorlabs, Bergkirchen, Germany). The arrangement is illustrated in Fig. 7 The cell had
been adapted from an original design reported by Rück et al. [5]. Details on its construction, including information on the
optical parts employed, can be found in our previous publication on its use for the determination of ozone with a red laser
diode cell [3]. The filter was configured with a centre frequency of 4908 kHz, a bandwidth of 200 Hz and a Q factor of 24.38.
The resistors, RF1, RF2, RQ, and R2A were calculated as 10.2 kX, 10.2 kX, 665X, and 5.49 kX respectively. A frequency scan for
10 ppmV NO2 with the bandpass filter in place is shown in Fig. 8. The response of the system to various concentrations of
NO2 is illustrated in Fig. 9. A calibration curve was acquired by measuring 6 concentrations of NO2 varied from 1 to 10 ppmV.
A linear response was obtained with a coefficient of determination (r2) of 0.9999. The limit of detection (LOD) was deter-
mined as 100 ppbV (3r), by the repeated measurement of 1 ppmV NO2 against the baseline signal, which compares favour-
ably with many reported LODs for photoacoustic gas sensing [1,2].
Fig. 8. Frequency scan for 10 ppmV NO2 and a bandpass filter with a centre frequency of 4908 kHz and a bandwidth of 200 Hz in place.

Fig. 9. Photoacoustic signal for various NO2 concentrations from 0 to 10 ppmV obtained with a fixed frequency run.
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