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Abstract
It is well understood that genetic differences among hosts contribute to
variation in pathogen susceptibility and the ability to associate with
symbionts. However, it remains unclear just how influential host genes are
in shaping the overall microbiome. Studies of both animal and plant
microbial communities indicate that host genes impact species richness
and the abundances of individual taxa. Analyses of beta diversity (that is,
overall similarity), on the other hand, often conclude that hosts play a minor
role in shaping microbial communities. In this review, we discuss recent
attempts to identify the factors that shape host microbial communities and
whether our understanding of these communities is affected by the traits
chosen to represent them.
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Introduction
Microbiome studies often focus on bacteria. However, micro-
bial communities encompass all of the microorganisms in a  
particular environment. These can include yeasts, filamentous 
fungi, oomycetes, bacteria, archaea, algae, protists, viruses, 
nematodes, and even small arthropods. A microbiome, and the 
interactions within these communities, can directly or indirectly  
affect a host’s health, development, and physiology. In plants, 
for example, microbes influence important fitness and devel-
opmental traits ranging from disease resistance1 to flowering  
time2. In animals, the microbiome has been shown to influ-
ence nutrient uptake3, abiotic stress tolerance4, and even the  
development of the central nervous system5.

Given the role of microbiota in host health and phenotypic 
variation, several studies have sought to understand how envi-
ronmental factors, interactions among microbes, and host 
genetic differences shape these communities. Whereas some  
studies have concluded that genetic differences among hosts  
influence microbiota6–13, others have concluded that hosts play at  
most a minor role14–16. The discrepancy in results may arise 
from differences in perspective: is the proverbial glass (here, 
the glass contains the heritability of the microbiome) half 
empty or half full? Differences in study design and methodol-
ogy also appear to sway results. Perhaps tellingly, studies of 
model organisms reared in environmentally controlled conditions  
regularly conclude that microbial communities are under some 
level of host control7,11,17,18; the relationship becomes less clear,  
however, in environmentally complex field settings13,16.

Here, we discuss recent research focused on understand-
ing whether, and to what extent, host microbial communities 
are under the influence of host genes. Overall, the results from 
these studies often appear to depend on the approaches used to  
characterize microbial communities. Therefore, we provide an 
overview of the most commonly used microbial traits and the  
possible pitfalls of using each phenotype.

Microbiome traits
Microbial communities are typically summarized by using 
one or more of four possible methods. Analyses of beta diver-
sity, alpha diversity, or the abundances of individual taxa 
are usually conducted after the polymerase chain reaction 
(PCR) and sequencing of phylogenetically conserved regions,  
known as marker genes. The most commonly sequenced 
regions include sections of ribosomal RNA (rRNA) genes or 
the internal transcribed spacers (ITSs) found in eukaryotic (for  
example, fungi) DNA. The fourth strategy, characterizing  
microbial metabolism, is less common; this is likely due to the 
costs of characterizing microbial communities by using shotgun  
sequencing or metatranscriptomic approaches.

Beta diversity
Beta-diversity metrics quantify the overall similarity among 
samples due to spatial differentiation or other mechanisms, 
and, given the multivariate nature of microbiome data, these  
measures have become widely used to understand the factors 
that influence microbial communities. Perhaps the best known 

index is the “semi-metric” developed by the ecologists Bray and 
Curtis19. Alternatively, one can use the phylogenetic distance 
metric UniFrac, which measures the evolutionary divergence 
among microbial communities by using a phylogenetic tree  
constructed from a multiple sequence alignment20. Jaccard, Kul-
czynski, Euclidean, Hellinger, and chi-squared–based distances  
are other commonly used measures21.

Each of these indices has strengths and weaknesses. As an exam-
ple, phylogenetic distance methods, such as UniFrac, require 
high-quality sequence alignments that are difficult to gener-
ate and curate during large-scale sequencing projects. Notably, 
high-quality alignments are especially difficult to generate using 
marker genes that contain sequence-length polymorphisms, 
such as the ITS regions found in eukaryotic (for example,  
fungal) DNA. Many (but not all22) metrics are also sensitive to 
differences in the number of sequencing reads among samples23, 
making it necessary to either normalize the data (for example, 
by expressing the abundances of data as a proportion or a log-
ratio) or resample the data to a given read count by using the 
observed probability distribution within the sample. Identifying 
robust beta-diversity metrics, and the optimal preprocessing  
steps, is an area of ongoing research.

Primer mismatches and variation in the number of marker 
genes among species24 pose additional problems (for all micro-
bial analyses) and have been implicated in poor reproducibility 
among sequencing runs25,26. Yet another challenge is that zeros 
are common in species data; that is, many taxa are observed 
in only one or a few samples. The problem of sparse species 
data has been discussed in the community ecology literature for  
decades27, but the zeros in microbiome data are particularly  
difficult to address because they may reflect the real absence of 
an organism in a sample (that is, a true zero) or they may be the  
consequence of undersampling and sequencing artifacts.

Some of the most widely used measures of beta diversity were 
developed by botanists19,28 investigating whether differences 
among plant communities across field sites could be attrib-
uted to different aspects of the environment. Unfortunately, it is 
unclear whether the species concept can be applied to prokaryo-
tes, which regularly acquire DNA from the environment through 
horizontal gene transfer (HGT) mechanisms that blur spe-
cies boundaries29. The frequency of HGT differs across spatial  
scales30, but it is common enough among prokaryotes that pair-
wise genome-wide DNA similarity and 16S rRNA similar-
ity are poorly correlated31. This suggests that when HGT does 
occur, the phylogenetic markers used to study prokaryotes 
will poorly represent microbial metabolism and thus the real  
(dis)similarity among microbiomes.

Despite all of these challenges, beta-diversity measures are  
regularly used to identify the factors that shape microbiota. 
The earliest attempts to understand microbiome assembly used 
gel electrophoresis–based community fingerprinting methods, 
such as terminal-restriction fragment length polymorphism  
(T-RFLP) analysis or (automated) ribosomal intergenic spacer  
analysis (RISA and ARISA). Using RISA and T-RFLP, for  
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example, Micallef and colleagues6 found that inbred acces-
sions of Arabidopsis thaliana host distinct bacterial communi-
ties in the rhizosphere. In similar analyses, Bodenhausen and 
colleagues8 and other authors32 have shown that the leaf micro-
biome of A. thaliana also differs among inbred lines and that  
mutants defective in the leaf cuticle host altered microbial com-
munities. Over the last decade, as high-throughput sequenc-
ing approaches have become more common, these gel-based  
approaches have largely been replaced by the sequencing of  
multiplexed amplicon libraries.

Laboratory studies have demonstrated that host genes influ-
ence microbial assembly6–8,17, which raises the question of 
whether host effects can also be detected in natural settings, 
where organisms simultaneously confront abiotic and biotic 
stresses. Indeed, Redford and colleagues33 found that trees of 
the same species have more similar leaf bacteriomes than trees 
of different species. Consistent with the results of Micallef and  
colleagues6 and others8,9, inbred accessions of A. thaliana have 
likewise been shown to host distinct microbial communities in 
field settings. Specifically, both bacteria and fungi in the leaf34 
and root18 microbiome of Arabidopsis are influenced by host 
genes. Moreover, it is now clear that genome-wide association  
studies (GWASs) can be used to shed light on the processes 
shaping microbiome assembly. For example, several promising 
candidate genes have been identified by using the sample coor-
dinates from principal components analysis as phenotypes in 
GWASs. The top single-nucleotide polymorphisms (SNPs) asso-
ciated with leaf fungi (PC1), for example, fall within GLUCAN  
SYNTHASE LIKE 11 (GSL11), a homolog of a gene (GSL5) that 
deposits callose in the cell wall in response to fungal infection35.  
Similarly, fungi in the roots (PC1) of A. thaliana are asso-
ciated with promising candidate loci, including PECTIN  
METHYLESTERASE 26 (PME26) and its neighbor PME318. 
Like cellulose, pectin and callose are polysaccharides that play  
critical roles in cell-wall integrity.

Much of what we know about animal microbial communities 
comes from diverse human microbiome projects. For exam-
ple, Blekhman and colleagues36 used data from the Human 
Microbiome Project to explore microbiome habitats distrib-
uted across the body. This revealed that host genome similarity, 
which was cleverly estimated by using host contaminant reads, is  
moderately correlated (R2 ~ 0.19) with beta diversity in the stool 
microbiome. Unfortunately, the small sample size of this study  
(n = 93 individuals) and the failure to correct for population 
structure have made it difficult to interpret the results from their  
GWAS. However, the gut microbiomes of much larger human 
diversity panels are now being characterized. As an example,  
Wang and colleagues11 used a classic epidemiological 
approach to investigate the gut microbiomes of a large northern  
European cohort (n = 1812). In that study, the authors were able 
to attribute approximately 10% of the variation in the micro-
biota to genetic differences among individuals. Differences in 
age, gender, body mass index, and smoking status explained  
about 9% of the overall variation, and controlling for these  
covariates in GWASs helped fine-map vitamin D receptor  
(VDR) among the top candidate genes. Follow-up research 

with a mouse model (Vdr−/−) has confirmed the role of VDR and 
helped in understanding its role in host-microbiome cross-talk 
through bile-acid sensing. Wang and colleagues have estab-
lished the Microbiome Genome consortium37 to further investi-
gate the role of human genetics in shaping gut microbiota and 
the role of the microbiome in human disease. This project now  
has data for over 19,000 subjects for which rich metadata (for 
example, smoking status, age, and weight) are also being gener-
ated. The size of this cohort, and the accompanying resources, 
should further aid in understanding the genetic architecture  
of the microbiome.

Analyses of beta diversity for both plant and animal micro-
biomes have greatly improved our understanding of the fac-
tors that shape microbiota. Despite clear progress, however, the 
emerging view from this research is that environmental factors 
are more influential than host genes in shaping microbiomes 
(for example, as discussed in 16). In particular, it is difficult to 
detect host effects when environmental factors are not explicitly 
controlled for or taken into account during analysis11,38,39. It is  
arguable that dispersal limitation and HGT should also be con-
sidered when designing experiments. Indeed, one should ques-
tion the biological relevance of many microbiome traits (to 
begin with) before sequencing marker genes (for example, 
16S rRNA) that poorly represent the phenotypic diversity of  
communities shaped by HGT31. In the following sections, we  
discuss whether, despite these concerns, other microbiome traits  
are heritable.

Alpha diversity
Alpha diversity describes local diversity, or the diversity 
within a sample (or habitat)40. As is the case with beta diversity,  
there are multiple ways to characterize alpha diversity.

Perhaps the most widely known measure of alpha diversity is 
Shannon’s diversity index41, which estimates the uncertainty 
in a sampling process by weighing the informativeness of ele-
ments in a series (for community and microbial ecologists, the 
elements are species) on the basis of their observed frequen-
cies. This entropy is then exponentiated to estimate the effec-
tive number of species within a community, or true alpha  
diversity42. The widespread use of Shannon’s index in ecol-
ogy stems from the fact that it is biased toward neither com-
mon nor rare species. Despite this intuitive appeal, however, the 
phylogenetic markers that are used in most studies—sections  
of bacterial 16S rRNA43 and the ITS regions of fungi44—vary 
widely in gene copy number across species. This means that 
Shannon’s index is inappropriate unless corrective steps  
are taken24 (for example, dividing each species’ abundance by 
its predicted number of marker gene copies) that are difficult to  
apply to many taxa.

Many researchers instead focus on species richness, the number 
of taxa within a sample, to understand alpha diversity. Spe-
cies richness does not take abundance into account, and it can 
be investigated without rarefaction by using long-established  
statistical models (for example, negative binomial or quasi-
Poisson generalized linear models) that allow one to adjust 
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for differences in the number of sequences among samples by 
using “offsets” to model the exposure rate. This simplicity,  
combined with its low statistical burden, has made richness a  
popular phenotype.

As an example, bacterial richness in the maize rhizosphere38 is 
shaped by genetic differences among accessions (R2 = 19%), 
as are the number of bacterial (heritability [H2] = 0.57) and fun-
gal (H2 = 0.47) taxa in the root microbiome of A. thaliana18. 
Of course, bacteria and fungi co-occur in many microbiomes,  
which suggests that they should be combined in analy-
ses when appropriate. In the case of the root microbiome of  
A. thaliana, combining bacterial and fungal richness data ena-
bled Bergelson and colleagues18 to fine-map CELLULASE1  
and other promising candidate genes implicated in immunity. 
The top candidate SNPs fall nearby the disease resistance gene  
NPR145, which was not mapped in either of the marginal analyses.

Another measure of alpha diversity is Faith’s phylogenetic 
diversity (PD)46, which uses phylogenetic trees generated with 
molecular or cladistic data to estimate diversity. Like species 
richness, Faith’s PD does not take “abundance” into account 
and thus avoids the marker gene copy-number problem. Faith’s 
PD has become a popular measure in conservation biology,  
where geographic regions with higher phylogenetic diversity 
are considered to be more diverse (and thus more valuable) than 
communities of closely related species. In the case of micro-
biome studies, analyses of Faith’s PD have revealed that the 
gut bacterial communities of both wild mouse47 and humans48  
are heritable (for example, human H2 = 0.37). Curiously, GWASs 
of the wild mouse47 and human gut microbiome11 have pinpointed  
the same candidate gene: CSMD1.

Individual taxa
Characterizing microbiome beta and alpha diversity has greatly 
improved our understanding of the overall processes that 
shape microbial communities. Although microbes interact in 
these communities, many researchers are nevertheless inter-
ested in the presence/absence and abundances of individual  
taxa and whether individual taxa are also shaped by host genes.

As an example in plants, Walters and colleagues13 recently 
identified 143 heritable operational taxonomic units (OTUs) 
in the rhizosphere of maize. Overall, the broad-sense H2 of 
these taxa were low (15 < H2 < 25%) compared with taxa in the  
phyllosphere of maize49, which raises the question of whether  
these two habitats are differentially affected by environmen-
tal effects and host genes. Support for this hypothesis comes 
from work in Boechera50, which similarly suggests that 
leaf microbiomes are more affected by host genes than root  
microbiomes.

In the case of the human gut microbiome, Goodrich and  
colleagues3,12 have identified several heritable bacterial groups. 
A member of the most highly heritable (H2 = 0.42) taxon, the 
Christensenellaceae (specifically, Christensenella minuta), has  
been shown to reduce weight gain in transplantation experi-
ments with germfree recipient mice3. Moreover, network analyses 

have revealed that the Christensenellaceae are the key group 
(based on node “degree”, or the number of network connec-
tions) in a sub-network of several heritable bacterial groups 
within the gut microbiome. This suggests that host genes may 
indirectly shape microbial communities through more direct 
interactions with key taxa (that is, “hub points”) in microbial  
community networks.

Genotype-by-environment interactions (GxEs) are widely 
believed to shape host microbiome traits, but the prevalence of 
GxEs remains unclear. The best-characterized example involves 
the lactase enzyme, which is encoded by the LCT locus. Poly-
morphisms at the human LCT locus determine the ability of 
adult humans to digest milk. These variants, however, not only 
are linked to lactase persistence but also with the abundance  
of the genus Bifidobacterium in the human gut microbiome. 
Strains of Bifidobacterium that can metabolize lactose are found 
in (significantly) increasing abundance with the increasing  
consumption of dairy products in the microbiomes of individu-
als homozygous for the haplotype associated with hypolactasia 
(lactose intolerance) in Europeans; this is strong evidence  
of a GxE10.

Most microbial communities contain a large number of taxa, 
and the number increases with increasing sample size as rare 
taxa are discovered. Although this poses challenges for beta 
diversity (see above), studies of individual taxa often focus 
on the most heavily sequenced taxa (for example, the top 100 
species) to improve speed and reduce the burden of multiple  
testing. So it is perhaps surprising that recent studies of bacteria  
have sought to examine both the heritability of individual taxa 
and (separately) the same data binned at increasingly higher 
taxonomic levels. As discussed above, prokaryotes experi-
ence high rates of HGT and gene loss, which suggests that their  
physiology is not conserved enough to justify the increased 
(statistical) burden of testing taxa at both low (for example,  
genus) and high (for example, phylum) taxonomic levels.

Microbial metabolism 
As described above, amplicon-based analyses of beta  
diversity, alpha diversity, and the abundances of individual 
taxa are hampered in varying degrees by both HGT and biases  
introduced during PCR and sequencing25,26. One solution is to 
directly sequence microbial genes or RNA by using metagenome  
shotgun sequencing or transcriptomics. The key advan-
tage of these two approaches is that the metabolic potential 
of the microbiome is directly measured rather than predicted 
from marker gene sequences. For studies focused on under-
standing community assembly processes, these untargeted 
sequencing approaches also have the potential to characterize  
species membership in a less biased and PCR-free manner while  
enabling the identification of traditionally overlooked groups 
(oomycetes, viruses, Cyanobacteria, and so on).

Among the disadvantages of metagenomes and metatranscrip-
tomes is that they are expensive to generate, which is perhaps 
why they are rarely characterized outside of human and crop  
research. Moreover, host sequences may be enriched in some 
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habitats (for example, 51,52), resulting in contamination that 
further increase the costs of sequencing. The studies that have 
been performed so far have shown that microbial metabolism  
varies widely among species grown in the same environment, 
suggesting that hosts do affect microbial gene expression in 
some manner. As an example, enzymes involved in nitrate 
reduction are more highly expressed in the wheat than cucum-
ber microbiome of plants grown in a randomized experiment53.  
In the cucumber microbiome, enzymes associated with sulfur 
assimilation and pectin degradation are upregulated relative 
to wheat. As noted above, pectin, which is generally more  
abundant in the cell walls of dicots than monocots54, is one of  
the polysaccharides that regulate host cell-wall integrity.

It is unclear how heritable individual microbial enzymatic cat-
egories and pathways are, but the limited number of studies that 
have explored the relationship between microbial metabolism and 
host variation have identified promising associations, although 
the abundances of taxa and microbiome functions appear to be 
influenced by different host genes10. This is consistent with an 
emerging theme from microbial research: the microbial compo-
sition of samples is a poor proxy of microbial gene expression 
within the same samples and this is due in part to HGT55.  
For example, the inner leaves of bromeliads form water traps 
that in turn form aquatic ecosystems. By sequencing the bac-
teria and the microbial genes within these aquatic islands, 
Louca and colleagues demonstrated that, despite hosting highly 
diverse bacterial communities, the genes expressed within 
these communities are remarkably similar56. If a microbial  
community experiences high rates of HGT, it will be far more 
informative to characterize microbial metabolism than to 
sequence marker genes that are, in effect, decoupled from the  
genomes that they are intended to represent.

Future research perspectives
Research in the past decade has illustrated a close relationship 
between a host’s microbiome and health3,5, which naturally 
leads to questions about how these communities form and 
whether host genes play a role. In this review, we summarize 
recent research focused on this topic while discussing whether  

the choice of microbiome traits affects our understanding of these 
communities.

What is the most meaningful way to summarize the micro-
biome? The most common approach is to characterize the  
overall similarity of microbiomes by using beta-diversity 
measures. These studies often find that microbiomes vary dra-
matically among conspecifics that live in different areas13,50,57, 
which leads to the reasonable conclusion that spatially varying  
environmental factors differentially shape these communities.  
However, in most studies, it is unclear whether environmen-
tal factors are confounded with ecological processes, such as 
ecological drift and dispersal limitation. Whatever the research 
focus, if everything is not everywhere, approaches based on  
beta-diversity will be underpowered when samples from  
distant geographic regions are under consideration.

In comparison, analyses of individual taxa13,48,49 and species 
richness18,38 have detected (modestly more) heritable compo-
nents of the microbiome18,49. Despite these promising results, 
however, it should be noted that analyses of alpha diversity 
and individual OTUs share many of the same problems as beta  
diversity, including whether microbiomes distributed across the 
environment experience the same exposure rate (that is, due  
to dispersal limitation). Confounding factors are regularly 
included as covariates to study human diseases, and the strategies 
used in epidemiology58 probably deserve more attention in the  
study of host microbiota11,59.

A major limitation of current host microbiome research is the 
fact that microbes are often shaped by HGT but characterized 
with marker genes (for example, 16S rRNA) that fail to distin-
guish among genetically divergent strains60. As we move forward 
in this research, it will be critical to determine whether metage-
nomic or metatranscriptomic studies, which are unaffected  
by HGT, can uncover additional components of heritability.
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