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∙ A scientific evaluation system for evalu-

ating the production of C4 olefins.

∙ Construction of neural network and pre-

diction of C4 olefin yield based on pro-

duction indicators.

∙ Mixed Congruential method was im-

proved and used to simulate experimen-

tal parameters.

∙ The yield of C4 olefin produced by 
ethanol under different experimental 
conditions was analyzed.
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C4 olefin is an important feedstock for the chemical industry. Designing an effective and stable industrial process 
for preparing C4 olefin from renewable ethanol is crucial for further sustainable chemical production. In this 
study, a comprehensive evaluation system of an experimental scheme was constructed based on the Analytic 
Hierarchy Process/Entropy Weight Method-Technique for Order Preference by Similarity to Ideal Solution 
(AHP/EWM-TOPSIS) and Chemical production indicators. Using this evaluation system, a Back Propagation 
Neural Network (BPNN) based on a Genetic Algorithm (GA) was constructed after simulating C4 olefin 
production conditions using the Improved Mixed Congruential method. Subsequently, the production scheme 
with the highest evaluation score was determined when the temperature was not limited and when the 
temperature was lower than 350◦C through a series of mathematical models. Overall, our mathematical models 
provide guidance for the commercial production of ethanol to butene and effectively reduce the risk of scaling 
up the chemical process to pilot or industrial scale.
* Corresponding author at: China Nuclear Power Engineering Co., Ltd., 117 North West Third Ring Road, Beijing 100840, PR China.

E-mail address: glu_jiaxinliu@mail.dlut.edu.cn (J. Liu).

1. Introduction

Low-carbon olefins are regarded as a significant raw material for the 
petrochemical industry and are widely used to manufacture packaging 
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materials, synthetic textiles, antifreeze, solvents, and coatings (Fu et 
al., 2022). However, traditional low-carbon olefin production technol-

ogy based on fossil feedstocks has struggled to meet future demands of 
the low-carbon economy and stricter environmental protection require-

ments (Melisa et al., 2020). For example, the main 1,3-butadiene indus-

trial production method involves the separation of this compound from 
petroleum steam cracking fractions (Gonzalez et al., 2019; Zhang et al., 
2021). In turn, the increase in shale gas production containing large 
amounts of ethane has resulted in a decreased use of petroleum steam 
cracking to produce olefins, which will lead to the shortage of bulk 
chemicals such as C4 olefins (Le, 2018). Therefore, a process for prepar-

ing C4 olefins from unconventional and renewable resources must be 
developed given the burning of fossil feedstocks will adversely affect the 
world climate. Biomass is considered as a prime renewable resource for 
replacing fossil resources (Demirbas et al., 2009; Guo and Xiao, 2002). 
Based on the development of ‘carbon neutralization’, bioethanol pro-

duced from biomass has great prospects as a basic raw material of the 
chemical industry. Due to the sustainability and potential environmen-

tal benefits and economic value of bioethanol, the production of C4 
olefins from bioethanol has aroused considerable research interest in 
the field of catalysis (Aditiya et al., 2016; Atsonios et al., 2015). In re-

cent years, as researchers furthered the understanding of the catalyst 
activity center, the yield value of the C4 olefin reaction from ethanol 
has been significantly improved. (Dahan et al., 2021; Eagan et al., 2019; 
Katoh et al., 2008; Leon et al., 2011; Mayorov et al., 2021; Smith et 
al., 2016). Nevertheless, some problems remain and must be solved to 
realize the industrial application of ethanol for producing C4 olefins 
(Camacho et al., 2020; Jones, 2014). First, the selectivity of this reac-

tion must be significantly enhanced. This improvement is a challenging 
task because the reaction mechanism for ethanol reacts to produce C4 
olefins is complex and involves the production of many by-products. 
However, achieving high selectivity may effectively reduce the sepa-

ration and purification cost of subsequent products. Therefore, how to 
improve the selectivity of the reaction is a problem worthy of atten-

tion. Another problem worth exploring is that the reaction mechanism 
of the production of C4 olefins from ethanol remains unclear. It is nec-

essary to combine isotopic labeling method with in situ characterization 
techniques such as chemical probe identification or infrared character-

ization to try to explore the active site of chemical reaction catalysts 
(Wan et al., 2020; Ding et al., 2015).

Supported by experimental data, mathematical models can be used 
to predict the variation of the yield with other conditions in a multi-

dimensional and dynamic manner, revealing the relationship between 
selectivity and catalyst types and operating parameters while providing 
some guidance for further experimental research and industrial produc-

tion (Pedrozo et al., 2021). Therefore, performing simulation calcula-

tions before pilot and industrial tests is a viable strategy for effectively 
reducing trial and error costs.

An evaluation system consisting of the Analytic Hierarchy Pro-

cess/Entropy Weight Method-Technique for Order Preference by Simi-

larity to Ideal Solution (AHP/EWM-TOPSIS) was established to measure 
the quality of different C4 olefin production schemes. This evaluation 
system was based on five evaluation indexes: C4 olefin yield, tempera-

ture, ethanol conversion, catalyst mass (mg), and ethanol concentration 
(ml/min) (See Support Information for Experimental Data). The process 
conditions and the ethanol to C4 olefin reaction results are reported in 
the performance data table in the Support Information, totaling 114 ex-

perimental datasets. Based on these datasets, a Back Propagation Neural 
Network (BPNN) optimized using a Genetic Algorithm (GA), was con-

structed to predict the yield of C4 olefins under different Co loadings 
on SiO2 and HAP catalyst systems, ethanol concentrations, and reaction 
temperatures. After using the AHP/EWM-TOPSIS evaluation system to 
select the most cost-effective experimental scheme, the experimental 
schemes were examined by reliability analysis. After deleting the exper-

imental scheme with low reliability and replacing some experimental 
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Fig. 1. Visualization of principal component 3D interpolation.

schemes, the C4 olefin production system with actual industrial pro-

duction value was finally selected (Nobarzad et al., 2021).

2. Preliminary analysis of C4 olefin production by ethanol 
coupling

2.1. PCA dimensionality reduction and visualization

Principal Component Analysis (PCA) is a Data Dimension Reduc-

tion Method based on Orthogonal Transformation. Which was used to 
reduce the dimension of seven groups of experimental parameters in-

volved in the production of C4 olefins by ethanol coupling, including 
ethanol conversion, ethylene selectivity, and other indicators. For the 
specific use process of PCA in this article, please refer to the 3.1 section. 
Three principal components were obtained by dimension reduction as 
follows (Eq. (1), (2), (3)):

𝐹𝑃 =0.4522𝑐1 + 0.4221𝑐2 + 0.4623𝑐3 + 0.0858𝑐4 − 0.4581𝑐5

+ 0.1039𝑐6 + 0.4190𝑐7 (1)

𝑆𝑃 =0.1887𝑐1 − 0.2741𝑐2 + 0.2123𝑐3 − 0.7268𝑐4 + 0.3400𝑐5

+ 0.3567𝑐6 + 0.2704𝑐7 (2)

𝑇𝑃 =− 0.0600𝑐1 − 0.0064𝑐2 + 0.1962𝑐3 − 0.2592𝑐4

+ 0.1153𝑐5 − 0.9041𝑐6 + 0.2450𝑐7 (3)

In formulas (1), (2), and (3), c1-c7 are ethanol conversion, ethylene 
selectivity, C4 olefin selectivity, acetaldehyde selectivity, C4-C12 fatty 
alcohol selectivity with carbon number, methyl benzaldehyde/methyl 
benzyl alcohol selectivity, and selectivity to other products. 𝐹𝑃 , 𝑆𝑃 , 
and 𝑇𝑃 are the first, second, and third principal components, respec-

tively, and the cumulative contribution rate was 87.97%. After three-

dimensional interpolation, the visualization is as shown in Fig. 1.

As shown by preliminary analysis of the principal component inter-

polation (Fig. 1), when the second principal component value is close 
to 0, the value of the third principal component is high, and the third 
principal component is positively correlated with the first principal 
component; that is, when the second principal component is close to 
0, the selectivity of methyl benzaldehyde and methyl benzyl alcohol is 
high. And at this time point, the ethanol conversion, ethylene selectiv-

ity, C4 olefin selectivity, and other indicators are positively correlated 
with the selectivity of methyl benzaldehyde and methyl benzyl alco-

hol. Subsequently, the generation path of C4 olefins was determined by 
correlation analysis of each index, and the evaluation system for the 
production of C4 olefins from ethanol was established by screening and 
weighting each index as well.
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Fig. 2. The relationship of three indicators with temperature: (a) The change of ethanol conversion, C4 olefin selectivity, and C4 olefin yield with temperature when 
the catalyst dosage is more than 200 mg and the packing method is dilute phase packing; (b) When the catalyst dosage is less than or equal to 200 mg and the 
packing method is dilute phase packing, the ethanol conversion, C4 olefin selectivity and C4 olefin yield change with temperature; (c) It is the change of ethanol 
conversion, C4 olefin selectivity and C4 olefin yield with temperature when the catalyst dosage is less than or equal to 200 mg and the packing method is dense 
phase packing.
In addition to the data visualization after dimensionality reduction, 
the relationship between ethanol conversion, C4 olefin selectivity, and 
C4 olefin yield with time under different experimental schemes were 
also visualized in Fig. 2 (a)-(c).

The average Pearson Correlation Coefficients (PCC) between ethanol 
conversion, C4 olefin selectivity, and C4 olefin yield with the tempera-

ture of all experimental schemes are 0.93, 0.92, and 0.87, respectively, 
which are all greater than 0.8. Therefore, it can be considered that the 
ethanol conversion, C4 olefin selectivity, and C4 olefin yield of ethanol 
to olefin reaction are strongly and positively correlated with temper-

ature. The average values of ethanol conversion, C4 olefin selectivity, 
and C4 olefin yield of the three sets of data at different temperatures 
were obtained as shown in Fig. 3 (a)-(c). It can be seen that for ethanol 
conversion and C4 olefin yield, Fig. 3 (a) > (b) > (c), that is, increas-

ing the mass of catalyst can improve the ethanol conversion and C4 
olefin yield (Fig. 3 (a) > (b)). Compared with dense phase packing, di-

lute phase packing can effectively improve the ethanol conversion and 
C4 olefin yield (Fig. 3 (a) > (b)); For C4 olefin selectivity, there is Fig. 3

(a) > (b) ≈ (c), that is, increasing the mass of catalyst can effectively 
improve the C4 olefin selectivity of ethanol to olefin reaction, but in the 
range of 250-350◦C, the effect of packing method on C4 olefin selectiv-

ity is not obvious.

2.2. Path analysis of C4 olefin formation

The test results at different time points in the experiment of the 
production of C4 olefins from ethanol at 350◦C were analyzed, chang-

ing the ethanol conversion, C4 olefin selectivity, C4-C12 fatty alcohol 
selectivity, ethylene selectivity, acetaldehyde selectivity, and methyl 
benzaldehyde/alcohol selectivity with time as shown in Fig. 4 (a), (b).

Throughout the reaction, acetaldehyde and ethylene selectivity 
gradually increased with time, showing a positive correlation (Fig. 4a). 
Conversely, the ethanol conversion and the selectivity of fatty alco-

hols with gradually decreased with time, although the latter increased 
3

to some extent from 200 to 240 min, and the selectivity of the two 
was negatively correlated with time overall. In addition, the selectiv-

ity of C4 olefins was not significantly correlated with the reaction time, 
whereas the selectivity of methyl benzaldehyde/methyl benzyl alcohol 
increased first and then decreased with the reaction time, albeit only 
slightly (Fig. 4b).

Further analysis of Fig. 4 shows that long-chain alcohols gradually 
cleaved into light alkenes, short-chain aldehydes, and so forth over the 
reaction time, thereby decreasing the selectivity. Once the reaction has 
been stabilized (150-273 min), C4 olefin selectivity was significantly 
and positively correlated with the selectivity of C4-C12 fatty alcohols, 
with Pearson Correlation Coefficients (PCC) of 0.84. Such a significant 
and positive correlation indicated that some fatty alcohols with C4-C12 
carbons were decomposed to C4 olefins (Kyriienko et al., 2020). How-

ever, the selectivity of C4 olefins did not change significantly with time 
because alcohol/aldehyde dehydration is an endothermic reaction with 
a faster rate at higher temperatures (Ndou et al., 2003). The higher 
reaction temperature accelerated the cracking rate of C4-C12 fatty al-

cohols to C4 olefins (Phung and Busca, 2015). Therefore, although the 
selectivity of long-chain alcohols decreased with the reaction time, the 
selectivity of C4 olefins did not decrease significantly. This phenomenon 
also indicated the possible reason why the selectivity of the interme-

diate product (acetaldehyde) increased despite the decreased ethanol 
conversion because the equilibrium constant for ethanol dehydration 
to acetaldehyde becomes favorable at temperatures above 300 ◦C (Ra-

masamy and Wang, 2013).

Accordingly, the route of C4 olefin production from ethanol is shown 
in Fig. 5.

The possible pathway of methyl benzaldehydes/methyl benzyl alco-

hol production from ethanol is shown in Fig. 6 (Wang et al., 2019).

The possible pathway of cracking C4-C12 aliphatic alcohols into C4 
olefins is shown in Fig. 7.
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Fig. 3. Mean value graph of ethanol conversion, C4 olefin selectivity, and C4 olefin yield of three groups of data (a), (b), and (c) at a certain temperature. (a) Ethanol 
conversion average change over time. (b) C4 olefin selectivity average change over time. (c) C4 olefin yield average change over time.
Fig. 4. Selectivity/conversion of each C4 olefin component prepared from 
ethanol as a function of time at 350◦C (Reaction conditions can be found in 
Supporting Information). (a) The conversion of Ethanol, C4 olefin, and C4-C12 
Fatty alcohol over time. (b) The conversion of ethylene, acetaldehyde, methyl 
benzaldehyde, and methyl benzyl alcohol over time.

3. Development of the mathematical model

3.1. Establishment of data dimension reduction model

For a production scheme to prepare C4 olefin from ethanol, seven 
outcome indicators are identified in this paper in addition to temper-

ature: ethanol conversion, ethylene selectivity, C4 Olefin selectivity, 
acetaldehyde selectivity, C4-C12 Fatty alcohols, selectivity of methyl-

benzaldehyde and methyl benzyl Alcohol, selectivity of other products 
and C4 olefin yield. It is very difficult to directly visualize the seven 
groups of indicators in a figure, so Principal Component Analysis was 
used to reduce the dimension of the seven groups of indicators into 
three dimensions, and then the visualization can be carried out. In this 
paper, the dimensionality reduction process using Principal Component 
Analysis is as follows:

1) De-averaging

The first step of dimensionality reduction is de-averaging (i.e., de-

centralizing), which is subtracting the average value of each of the 
seven groups of indicator vectors.

2) Calculate the covariance matrix

Define matrix 𝑋, which is a 7 × 114 matrix. Each row of the matrix 
𝑋 represents an index after de-averaging, and each column represents a 
4

set of experimental data. Then, the covariance matrix 1
𝑛
𝑋𝑋𝑇 should be 

calculated.

3) Calculate eigenvalues and eigenvectors

After obtaining the covariance matrix, the eigenvalues and eigen-

vectors of the covariance matrix 1
𝑛
𝑋𝑋𝑇 can be obtained by the method 

of Eigendecomposition.

(4) Construct the eigenvector matrix 𝑃
Order the eigenvalues from the largest to the smallest, and select 

the largest 𝑘 eigenvalues (𝑘 =3 in this paper). Then the corresponding 
𝑘 eigenvectors are taken as row vectors to form the eigenvector matrix 
𝑃 .

(5) Obtain the final dimensionality reduction result

After the eigenvector 𝑃 is obtained, calculate the matrix 𝑌 = 𝑃𝑋. 
Each row of matrix 𝑌 is a dimension after dimensionality reduction, 
and the element 𝑌𝑖𝑗 in matrix 𝑌 represents the weight of indicator j on 
dimension i. The matrix 𝑌 as given in Eq. (4).

𝑌 =
[ 0.4522 0.4221 0.4623 0.0858 −0.4581 0.1039 0.4190

0.1887 −0.2741 0.2123 −0.7268 0.3400 0.3567 0.2704
−0.0600 −0.0064 0.1962 −0.2592 0.1153 −0.9041 0.2450

]
(4)

Thus, the three groups of principal components after dimensionality 
reduction in Section 2.1 can be obtained.

3.2. Construction of the evaluation system

In addition to the yield of the target product, material costs and 
equipment loss should also be considered in chemical production (Guo 
et al., 2014; Fang et al., 2016; Wang et al., 2021). In this study, an 
evaluation system based on five indicators, namely C4 olefin yield, tem-

perature, ethanol conversion, catalyst mass, and ethanol concentration 
was constructed. The Analytic Hierarchy Process (AHP) and the Entropy 
Weight Method (EWM) were used to weight the five indicators, subse-

quently applying the Technique for Order Preference by Similarity to 
Ideal Solution (TOPSIS) to calculate the scores of various catalyst com-

binations. In the final calculation results, the production system with 
the highest score had the highest comprehensive performance. The pa-

rameters involved in this section are outlined in Table 1.

3.2.1. AHP weighted C4 olefin yield

The yield of the target product C4 olefin is of great significance in 
the index system used to measure the total benefit of actual chemical 
production including five factors, C4 olefin yield, temperature, ethanol 
conversion, catalyst mass, and ethanol concentration. In this study, the 
Analytic Hierarchy Process was used to weight the yield of C4 olefins, 
constructing the judgment matrix as given in Eq. (5) (Note: The judg-

ment matrix was only used to weight the yield of C4 olefins, and the 
other four indexes were weighted using the Entropy Weight Method).
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Fig. 5. Reaction mechanism of ethanol conversion into C4 olefins.

Fig. 6. The possible reaction mechanism of ethanol conversion into methyl benzaldehydes/methyl benzyl alcohols.

Fig. 7. The possible reaction mechanism of C4-C12 fatty alcohol cracking into C4 olefins.
𝐴 =

⎡⎢⎢⎢⎢⎢⎣

1 3 3 3 3
1∕3 1 1 1 1
1∕3 1 1 1 1
1∕3 1 1 1 1
1∕3 1 1 1 1

⎤⎥⎥⎥⎥⎥⎦
(5)

The judgment matrix 𝐶𝑅 = 0 had a good consistency. Because 𝐴
was a consistent matrix, an eigenvalue was 5, and the others were 0. 
The corresponding eigenvector was as shown in Eq. (6).

𝑘[ 1
𝐴11

,
1

𝐴12
,

1
𝐴13

,
1

𝐴14
,

1
𝐴15

]𝑇 (𝑘 ≠ 0) (6)

The weight of C4 olefin yield in the index system was 0.429 because 
the value of 𝐴11 was 0.429.

3.2.2. Weighting other indexes using the entropy method

The Entropy Weight Method was used to weight the other three 
indexes except for C4 olefin yield with the following specific empower-

ment process:

1) Standardization of three indicators.

The standardization method used in this study was Min-Max stan-

dardization with the following standardization formula as given in 
Eq. (7).
5

𝑌𝑖𝑗 =
𝑋𝑖𝑗 −min(𝑋𝑖)

max(𝑋𝑖) − min(𝑋𝑖)
(7)

2) Calculation of the proportion of each data in the index. The pro-

portion of each data in the index obtained through Eq. (8).

𝑃𝑖𝑗 =
𝑌𝑖𝑗∑𝑛

𝑖=1 𝑌𝑖𝑗

, 𝑖 = 1,⋯ , 𝑛, 𝑗 = 1,⋯ ,𝑚. (8)

In this study, 𝑛 = 114, 𝑚 = 4.

3) Calculation of the information entropy of three indexes.

According to the definition of information entropy in information 
theory, the information entropy of a dataset can be obtained by Eq. (9).

𝐸𝑗 = −ln(𝑛)−1
𝑛∑

𝑖=1
𝑃𝑖𝑗 ln𝑃𝑖𝑗 (9)

4) Calculation of the weight of each index by information entropy. 
In this paper, the weight of each index obtained by Eq. (10).

𝑤𝑗 =
1 −𝐸𝑗

𝑘−
∑

𝐸𝑗

, 𝑗 = 1,2,⋯ ,𝑚 (10)

𝑘 is the number of indicators, in this study, 𝑘 = 4.
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Table 1. Symbols and definitions of the parameters.

parame-

ter

explanation

𝐴 Analytic Hierarchy Process Judgment Matrix

𝑋𝑖 The ith evaluation index vector except for C4 yield (0 < i ≤ 3)

𝑌𝑖 Standardized index matrix

𝑃𝑖𝑗 the proportion of ith data in the indicator j
𝐸𝑗 Information entropy of indicator j
𝑤𝑗 The weight of index j
𝑥 A cost indicator that needs to be positivized

𝑥′ The index x after positivizing

𝑒𝑖 Ethanol conversion of the ith catalytic combination after standardiza-

tion (0 < i ≤ 114)

𝑒′
𝑖

Ethanol conversion of the ith catalytic combination after positivizing 
(0 < i ≤ 114)

𝑍𝑖𝑗 The jth index value of the ith catalytic combination after positivizing (0 
< i ≤ 114, 0 < j ≤ 4).

𝐷+
𝑖

Distance between an experimental scheme and the optimal solution

𝐷−
𝑖

Distance between an experimental scheme and the worst solution

Score Final evaluation score of an experimental program

𝑁 Number of neurons in hidden layer of BP neural network

𝐾 Number of neurons in output layer of BP neural network

𝐹 Individual fitness value of BP neural network

𝐸 Standardized ethanol conversion vector

𝑦𝑖 Prediction of catalyst combination i yield by BP neural network (0 < i 
≤ 2970)

𝑂𝑖 The actual yield value of catalyst combination (0 < i ≤ 2970)

𝑎 Mixed multiplicative coefficient (constant)

𝑏 Mixed identical addition coefficient (constant)

𝑀 For the improved mixed congruential method, its period ≥ M

3.2.3. Scores calculated using the distance method

The Technique for Order Preference by Similarity to Ideal Solution 
was used to evaluate each test scheme. Among the five indicators of the 
evaluation system constructed in this study, improving the yield of C4 
olefins is the purpose of production, and increasing ethanol conversion 
represents the efficient utilization of the reaction substrate and the in-

creased production (Li et al., 2022). A low ethanol conversion affects 
the yield of C4 olefins, which cannot meet the production demand re-

quired product yield. As such, these two indicators are benefit indicators 
(A higher indicator value means a better production scheme). Since the 
energy can be saved and the service life of equipment can be extended 
at a lower reaction temperature (Iwamoto et al., 2011), the tempera-

ture of the reaction system is a cost indicator (A lower indicator value 
means a better production scheme). Similarly, ethanol concentration 
and catalyst mass are also cost indicators. In order to facilitate subse-

quent unified calculation, the following formula was used to convert 
cost (reaction system temperature, ethanol concentration, and catalyst 
mass) into benefit indicators (Eq. (11)):

𝑥′ = max−𝑥 (11)

After all indicators are unified into benefit indicators, the distance 
between all production schemes and optimal (or worst) production 
schemes are calculated as shown in Eq. (12).

𝐷+
𝑖
=

√√√√√ 4∑
𝑗=1

𝑊𝑗 (𝑍𝑖𝑗 − 1)2 (12)

𝐷−
𝑖
=

√√√√√ 4∑
𝑗=1

𝑊𝑗 ×𝑍2
𝑖𝑗

(13)

The final Score of each production scheme can be obtained by 
Eq. (14).

𝑆𝑐𝑜𝑟𝑒=
𝐷−

𝑖

𝐷+ +𝐷− (14)

𝑖 𝑖

6

Fig. 8. Six parameters for designing the experimental scheme.

3.3. Construction of BP neural network based on genetic algorithm

In this part, a Back Propagation Neural Network based on a Genetic 
Algorithm (GA-BP) was constructed to predict the yield of C4 olefins un-

der different experimental conditions. First, the values of six parameters 
shown in Fig. 8 were taken as input values and the yield of C4 olefins as 
the output value to construct the GA-BP. After that, in order to evaluate 
the merits and demerits of production schemes more comprehensively, 
the three indicators (catalyst mass, ethanol concentration, and temper-

ature) were used to measure the cost of the chemical industry based on 
improving the yield of C4 olefin as much as possible. Finally, five pro-

duction schemes with the best overall expectation score were selected 
as the recommended process conditions for chemical production.

3.3.1. Establishment of the back propagation neural network

The Back Propagation Neural Network (BPNN) is a multi-layer feed-

forward neural network trained with the Back-Propagation Algorithm, 
which is currently the most widely used neural network. The princi-

ples of BPNN optimization using the genetic algorithm are that the 
initial weights and thresholds of the network are represented by the 
individuals and that the prediction error of BPNN initialized by each 
individual value is used as the fitness value of the individual. After 
selection, crossover, mutation, and other operations, the optimal indi-

vidual is identified as the best initial weight of the BPNN. GABP has 
a stronger global optimization ability than the general BPNN, easily 
falling into the local optimum. The process of BPNN optimization using 
the genetic algorithm is shown in Fig. 9 (Genetic algorithm on the left 
and neural network on the right).

In this study, a three-layer neural network structure of 6 × 𝑁 × 1
was established, where 6 represents the number of neurons in the input 
layer, namely the six parameters that must be determined in the design 
experiment; 𝑁 is the number of hidden layer neurons; 1 is the output 
term (yield of C4 olefins). In the three-layer network, the following 
approximate relationship was found between the number of neurons in 
the hidden layer 𝑁 and the number of neurons in the input layer 𝑀
(Eq. (15)) (Pourpasha et al., 2021; Abilov and Zeybek, 2000; Liu et al., 
2001):

𝑁 = 2 ×𝑀 + 1 (15)

The formula was combined with the Trial-and-Error method to de-

termine the best 𝑁 value of 13.

After determining the structure of the BPNN, this paper used a ge-

netic algorithm to optimize the initial weights and thresholds of the 
BPNN in the following implementation steps:
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Fig. 9. Flow chart of the BP Neural Network algorithm optimized using Genetic Algorithm.
Step 1: Through the Real Coding of individuals in the initial pop-

ulation, the chromosome of each individual consists of four parts: the 
connection weight between the input layer and the hidden layer, the 
connection weight between the hidden layer and the output layer, the 
neuron threshold of the hidden layer, and the neuron threshold of the 
output layer.

Step 2: Based on the initial value of each individual chromosome, 
the initial weights and thresholds of the BPNN were calculated, and 
then the BPNN was trained using training data to predict the output 
of the system. The sum of the absolute value of the error between the 
predicted output and the expected output was used as the fitness value 
𝐹 of the individual. The calculation formula was given in Eq. (16).

𝐹 = 𝑘

𝑛∑
𝑖=1

||𝑦𝑖 −𝑂𝑖
|| (16)

Step 3: Individuals with the minimum fitness (error) were con-

structed by selection, crossover, and mutation of the genetic algorithm 
to set the initial weights and thresholds of the neural network. By this 
point, the number, weight, and threshold of neurons in the input layer, 
hidden layer, and output layer of the neural network had been clari-

fied; then, the Levenberg-Marquardt algorithm was used as the learning 
algorithm of subsequent weights and thresholds for the BPNN. This al-

gorithm combines the advantages of the Gauss-Newton algorithm with 
the Gradient Descent method and improves their shortages (the Gradi-

ent Descent method does not consider the accumulation of experience, 
and the convergence is slow; the initial value of the Gauss Newton al-

gorithm may be too far from the local minimum), and the increment 
equation is as shown in Eq. (17).

(𝐽𝑇 𝑊 𝐽 + 𝜆𝐼)𝛿𝑥 = −𝐽𝑇 𝑊 Δ𝑧 (17)
7

In the formula, Δ𝑧 = 𝑧 − 𝑧 (𝑥), for the prediction error, 𝑊 is the 
weight matrix; 𝑗 = 𝑑𝑧∕𝑑𝑥, 𝛿𝑥 is the increment of the input values (or 
vector) 𝑥, and 𝜆 is the modification that reduces the cost function.

3.3.2. Improved mixed congruential method for generating a 
pseudorandom number

Before predicting the yield of C4 olefins, experimental parameters 
must be determined first. In this study, the computer algorithm was 
used to generate pseudo-random numbers, and then the pseudo-random 
numbers were combined into experimental schemes with different pa-

rameters. The mixed congruential method is a method commonly used 
to generate pseudo-random numbers, and its iterative formula as shown 
in Eq. (18), (19).

𝑥𝑖+1 = 𝑎𝑥𝑖 + 𝑏𝑚𝑜𝑑(𝑀) (18)

𝑟𝑖+1 = 𝑥𝑖+1𝑀
−1 (19)

To lengthen the cycle period of the generated pseudo-random num-

ber and to overcome the drawback that any two pseudo-random num-

bers in a sequence generated using the mixed congruential method 
cannot be equal in a cycle, this paper improved the mixed congruential 
method after referring to previously reported data (Guo et al., 2014), 
with the following improved mixed homothetic method (Eq. (20), (21)):

𝑥𝑖+1 = 𝑎𝑥𝑖 + 𝑖𝑚𝑜𝑑(𝑀) (20)

𝑟𝑖+1 = 𝑥𝑖+1𝑀
−1 (21)

The improved mixed congruential method has a longer period, and 
multiple identical pseudo-random numbers can be generated in one cy-

cle. In this study, 𝑀 = 215 −1, 𝑎 = 27, 28, 29, 𝑀 = 216 −1, 𝑎 = 211, 𝑎 = 212, 
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Table 2. Weight table of five indexes.

Evaluation index name Index weight Weighting method

C4 olefin yield (%) 0.429 AHP

Temp. (◦C) 0.155 EWM

Ethanol conversion (%) 0.212 EWM

Catalyst mass (mg) 0.143 EWM

Ethanol concentration 
(ml/min)

0.061 EWM

Table 3. Production scheme with high comprehensive scores.

Number of cata-

lyst combination

Temp. (◦C) Score (×10000)

Top 3 of all A3 400 104.18

A3 450 102.82

A4 400 101.51

Top 3 of temp. 
<350◦C

A2 325 92.59

A3 325 89.62

A4 325 88.68

𝑀 = 220, 𝑎 = 210 + 1 were selected as the initial parameters for generat-

ing six groups of pseudo-random numbers.

4. Results and discussion

4.1. Evaluation of different catalytic systems

The weights of temperature, ethanol conversion, catalyst mass, and 
ethanol concentration calculated using the Entropy Weight Method 
were multiplied by 0.571, and combined with the weight of C4 olefin 
yield calculated in the Analytic Hierarchy Process, five weights were 
obtained, as outlined in Table 2.

Taking the five weights into the calculation formula of the Tech-

nique for Order Preference by Similarity to Ideal Solution and the ex-

perimental schemes generated using the improved mixed congruential 
method, the score ranking was calculated as shown in Table 3.

In this part, the parameters of the optimal six groups of production 
schemes are shown in Table 4, and Table 5.

Considering the cost, equipment loss, and other factors, when the 
temperature limit was not required (the required temperature was 
lower than 350◦C), the optimal catalyst combination was A3,400◦C 
(A2,325◦C). Simultaneously, the catalyst combination A3 still had an 
excellent performance at a low temperature (325◦C). In actual chemi-

cal production, the catalyst combination A3 can be used to adjust the 
temperature of the reaction system between 325◦C and 400◦C (Guo et 
al., 2014; Meng et al., 2012; Chen et al., 2017). This scheme can reduce 
the energy consumption of the reactor and reasonably reduce the cost 
under the premise of a high C4 olefin yield.

4.2. Prediction of C4 olefin yield by GABP

4.2.1. GABP training results

A total of 2970 sets of sample data were obtained by cubic spline 
interpolation of 114 sets of experimental data (see supporting materi-

als) and divided into two groups. The first 450 sets of each 500 datasets 
were selected as the training set, and the remaining 50 sets were se-

lected as the test set (the last training set was 20 sets). The training 
dataset was loaded into the GA-BP neural network for training, and 
training was completed when the network training results met the pre-

set accuracy requirements or the maximum number of iterations.

The performance of the neural network after training is shown in 
Fig. 10 (a), (b).

The weights and thresholds of neural network initialization us-

ing the genetic algorithm significantly accelerated the convergence 
speed of the BPNN. At the 226th training cycle, the mean square er-

ror of the neural network reached the minimum standard error (MSE =
1.2179×10−5), and then the training was completed (Fig. 10(a)).
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The test dataset was loaded into the GA-BP neural network to obtain 
the prediction output and the prediction error of the test set, as shown 
in Fig. 11.

In the prediction output and prediction error diagram shown in 
Fig. 11, the samples labeled with serial numbers of 0-250 were ob-

tained by packing method I (dilute phase packing) and packing method 
II (dense phase packing) with a system temperature lower than 400◦C. 
Moreover, the prediction error of the BPNN was within [−0.02, 0.02], 
indicating that the difference between the output value and the ex-

pected value was not large, which can meet the needs of the subsequent 
use of the neural network (KhazaiePoul et al., 2016; Li et al., 2017). 
The samples with serial numbers 251–270 were the prediction results 
of type II packing method with a system temperature of 400◦C. The 
prediction error increased with the output value, which may be due to 
the lower number of training samples used in packing method II. In the 
subsequent prediction with the neural network, this paper used polyno-

mial approximation to reduce the prediction error of the B-type packing 
method when the system temperature was 400◦C (Zhang et al., 2013).

4.2.2. GABP simulation experiment results

In this part, six-dimensional pseudo-random numbers were gener-

ated using the improved mixed congruential method (Riera et al., 2021; 
Niederreiter and Shparlinski, 1999) to initialize the experimental pa-

rameters. Then, the BPNN that had been trained in 3.2.1 was used to 
predict the experimental results, simulate the real experimental condi-

tions, and screen out the combinations of experimental parameters with 
a high expected yield of C4 olefins.

The pseudo-random number generated using the improved mixed 
congruential method was input into the trained BPNN, and generated 
the simulation results shown in Fig. 12.

When the temperature was equal to or greater than 400◦C, the 
yield expectation of the charging method II was corrected in this study. 
The correction was based on the prediction error of sample Numbers 
251-270 in part two. After regression analysis using the cftool tool in 
MATLAB, polynomial approximation was obtained by Eq. (22).

𝑓 (𝑥) = 1.557𝑥− 0.1923 (22)

Correcting the yield expectation of packing method II by polynomial 
approximation led to the simulation results shown in Fig. 13.

Based on the simulation results before and after the correction, the 
combination of the five experimental parameters with the highest ex-

pected yield is presented in Table 6 (at a system temperature of 400◦C).

To minimize the energy consumption of the reactor, the experi-

mental parameters with the highest expected yield below 350◦C were 
calculated as shown in Table 7 (catalyst mass ratio is 0.5).

The Technique for Order Preference by Similarity to Ideal Solu-

tion based on the Analytic Hierarchy Process and the Entropy Weight 
Method was used to comprehensively evaluate combinations of the 
above 10 experimental parameters (Tables 6 and 7). Among the five 
indicators, Co load and the packing method were not included in the 
calculation of the comprehensive evaluation. The catalyst mass was con-

sidered as an indicator of catalyst dosage (Liu et al., 2014). Therefore, 
among the four indexes involved in the Technique for Order Preference 
by Similarity to Ideal Solution, the catalyst mass, ethanol concentra-

tion, and system temperature were cost indicators, and the expected 
yield score was divided into benefit indicators.

The Analytic Hierarchy Process and the Entropy Weight Method 
were used to weigh the four indicators as shown in Table 8.

The comprehensive evaluation score of each catalyst combination 
was calculated according to the weight and sorted as shown in Table 9.

According to the comprehensive evaluation scores and expected 
yield scores, five experimental schemes were initially selected: num-

bers 550, 320, 440, 653, and 914. Scheme numbers 550 and 914 were 
included in the modest yield optimization group; and scheme numbers 
320, 440, and 653 were included in the yield optimization group at low 
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Table 4. Specific information on the experimental scheme of highest comprehensive evaluation scores.

Number of catalyst combination Temp. (◦C) Catalysts combination Ethanol concentration (ml/min) Score (×10000)

A3 400 200 mg 1wt%Co/SiO2- 200 mg 
HAP

0.9 104.18

A3 450 200 mg 1wt%Co/SiO2- 200 mg 
HAP

0.9 102.82

A4 400 200 mg 0.5wt%Co/SiO2-

200 mg HAP

1.68 101.51

Table 5. Specific information on the experimental scheme of highest comprehensive evaluation scores (Temp. <350◦C).

Number of catalyst combination Temp. (◦C) Catalysts combination Ethanol concentration (ml/min) Score (×10000)

A2 325 200 mg 2wt%Co/SiO2- 200 mg 
HAP

1.68 92.59

A3 325 200 mg 1wt%Co/SiO2- 200 mg 
HAP

0.9 89.62

A4 325 200 mg 0.5wt%Co/SiO2-

200 mg HAP

1.68 88.68

Fig. 10. Training results of neural networks: (a) Convergence, (b) Regression.
9
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Table 6. Combination of the five experimental parameters with the highest expected yield.

No. Catalyst mass (mg) Mass ratio Co load (wt%) Ethanol concentration 
(ml/min)

Packing method

550 300 0.5 0.5 0.9 2

914 600 0.5 1 0.9 1

458 600 0.5 1 0.3 1

174 600 0.5 1 1.68 1

961 300 2 1 1.68 2

Table 7. Combination of the experimental parameters with the highest expected yield (<350◦C).

No. Catalyst mass (mg) Co load (wt%) Ethanol concentration 
(ml/min)

Packing method Temp. (◦C)

765 300 2 0.9 2 300

653 300 2 0.3 2 300

320 100 5 0.3 1 275

440 75 5 0.3 1 300

79 225 1 0.9 2 325
Fig. 11. Predictive output and error of test set.

Fig. 12. BPNN simulation results.

Table 8. Weighting results of each index.

Index name Weighting method

EWM AHP

Weight Catalyst mass (%) 0.127

Ethanol concentration (ml/min) 0.249

Temp. (◦C) 0.124

Prediction output (%) 0.5

temperatures. These five schemes were chosen as experimental designs 
for the following reasons:

No. 550: The comprehensive evaluation score and expected yield 
were the first.

No. 914: The comprehensive evaluation score was the fourth, the 
expected yield score was the second, and the three parameters differed 
greatly from number 550, which means that the mechanism for improv-
10
Fig. 13. Simulation results of the modified BPNN.

Table 9. Comprehensive evaluation and expected yield score.

Rank No. Comprehensive 
evaluation score

Expected yield 
score

1 550 100.00 100.00

2 320 59.90 8.32

3 440 57.43 8.11

4 653 54.95 14.99

5 914 47.03 36.59

ing the expected yield of scheme number 550 may be different from that 
of the other schemes.

No. 320: The comprehensive evaluation score was the second, and 
the expected yield score at a temperature lower than 350◦C was the 
third.

No. 440: The comprehensive evaluation score was the third, and 
temperature lower than 350◦C and the expected yield score were the 
second.

No. 653: The comprehensive evaluation score was the fourth, and 
the temperature lower than 350◦C and the expected yield score were 
the second, with many parameters differing greatly from those of 
scheme numbers 320, 440, packing method II.

Subsequently, a feasibility analysis of the preliminary experimental 
program was conducted, and the final experimental program was deter-

mined.

Feasibility analysis and the final determination of the experimental 
plan:

A Co loading of 0.5 hinders a uniform dispersion on the catalyst sur-

face, which is reduced (Elinson et al., 2019). However, a Co loading of 
1 or 2 leads to Co aggregation on the catalyst surface, which is easily 
reduced at high temperatures. The best catalytic effect is achieved at 
these loadings (Al-Shafei et al., 2021). When the charging ratio is lower 
than 1, the increase in HAP content increases the number of alkaline 
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Table 10. Final experimental programs.

Rank No. Catalyst mass (mg) Co load (wt%) Ethanol concentra-

tion (ml/min)

Packing method Temp. (◦C) Comprehensive 
evaluation score

1 320 200 5 0.3 1 275 59.90

2 440 75 2 0.3 2 300 57.43

3 653 300 2 0.3 2 300 54.95

4 914 600 0.5 1 1 400 47.03

5 961 300 2 1 2 400 27.83
sites in the catalyst (Pang et al., 2016; Carvalho et al., 2012; Cinelli et 
al., 2015), which promotes acetaldehyde conversion to the alkene. The 
optimum charging ratio is 1 because, when the loading ratio is greater 
than 1, the number of acid sites on the catalyst surface decreases with 
the HAP content, thereby decreasing the C4 olefin yield (Gao et al., 
2013). The increase in ethanol concentration promotes ethanol con-

version to acetaldehyde, which in turn promotes the production of C4 
olefins (Song et al., 2020). Combined with the above analysis, under 
scheme number 550, the loading amount of Co was 0.5, the ethanol 
concentration was not high, and the loading ratio was lower than 1. By 
this time point, the HAP content was low, so a high yield was unreason-

able under this condition. Therefore, scheme number 550 was deleted, 
and experimental program number 961 was added as the experimental 
program for optimizing the yield with charging method II.

In the optimal solution for a system temperature lower than 350◦C, 
the Co loading value was greater than or equal to 1, requiring no cor-

rection.

The final five experimental programs for C4 olefin production from 
bioethanol with the best production cost performance expectations are 
outlined in Table 10 (catalyst mass ratio is 0.5).

5. Conclusions

This paper used mathematical modeling combined with experimen-

tal data to explore the practical industrial significance of different pro-

cess conditions for the production of C4 olefins from bioethanol. By 
analyzing the effect of different catalyst formulations on the ethanol 
conversion and C4 olefin selectivity, a process with a higher C4 olefin 
yield was obtained. The results of this work can be summarized as fol-

lows (Ogihara et al., 2020; Akubo et al., 2019):

(1) An Analytic Hierarchy Process/Entropy Weight Method-Techn-

ique for Order Preference by Similarity to Ideal Solution method was 
constructed based on four factors: C4 olefin yield, temperature, ethanol 
conversion, and C4 olefin selectivity; then, 114 experimental datasets 
of C4 olefin production from ethanol were evaluated using this method, 
and six sets of process conditions with the highest cost performance 
under actual chemical production conditions were screened out.

(2) A GA-BP neural network was established, and the Analytic Hier-

archy Process/Entropy Weight Method-Technique for Order Preference 
by Similarity to Ideal Solution evaluation system (AHP/EWM-TOPSIS) 
was combined with this neural network to select C4 olefin production 
conditions with the highest practical chemical production applicability. 
Using cubic spline interpolation for experimental data and training the 
neural network, the improved mixed congruential method was used to 
simulate various production parameters, and the GA-BP neural network 
was used to predict the C4 olefin yield.

Subsequently, the expected yield, catalyst dosage, ethanol concen-

tration, and system temperature were selected as the evaluation indexes 
to construct the evaluation system of Analytic Hierarchy Process/En-

tropy Weight Method-Technique for Order Preference by Similarity to 
Ideal Solution, identifying five groups of ethanol production schemes 
for C4 olefins with high production cost performance.

In this paper, the chemical process conditions were optimized by 
mathematical modeling, which expanded the application of mathemat-

ical modeling and the process of preparing olefin from ethanol was 
improved. This approach may play a guiding role in the industrial pro-

duction of C4 olefins from ethanol.
11
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