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Abstract: Two newly synthesized Schiff bases DMCA and DMBA were used for selective detection of Cd2+ over a
wide range of other metal ions in acetonitrile (ACN)/ Tris-HCl buffer (10 mM, pH 7.32, v/v 2:1). The sensors can
detect Cd2+ ions by colour changes from colourless to orange for DMBA and yellow to reddish for DMCA. Response of
the probes towards metal ions was investigated by using UV-vis spectroscopy. The complex stoichiometry between the
sensors, DMBA and DMCA, and Cd2+ was found to be 2:1 and the binding constants were calculated to be 2.65 ×1012

M−2 and 4.95 ×1012 M−2 , respectively. The absorbance-based detection limits of DMBA and DMCA were calculated
as 0.438 µM and 0.102 µM, respectively. The sensors were also successfully applied to real samples.
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1. Introduction
As one of the highly toxic heavy metal ions, cadmium is widely distributed in water, soil and crops, generated
from its use sources such as fertilizers, the combustion of fossil fuels, paint pigments, Ni-Cd rechargeable
batteries, causing serious problems for human health [1–3]. Due to the high affinity to sulphur, Cadmium ion
(Cd2+) can interfere with Ca2+ and Zn2+ in the binding sites of some enzymes containing sulphur [4,5]. It
causes these enzymes to malfunction, causing severe organ damage. Cadmium and cadmium compounds are
category I carcinogens [6], and are known to be associated with liver and kidney damage, cancer mortality and
cardiovascular disease [7–9]. Thus, it is an essential point to develop detection methods for cadmium.

Several methods have been reported to detect Cd2+ ; however, these methods are generally expensive,
time consuming and have sophisticated synthetic procedures [10–13]. As alternative methods, fluorometric
and colorimetric sensors require easier procedures. In recent years, fluorescent sensors have gained growing
interest in detecting Cd2+ ions [14–17]. Many of them, however, have some limitations such as having a poor
detection limit [18] and complicated synthesis steps [19]. Moreover, most of the sensors for Cd2+ also give
response to Zn2+ ions due to their similar properties [20]. Recently, several colorimetric sensors for Cd2+

have been also reported [21–24]. These sensors also suffer from long response time, poor selectivity, complex
organic synthesis and poor detection limits [25]. Nowadays, Schiff base derivatives have been increasingly used
as colorimetric sensors due to having simple synthesis steps and high selectivity. Especially, cinnamaldehyde-
based and benzaldehyde-based Schiff base derivatives have been developed for the detection of metal ions such
∗Correspondence: ziyaaydin@kmu.edu.tr
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as Ni2+ [26], Ag+ [27], Al3+ [28,29] Cu2+/Hg2+ [30]. However, simple, rapid, highly selective, and sensitive
colorimetric sensors for Cd2+ are still rare and needed to be developed.

In this paper, we presented 2 newly synthesized Schiff base derivatives, one of them is a benzaldehyde-
based sensor and the other is a cinnamaldehyde-based sensor, which detected Cd2+ ions by colour change
in aqueous solutions. Response of the sensors was investigated using UV-vis spectroscopy in the presence of
various metal ions. The detection limits of DMBA and DMCA were calculated to be 0.438 µM and 0.102 µM,
respectively.

2. Experimental

2.1. Materials and methods

N-phenyl-o-phenylenediamine, 4-(dimethylamino)cinnamaldehyde and 4-(dimethylamino)benzaldehyde were pur-
chased from Sigma-Aldrich. The solvents and the other chemicals used in the experiments were commercially
obtained. The solution of Fe3+ and Fe2+ was prepared separately by dissolving in 0.1 M HCl. Unless otherwise
stated, the solutions of the metal ions tested were prepared from nitrate salts or chloride salts of them in deion-
ized water. A NMR spectrometer (a Bruker NMR spectrometer (Bruker Ultrashield Plus Biospin Avance III 400
MHz NaNoBay FT-NMR)) was used to record 1H and 13C NMR spectra. An Agilent LC-MS/MS 6460Triple
Quadrupole mass spectrometer was used to perform ESI-MS analyses. Shimadzu UV-1800 spectrophotometer
was used to record UV-vis spectra.

2.2. Synthesis and characterization of the probes

Synthesis of N,N-dimethyl-4-(((2-(phenylamino)phenyl)imino)methyl)aniline (DMBA):

4-(Dimethyl)aminobenzaldehyde (300 mg, 2 mmol) and N-phenyl-o-phenylenediamine (369 mg, 2 mmol) were
dissolved in ethanol (5 mL), respectively. The solutions were charged in Schlenk tube and mixed for 1h. Then,
a pale-yellow precipitate product was filtered and washed with cold ethanol to obtain DMBA. Yield 0.510 g
(81%). 1H NMR (400 MHz, CDCl3) δ 8.34 (s, 1H), 7.76 (d, J = 8.8 Hz, 2H), 7.25 (dd, J = 7.1, 6.1 Hz, 2H),
7.21–7.14 (m, 2H), 7.07 (ddd, J = 16.2, 6.7, 5.2 Hz, 4H), 6.94–6.85 (m, 1H), 6.72 (d, J = 8.9 Hz, 2H), 5.73 (s,
1H), 3.03 (s, 6H). 13C NMR (100MHz, CDCl3) δ 158.3, 152.4, 146.5, 143.7, 140.6, 130.3, 129.4, 124.0, 120.6,
119.2, 117.3, 111.7, 111.1, 40.2. ESI-MS (positive mode) m/z 316.2 [DMBA+H]+ .

Synthesis of N,N-dimethyl-4-((1E,3E)-3-((2-(phenylamino)phenyl)imino)prop-1-en-1-yl)aniline
(DMCA):

4-(Dimethylamino)cinnamaldehyde (350 mg, 2 mmol) and N-phenyl-o-phenylenediamine (369 mg, 2 mmol) were
dissolved in ethanol (5 mL), respectively. The solutions were charged in Schlenk tube and mixed for 1h. Then,
the reddish precipitate product was filtered and washed with cold ethanol to obtain DMCA. Yield 0.580 g (85%).
1H NMR (400 MHz, CDCl3) δ 8.27 (d, J = 8.7 Hz, 1H), 7.49–7.33 (m, 2H), 7.33–7.23 (m, 3H), 7.21–7.11 (m,
2H), 7.12–7.01 (m, 5H), 7.01–6.87 (m, 2H), 6.68 (t, J = 12.2 Hz, 2H), 5.76 (s, 1H), 3.02 (s, 6H). 13C NMR
(100MHz, CDCl3) δ 159.9, 151.3, 144.0, 143.3, 141.2, 129.4, 129.0, 124.1, 122.1, 120.9, 118.7, 117.7, 112.1,
111.8, 40.2. ESI-MS (positive mode) m/z 342.3 [DMCA+H]+ .
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2.3. UV-vis absorption measurements

DMBA (3.15 mg, 0.01 mmol) and DMCA (3.42 mg, 0.01 mmol) were dissolved in ACN (10 mL) and 30 µL
of the sensors (1 mM) were diluted with 1.470 mL ACN/Tris-HCl buffer (10 mM, pH 7.32, v/v 2:1) to make
final concentrations of 20 µM. For each spectrum, 1.0 mL of a probe solution was added to a 1-cm quartz
cell, to which different stock solutions of cations were gradually added by using a micro-pipette. All absorption
spectra were collected from 220 to 800 nm. Upon addition of each metal ions tested to the sensors solutions,
the spectral readings were immediately recorded.

2.4. Determination of Cd2+ in real samples

To evaluate the analytical applicability of the sensors, DMBA and DMCA, they were used to detect Cd2+ ions
in tap water samples collected in Osmaniye, Turkey. The tap water samples were spiked with solutions of Cd2+

and were diluted with ACN/Tris-HCl buffer (10 mM, pH 7.32, v/v 2:1) to obtain samples at concentrations of
0, 2, 5, and 10 mg. L−1 (ppm) Cd2+ , respectively. All spectroscopic measurements were done under the same
experimental conditions proposed for the selectivity experiments, and measurements were performed at least
triplicate and resulting averages were reported.

3. Results and discussion
3.1. Design and synthesis of the sensors, DMBA and DMCA

The molecular structures of the sensors were designed to contain an N-phenyl-o-phenylenediamine as a binding
part for Cd2+ , a cinnamaldehyde moiety (for DMCA), and a benzaldehyde moiety (for DMBA) as chromophore
parts. The binding parts of the sensors consist of 2 nitrogen atoms to give 2 5-membered rings in 2:1 binding
between the sensors and Cd2+ . The binding part and the chromophore parts were linked via the formation of
the C=N bonds in a 1-step procedure with 81% and 86% yields for DMBA and DMCA, respectively (Scheme
1). The structures of the sensors were verified by NMR (13C NMR and 1H NMR) and ESI-mass spectrometry.

 

Scheme 1. Synthesis of the probes, DMBA and DMCA.

3.2. The absorption and colorimetric properties of DMBA and DMCA

We first evaluated the spectroscopic properties of DMBA and DMCA and their interactions with various metal
ions. The colourless compound DMBA (20 µM) in ACN/Tris-HCl buffer (10 mM, pH 7.32, v/v 2:1) displays
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a maximum absorption at 349 nm (ε = 4.75 ×104 M−1 cm−1 , only DMBA) that may be ascribed to n-π*
transition [31]. However, the addition of Cd2+ resulted in a decrease in the absorption intensity at 349 nm and
formation of a new absorption peak at 488 nm (Figure 1a) with a remarkable colour change from colourless to
orange (Figure 1b inset). As depicted in Figure 1b, the tested metal ions including Cu2+ , Cr3+ , Cu+ , Na+ ,
Hg2+ , Mg2+ , Ca2+ , Zn2+ , Ag+ , Pb2+ , K+ , Co2+ , Fe2+ , Mn2+ , and Ni2+ did not respond to DMBA while
Fe3+ caused a decreasing the absorption intensity at 349 nm without any increase at 488 nm.
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Figure 1. (a) Absorption spectra of 20 µM DMBA with gradual addition of CdCl2 (0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 25, 30, 35, and 40 µM, respectively) in ACN/Tris-HCl buffer (10 mM, pH 7.32, v/v 2:1) (b) Absorption spectra
of DMBA (20 µM) with various metal ions (20 µM for Cd2+ , Cu2+ , Ni2+ , Mn2+ , Hg2+ , Zn2+ , Ag+ , Pb2+ , Fe3+ ,
Co2+ , Fe2+ , Cu+ and Cr3+ ; 50 µM for Ca2+ , Mg2+ , K+ , and Na+) in ACN/Tris-HCl buffer (10 mM, pH 7.32, v/v
2:1) (inset: colour changes of DMBA with the metal ions tested)

The detection of the target cation in the presence of other metal ions in real sample is an important assay.
Competition experiments were performed to confirm the high selectivity of the detection system. First, the meal
ions (200 µM) such as Cu2+ , Cr3+ , Cu+ , Na+ , Hg2+ , Mg2+ , Ca2+ , Zn2+ , Ag+ , Pb2+ , K+ , Co2+ , Fe2+ ,
Mn2+ and Ni2+ were preincubated with DMBA (20 µM). As expected, no remarkable change was observed
(red bars in Figure 2a). However, the addition of Cd2+ (20 µM) to each of them resulted in an increase in the
absorption intensity at 488 nm (blue bars in Figure 2a). These results show that none of the metal ions tested
affect the sensing properties of DMBA to Cd2+ . Moreover, the effects of pH on the stability of the sensor and
its Cd2+ ?complex were investigated and monitored by absorption spectra in a pH range from 1 to 10. The
pH of the solutions was adjusted by adding HCl (0.1 m) and NaOH (0.1M) into the solutions. As depicted in
Figure 2b, the sensor, DMBA, is not stable at pH 1-2 and gives response to H+ ions at pH 3. The absorbance
intensity of DMBA remains constant at pH between 4 and 9, which indicates that Cd2+ can be detected with
DMBA in the environmental pH 4–9.

We repeated the same selectivity experiments for DMCA. The absorption spectral changes of DMCA
after coordination with Cd2+ in ACN/Tris-HCl buffer (10 mM, pH 7.32, v/v 2:1) were studied first. As seen
in Figure 3a, the solution of DMCA alone (20 µM) exhibits an absorption maximum at 396 nm (ε = 5.08
×104 M−1 cm−1 , only DMCA); as predicted, the maximum absorption wavelength of DMCA (396 nm) is
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Figure 2. (a) Absorbance intensities of DMBA (20 µM) with various metal ions (200 µM) (red bar) and the subsequent
addition of Cd2+ (20 µM) (blue bar) (b) Variation of absorption values of DMBA (20 µM) and DMBA+Cd2+ (20 µM)
at various pH values.

longer than that of DMBA (349 nm) because of the 1 extra double bond. With addition of Cd2+ to DMCA,
the absorbance at 396 nm decreased, while the absorbance at 545 nm (ε = 4.05 ×104 M−1 cm−1 , DMCA
and Cd2+ 1:1 ratio) increased accordingly (>64-fold with 1.0 equivalent of Cd2+) (Figure 3a). This apparent
bathochromic shift can be explained with the coordination of Cd2+ . Furthermore, an isosbestic point around
449 nm showed that free sensor molecules convert to Cd2+ -complex. Moreover, this bathochromic shift of 149
nm resulted in a colour change from yellow to reddish (Figure 3b inset). In contrast, other metal ions such as
Cu2+ , Cr3+ , Cu+ , Na+ , Hg2+ , Mg2+ , Ca2+ , Ag+ , Pb2+ , K+ , Co2+ , Fe2+ , Mn2+ and Ni2+ did not give
response to DMCA (20 µM) (Figure 3b). The sensor also responded to Zn2+ with weaker absorption intensity
(~48-fold with 1.0 equivalent of Zn2+) .

The competing selectivity of DMCA as a colorimetric sensor for Cd2+ sensing was controlled with various
metal cations. First, the meal ions (200 µM) such as Cu2+ , Cr3+ , Cu+ , Na+ , Hg2+ , Mg2+ , Ca2+ , Zn2+ ,
Ag+ , Pb2+ , K+ , Co2+ , Fe2+ , Mn2+ , and Ni2+ were preincubated with DMCA (20 µM). As expected, no
remarkable change was observed (red bars in Figure 4a). The naked-eye detection of Cd2+ by DMCA was not
interfered by other metal ions tested, while Zn2+ increased the absorption intensity at 545 nm (blue bars in
Figure 4a). The stability of the sensor at different pHs (1–10) was also investigated and monitored by UV-vis
spectroscopy. The pH of the solutions was adjusted by adding HCl (0.1 M) and NaOH (0.1 M) into the solutions.
The absorption intensities of DMCA and DMCA + Cd2+ at different pH values were plotted in Figure 4b.
Cd2+ ion can be detected with DMCA in the environmental pH range of 4–10.

3.3. Investigation of complexation between the sensors and Cd2+

In order to confirm the binding stoichiometry between the sensors, DMBA and DMCA, and Cd2+ , Job’s
method and UV-vis titration values were used. As shown in Figure 5a (Job’s plot), DMBA/Cd2+ molar
fractions represented a maximum absorption peak (at 488 nm) when it was close to 0.33, which indicates that
the binding between DMBA and Cd2+ was in 2:1 stoichiometry. A titration curve (a plot of DMBA versus
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Figure 3. (a) Absorption spectra of 20 µM DMCA with gradual addition of CdCl2 (0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 25, 30, 35, and 40 µM, respectively) in ACN/Tris-HCl buffer (10 mM, pH 7.32, v/v 2:1) (b) Absorption spectra
of DMCA (20 µM) with various metal ions (20 µM for Cd2+ , Cu2+ , Ni2+ , Mn2+ , Hg2+ , Zn2+ , Ag+ , Pb2+ , Fe3+ ,
Co2+ , Fe2+ , Cu+ and Cr3+ ; 50 µM for Ca2+ , Mg2+ , K+ , and Na+) in ACN/Tris-HCl buffer (10 mM, pH 7.32, v/v
2:1) (inset: colour changes of DMCA with Cd2+) .
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Figure 4. (a) Absorbance values of DMCA (20 µM) with various metal ions (200 µM) (red bar) and the subsequent
addition of Cd2+ (20 µM) (blue bar) (b) Variation of absorption values of DMCA (20 µM) and DMCA+Cd2+ (20 µM)
at various pH values.

Cd2+ concentration) was also used to determine the binding stoichiometry between DMBA and Cd2+ . As
seen in the inset in Figure 5b, the DMBA/Cd2+ molar ratio (at 488) reached a plateau when 0.5 equivalent
of Cd2+ was added, suggesting the formation of a 2:1 DMBA-Cd2+ complex. The binding constant between
Cd2+ and DMBA was determined by a previously reported method [32], with absorption values at 488 nm,
and was calculated to be 2.65 ×1012 M−2 . Furthermore, the reversibility of the binding between the sensor
and Cd2+ was examined. A solution of EDTA (1.0 equivalent) was added to the complex solution of DMBA
and Cd2+ . The absorption signal at 488 nm disappeared and the peak at 349 nm increased (Figure 5c). The
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absorbance changes were almost reversible even after several cycles with the equivalent addition of Cd2+ and
EDTA (Figure 5c inset). These results indicated that the binding between DMBA and Cd2+ is reversible.
Scheme 2 shows the possible structures for this process.
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Figure 5. (a) Job’s plot (b) Titration of 20 µM DMBA with gradual addition of CdCl2 (0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 25, 30, 35, and 40 µM, respectively) in ACN/Tris-HCl buffer (10 mM, pH 7.32, v/v 2:1) (c) UV-vis spectra showing
reversibility of DMBA to Cd2+ ions by EDTA.

Moreover, the linear concentration range and the detection limit of DMBA were obtained. The absorption
intensity (at 488 nm) was linearly dependent on the concentration of Cd2+ in the range from 0 to 10 µM (R2 =

0.982). The detection limit was calculated to be 0.438 µM based on 3σ/k (Figure 6) via absorption-based
measurement.

Job’s method and UV-vis titration were also used to understand binding mode between DMCA and
Cd2+ . As shown in Figure 7a (Job’s plot), DMCA/Cd2+ molar fractions represented a maximum absorption
peak (at 545 nm) when it was close to 0.33, which indicated that the binding between DMCA and Cd2+

was in 2:1 stoichiometry. As seen in Figure 7b, the absorption band at 545 nm increased gradually up to 0.5
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Scheme 2. Proposed reversible binding mechanism between DMBA and Cd2+ .
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Figure 6. Linear relationship between absorbance intensity and Cd2+ concentration (0–20 µM).

equivalent of Cd2+ ion respectively, suggesting the formation of a 2:1 DMCA-Cd2+ complex. The binding
constant between Cd2+ and DMCA was determined with absorption values at 545 nm, and was calculated to
be 4.95 ×1012 M−2 .

To ascertain the reversibility of the sensing mechanism of the sensor DMCA, the solution of EDTA
(1.0 equivalent) was added to the complex solution of the sensor and Cd2+ . The absorption signal at 545
nm disappeared and the peak at 396 nm increased (Figure 7b). After addition of Cd2+ again to the mixture
containing DMCA, Cd2+ , and EDTA, the previous intensity of absorption was almost recovered. Meanwhile,
the red solution immediately turned yellow. These cycles were repeated 3 times with the consecutively addition
of Cd2+/EDTA (Figure 7c inset). These results indicated that the binding between DMCA and Cd2+ is
reversible. Scheme 3 shows the possible structures for this process.

The linear concentration range and the detection limit of DMCA were also studied. The absorption
intensity (at 545 nm) was linearly dependent on the concentration of Cd2+ in the range from 0 to 10 µM
(R2 = 0.991). The detection limit was calculated to be 0.102 µM based on 3σ/k (Figure 8) via absorption-
based measurement.

To evaluate the analytical applicability of the sensors, DMBA and DMCA, they were applied for deter-
mination of Cd2+ ions in tap water samples. With the calibration plots of the sensors (Figure 6 and Figure 8),
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Figure 7. (a) Job’s plot (b) Titration of 20 µM DMCA with gradual addition of CdCl2 (0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 25, 30, 35, and 40 µM, respectively) in ACN/Tris-HCl buffer (10 mM, pH 7.32, v/v 2:1) (b) UV-vis spectra showing
reversibility of DMCA to Cd2+ ions by EDTA.

 

Scheme 3. Proposed reversible binding mechanism between DMCA and Cd2+ .
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each sample was analysed 3 times and the recovery values were calculated (Table 1). These results showed the
suitability and applicability of the sensors for the detection of Cd2+ in real samples.

Table 1. Measurement of Cd2+ in tap water samples.

Sensor Sample Cd2+ Added
(mg/L)

Cd2+ found
(mg/L)

Recovery
(%)

RSD (n = 3)
(%)

DMBA Tap water 0 0 – –
2 2.05 ±0.28 102.5 0.37
5 4.42 ±0.38 88.4 0.52
10 9.62 ±0.14 96.2 2.57

DMCA Tap water

0 0 – –
2 2.02 ±0.28 101 1.03
5 5.25 ±0.31 105 1.88
10 9.92 ±0.55 99.2 2.73

Condition: [sensors, (DMBA and DMCA)] = 20 µM in ACN/ Tris-HCl buffer (10 mM, pH 7.32,
v/v 2:1)

In recent years, several colorimetric/fluorescent sensors have been developed for the detection of Cd2+

ions. Compared to some selected sensors, the sensors, DBMA and DMCA, exhibit an excellent ability to detect
Cd2+ ions by changes in both colour and UV-vis absorption spectra with a low detection limit in the presence
of various metal ions in aqueous media, as presented in Table 2.
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4. Conclusion
We presented 2 new Schiff base derivatives, a benzaldehyde-based sensor (DMBA) and a cinnamaldehyde-
based sensor (DMCA), for colorimetric sensing of Cd2+ ions in aqueous solutions. The sensors depicted visible
absorption characteristics that range from colourless to orange for DMBA and yellow to reddish for DMCA.
The sensors had a 2-nitrogen Cd2+ -receptor moiety and coordinates with Cd2+ in a 2:1 binding mode with a
reversible response. The binding constant of the complexes was calculated as 2.65 ×1012 M−2 for DMBA and
4.95 ×1012 M−2 for DMCA. The detection limits of DMBA and DMCA were calculated via absorption-based
measurement and found to be 4.38 ×10−7 M and 1.02 ×10−7 , respectively, which gave a marked sensitivity
towards Cd2+ . For the practical application, the sensors were applied to real samples for identifying Cd2+ in
tap water. Therefore, the sensors, DMBA and DMCA, could serve as a colorimetric sensor for the detection of
Cd2+ in aqueous solutions.
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