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Heat shock transcription factor 1 (HSF1) orchestrates
cellular stress protection by activating or repressing gene
transcription in response to protein misfolding, oncogenic cell
proliferation, and other environmental stresses. HSF1 is tightly
regulated via intramolecular repressive interactions, post-
translational modifications, and protein-protein interactions.
How these HSF1 regulatory protein interactions are altered in
response to acute and chronic stress is largely unknown. To
elucidate the profile of HSF1 protein interactions under normal
growth and chronic and acutely stressful conditions, quanti-
tative proteomics studies identified interacting proteins in the
response to heat shock or in the presence of a poly-glutamine
aggregation protein cell-based model of Huntington’s disease.
These studies identified distinct protein interaction partners of
HSF1 as well as changes in the magnitude of shared in-
teractions as a function of each stressful condition. Several
novel HSF1-interacting proteins were identified that encom-
pass a wide variety of cellular functions, including roles in DNA
repair, mRNA processing, and regulation of RNA polymerase
II. One HSF1 partner, CTCF, interacted with HSF1 in a stress-
inducible manner and functions in repression of specific HSF1
target genes. Understanding how HSF1 regulates gene repres-
sion is a crucial question, given the dysregulation of HSF1
target genes in both cancer and neurodegeneration. These
studies expand our understanding of HSF1-mediated gene
repression and provide key insights into HSF1 regulation via
protein-protein interactions.

Organisms are constantly challenged with adapting to
stressful conditions such as protein misfolding, inflammation,
environmental toxicants, increased temperature, and rapid cell
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proliferation. A crucial player in the cellular stress response is
heat shock transcription factor 1 (HSF1), a regulator of stress-
protective gene transcription (1–4). In normal cells in the
absence of acute stress, the majority of HSF1 is maintained in
an inactive, monomeric state and resides predominantly in the
cytoplasm (5, 6). This basal repression of HSF1 is achieved
through protein interactions including a multichaperone
complex (7–12), proteins that post-translationally modify
HSF1, and repressive intramolecular interactions between
leucine zipper regions (13–17). HSF1 is activated in response
to stressful conditions through oligomerization and is retained
in the nucleus where it binds heat shock elements (HSEs)
adjacent to target genes or in distal regulatory elements to
promote cell survival through several mechanisms (1, 2).
Genes activated by HSF1 encode protein chaperones, the
ubiquitin proteasome degradation machinery, cell cycle de-
terminants, transcriptional regulators, and many other pro-
teins involved in diverse processes (3). A more recently
explored facet of HSF1 biology is its role in repressing gene
transcription, including those involved in apoptosis, inflam-
mation, and transcription (18–22).

Although HSF1 is primarily cytosolic and inactive in the
absence of stress, a small fraction of HSF1 remains in the
nucleus and binds to target genes in the absence of acute stress
(23, 24). The characterization of HSF1 direct target genes in
basal conditions and in response to acute stress, chronic
protein misfolding diseases, or in cancer cells reveals cell-
context-specific sets of HSF1-regulated genes, some of which
contribute to pathogenesis (24–28). How HSF1 protein regu-
lators are altered to influence different disease signatures is not
well understood.

Owing to the central role HSF1 plays in coping with stresses
that disrupt protein homeostasis, HSF1 is of great interest in
neurodegenerative diseases that arise from chronic protein
misfolding including Alzheimer’s disease, Parkinson’s disease,
and Huntington’s disease (HD) (5, 29–33). In HD, a CAG
triplet nucleotide expansion in exon 1 of the Huntingtin gene
results in a pathogenic polyglutamine (polyQ) expansion in the
Htt protein (mutant Htt, mHtt) (34). mHtt protein aggregates
in complexes with cellular components including cell signaling
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proteins, transcription factors, and other key regulatory pro-
teins, disrupting cellular function and ultimately increasing the
propensity for apoptosis (35, 36). The protein misfolding and
cellular dysfunction is further exacerbated by reduced levels of
protein quality control (QC) components, including protein
chaperones and the protein degradation machinery, which aid
in maintaining protein homeostasis. Consequently, activation
of cytoprotective protein chaperones such as Hsp70 and
Hsp40, the TRiC chaperonin subunits, and the protein
degradation machinery alleviates protein misfolding and aug-
ments aggregate clearance in HD (37–41). Furthermore, acti-
vation of multiple chaperone systems via HSF1 is more
efficacious than a single chaperone (37–41) as HSF1 simulta-
neously elevates levels of protein QC components and regu-
lates target genes to promote protein homeostasis and cell
survival; thus, HSF1 activation is a promising point of thera-
peutic intervention (1, 3, 5, 33, 42–44). However, in response
to mHtt, this stress-protective transcription factor is aberrantly
degraded, its target gene expression blunted, and its genome-
wide binding dramatically altered, raising questions of how
HSF1 is dysregulated in HD (28, 29, 31, 33). A more detailed
understanding of the regulation of HSF1 in unstressed cells,
the dysfunctional regulation of HSF1 in HD, and how this
compares with the acute stress of heat shock (HS) may offer
new insights into HSF1 regulation and its contribution to
disease.

Previous studies conducted in HD cellular and mouse
models revealed that the impairment of HSF1 arises, in part,
from inappropriate protein interactions that result in HSF1
degradation (33). In HD, elevated expression of protein kinase
CK2α’ and E3 ligase component FBXW7 promote the
phosphorylation-dependent degradation of HSF1 (33). In
contrast to the elevated HSF1 degradation in HD, compromised
FBXW7 function in cancers impairs HSF1 degradation, giving
rise to increased HSF1 protein levels that support malignancy
(45–48).These and other studies demonstrate the importance
of protein-protein interactions in modulating HSF1 nuclear
retention, DNA binding, activation or repression of target
genes, and degradation (8, 10, 22, 49–52). For instance, mito-
chondrial single-stranded DNA-binding protein is crucial for
the activation of some HSF1 target genes in response to
elevated temperatures (51). BCL2-associated athanogene 3
(BAG3) regulates HSF1 nuclear retention during heat stress
(49), whereas RPA70 facilitates basal HSF1 binding at the
Hsp70 locus by recruiting histone chaperone FACT (50). In
addition to illuminating regulatory mechanisms imposed on
HSF1 by interacting proteins, the study of other protein inter-
actors has revealed roles for HSF1 in new pathways, including
DNA repair (53, 54), metabolism (55), and the mitochondrial
unfolded protein response (56). Taken together, these and
other studies demonstrate how protein regulators of HSF1 can
significantly alter HSF1 activity, function, and degradation.
However, many of these regulatory interactions have been
explored exclusively in response to heat shock, highlighting the
need for a systematic proteomics approach in which the HSF1
interactome can be simultaneously investigated under different
stress conditions, including chronic protein misfolding.
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To decipher new aspects of HSF1 regulation via protein
partners under distinct cellular stress states, the HSF1 inter-
actome was examined during normal growth conditions, acute
heat shock, and the chronic protein misfolding stress
encountered in HD. HSF1 interacts with an array of proteins
with diverse cellular functions, including mRNA processing,
chromatin modification, transcriptional coactivators and re-
pressors, and DNA and RNA metabolism. Although some of
these interactions are maintained under all conditions evalu-
ated, HSF1 also interacts with a distinct network of protein
partners during acute versus chronic stress. CCCTC-binding
protein (CTCF) was identified as an HSF1 interactor under
all three conditions. CTCF and HSF1 interact in vivo and
directly in vitro; this interaction requires the DNA-binding
domain (DBD) of HSF1 but does not require HSF1 to be
DNA binding competent. Acute depletion of CTCF or HSF1
reveals a strong overlap of potential repression targets and,
given the co-occupancy of CTCF and HSF1 at genomic loci
(26), indicate that CTCF may help recruit HSF1 and facilitate
HSF1-mediated regulation of gene targets. This potential
cooperation between HSF1 and CTCF could reveal a novel
mechanism for HSF1-mediated target gene regulation,
particularly for HSF1 repression targets.
Results

HSF1-interacting proteins in control, heat shock, and
Huntington’s disease model cells

To identify proteins that interact with HSF1 in cells during
normal growth conditions, in response to the acute stress of
heat shock, or during the chronic stress of protein misfolding
of HD, endogenous HSF1 was immunoprecipitated and
interacting proteins were identified using mass spectrometry.
Striatal neuron-derived cells from HD model mice possessing
pathogenic polyQ-expanded Htt, STHdhQ111/Q111 (Q111, HD),
were compared with their wildtype counterpart, STHdhQ7/Q7

(Q7, Control) (57). This well-characterized HD cell model
recapitulates several phenotypes of HD including cellular
dysfunction, aberrant localization of mHtt protein, and
compromised HSF1 DNA binding and target gene expression
(28, 31, 57).

To enable the identification of protein interactions with
HSF1 present at physiologically relevant levels in the absence
of a cross-linking agent, endogenous, native, and untagged
HSF1 was immunoprecipitated and interacting proteins were
identified with mass spectrometry. This is significant because
HSF1 overexpression drives unnatural oligomerization and
DNA binding, which could result in protein interactions that
are not relevant at physiological levels of HSF1 (58). In addi-
tion, as HSF1 levels are diminished in HD owing to aberrant
protein modifications and interactions, overexpression may
alter the specific HSF1 interactions (33, 59). Immunoprecipi-
tated HSF1 or negative control IgG precipitates were analyzed
by ultraperformance liquid chromatography tandem-mass
spectrometry (LC-MS/MS), and the HSF1 interactome was
quantitatively assessed in unstressed conditions and during
acute and chronic stress (Fig. 1A). HSF1-interacting proteins
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Figure 1. Outline of quantitative HSF1 protein interactome approach. A, endogenous HSF1 immunoprecipitation from biological triplicates using
polyclonal anti-HSF1 antibody covalently liked to DynaG beads. HSF1-interacting proteins were identified by immunoblotting, silver-stained SDS-PAGE gels,
and quantitative LC-MS/MS to compare the magnitude of interacting proteins across conditions analyzed. IgG was used as a negative control. B, immu-
noprecipitation of endogenous HSF1 in Control (Q7), Huntington’s disease (HD, Q111), or heat shock (HS) as compared with negative control IgG. C, 3D
Principal component analyses of the proteins identified in each sample demonstrate reproducibility of triplicates in the same biological context, whereas
the separation of groupings in 3D space shows the differences in the HSF1 interaction network under the different evaluated conditions. Quality control
(QC) pool is an equal mixture of the 15 independent biological samples tested and was used to assess technical variability across runs.
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were identified in biological triplicate under the following
conditions: unstressed Q7 cells (IgG immunoprecipitation
[IP], HSF1 IP), Q7 cells after an acute heat shock (HSF1 IP),
and HD cells (IgG IP, HSF1 IP), representing a total of 15
biological samples (5 experimental conditions × 3 biological
replicas). Immunoprecipitation of HSF1 (Fig. 1, A and B,
Fig. S1, A and B) demonstrates the enrichment of HSF1 and
potential HSF1-interacting proteins as compared with IgG. In
addition, a portion of the 15 biological samples were combined
to create a QC pool used to account for any changes in the
detection protocol throughout sample runs. Proteins were
identified by LC-MS/MS, and runs were aligned based on the
accurate mass and retention time of detected ions. In total, the
initial dataset identified 12,497 unique peptides that were
aligned to 1691 proteins. The coefficient of variation (% CV)
for technical replicates of QC runs was 7.7%, and the biological
variability was 20.9%, 29.5%, 24.2%, 18.6%, and 18.2% for the
Q7 IgG, Q7 HSF1, Q7 HS HSF1, Q111 IgG, and Q111 HSF1
groups, respectively. The reproducibility of HSF1-interacting
proteins identified from the three conditions was visualized
with 3D principal component analysis (PCA) (Fig. 1C) and 2D
PCA (Fig. S1D). Each PCA datapoint reflects the content and
intensity of interacting proteins in the HSF1 or IgG IP-MS.
Note that the clustering of biological replicates in 2D and
J. Biol. Chem. (2021) 296 100097 3
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3D PCA indicates that highly similar protein components were
identified in each replicate. In addition, separation of the
different conditions in the PCA demonstrates the varied
composition of the HSF1 interactome across conditions.

Validation of previously identified HSF1-interacting proteins

To eliminate low-confidence HSF1 interaction partners and
proteins non-specifically immunoprecipitating, several re-
strictions were imposed on the identified proteins. First, hit
proteins in the HSF1 IP must be enriched at least twofold over
levels detected in the IgG IP and this difference must be sta-
tistically significant (p < 0.05) as determined by a t test
calculated on log2-transformed intensity values. Lastly, to
ensure proteins were correctly identified with sufficient pep-
tide coverage, hit proteins were required to have a protein
teller probability of 0.8 or higher. Protein teller probability
determines protein identity based on all identified peptides,
penalizing single-hit proteins and assigning common peptides
to the simplest number of corresponding proteins (60).
Excluding HSF1 itself, of the 1691 proteins identified, only 378
(22.4%) passed these stringent requirements; hit proteins in
each condition are shown in blue (Control), orange (HS), and
green (HD) (Fig. 2, A–C) and comprise the high confidence
protein interaction partners of HSF1 for each condition eval-
uated in this study. Proteins in each condition that did not pass
these criteria could still represent bona fide HSF1 interactions
and are shown in gray.

Several previously reported HSF1-interacting proteins were
detected, including BAG3 (49, 61, 62), X-ray repair cross
complementing 5 (XRCC5, Ku80) (53), Pre-mRNA processing
factor 8 (PRPF8) (50), rapamycin-insensitive companion of
mTOR (RICTOR) (50), and structural maintenance of chro-
mosomes protein 6 (SMC6) (Fig. 2E gray shading, underlined in
Fig. 3 and Table S2) (63). Several HSF1-interaction partners
closely functionally related to those previously described were
also detected, including sorting nexin 9 (SNX9)—related to
SNX4; importin subunit alpha-1 (IMA1, KPNA2)—related
to KPNA3 and 4; and PAR12—related to PARP13 (HD only)
(50, 54). Some of the discrepancies between the related proteins
identified in this study may be attributed to differences in cell
type, immunoprecipitation method, or specific stress condi-
tions. Other identical or highly related HSF1-interacting pro-
teins were strongly enriched in the HSF1 IP including CDC20
(64), HSPB1, and NDK7 (Fig. 2E) (61). However, owing to poor
peptide coverage they were not above the stringent cutoff
imposed for protein teller probability (Fig. 2E) (61).

HSF1 protein interaction networks span a wide variety of
cellular functions

The interactome of HSF1 in this neuronal-like background
comprises proteins of varied cellular function. Although some
proteins interact with HSF1 across multiple cellular conditions,
unique interactors were also found in each condition
(Table S2). The number of shared and unique HSF1-interacting
proteins in control, heat shock, and HD conditions are shown
in Figures 2D and S2, A–C. In general, fewer HSF1 protein
4 J. Biol. Chem. (2021) 296 100097
interactions (10 unique) were detected that met our criteria in
control conditions compared with HS (106 unique) and HD
(119 unique); HD and HS shared a considerable (48%–52%)
overlap, suggesting that some of these interactions may be
stress dependent or common for HSF1 activation. However, HS
and HD conditions also maintained many unique protein in-
teractions, underscoring the potential differences in protein
regulation exerted on HSF1 during the acute temperature
stress and chronic stress of protein misfolding. In response to
heat shock, HSF1 interacts with many proteins involved in
nuclear import and degradation; 8% of heat shock–specific
HSF1 interactions involve nuclear import machinery such as
importins (α, β, 4, 5, 7, and 9) and nuclear pore proteins
(Nup93), whereas 33% involve degradation, such as ubiquitin
ligases (Nedd4, TRI56) and proteasomal subunits and proteases
(PSA1–7, PSD11–13) (Table S1). These HS-specific in-
teractions suggest that transient HSF1 activation involves the
nuclear import machinery, interaction with RNA Pol II sub-
units (RPB1-3), and degradation machinery. Although these
interactions are not observed in chronic stress, HSF1 does
interact with many proteins specifically in HD cells (Table S2).
For instance, HD-specific interactions are enriched for RNA
processing factors, including many members of the DEAD-box
helicase families and the RNA exosome complex. In addition,
several proteins involved in DNA repair interact with HSF1
specifically in HD, including XRCC5, SMC5-6, and PARP12.

To further explore how the constellation of HSF1-
interacting proteins are changed between control, heat
shock, and HD conditions, the intensity of the interactions
shared between two or more conditions was assessed (Fig. 3).
When comparing the magnitude of HSF1-interactors, only
proteins with abundance that were greater than threefold
different between conditions (p < 0.05) were considered as
high-confidence changes. With these criteria, most of the
proteins interacted with HSF1 to a similar extent when
comparing control and stress conditions; 78% of the shared
interactions between control and HS and 92% of control and
HD were preserved to a similar magnitude (gray boxes, Fig. 3).
In contrast, only �52% of the shared interactions in HS and
HD were unchanged. Interestingly, for shared interactions that
were different between HS and HD conditions, all HSF1-
interacting proteins interacted to a larger extent under HS
conditions than in HD cells (red boxes, Fig. 3).

Overall, HSF1 interacts with proteins of broad cellular
function including those involved in chromatin remodeling,
protein trafficking, protein QC, and translation and tran-
scriptional coactivators and repressors (Fig. 4). Of particular
interest are the many chromatin remodeling proteins detected.
Although this study does not differentiate between direct
HSF1 interactions and those that operate as a complex con-
taining other proteins, previous studies have demonstrated the
importance of recruitment of chromatin remodelers, such as
BRG1 of the SWI/SNF multiprotein chromatin remodeling
complex, for HSF1-driven transcription (51, 65). Some of the
chromatin remodeling proteins identified in this study include
histone demethylase NO66 and RuvBl1 and RuvBl2 helicases,
components of the NuA4 histone acetyltransferase complex



E

A B

D

10

106118 87

415

38

Huntington’s 
Disease

Control

Heat 
Shock

Unique and shared HSF1 interacting proteins

0

1

2

3

4

5

6

-5 0 5 10

-lo
g 1

0(
p-

va
lu

e)

log2 Fold change Protein abundance HSF1/IgG 

Below threshold HSF1 interacting protein

PRPF8

SMC6

CTCF

BAG3

HSF1

FBXW11
RBM28

CBY1

XRCC5

Huntington’s Disease 

0

1

2

3

4

5

-5 0 5 10

-lo
g 1

0(
p-

va
lu

e)

log2 Fold change Protein abundance HSF1/IgG 

Below threshold HSF1 interacting protein

RICTOR
SMC6

CTCF

BAG3
HSF1

IQGAP1

HADHA

KPNA2

Heat Shock 

C

Reported HSF1-interacting Protein Identical protein in this study Condition detected

PRPF850 PRP8 HD
SNRNP20050 U520 HD
RBM2850 RBM28 HD
IQGAP150 IQGA1 HS
RICTOR50 RICTR Con, HS, HD
NESTIN50 NEST Con
HADHA50 ECHA HS
XRCC5 (Ku80)53 XRCC5 HD
BAG361,62 BAG3 Con, HS, HD
SMC5105 SMC5 HD
SMC663,105 SMC6 Con, HS, HD
NEDD459 NEDD4 HS
CBY163 CBY1 Con, HS, HD
Nme761 NDK7 poor peptide coverage
CDC2064 CDC20 poor peptide coverage
HspB161 HSPB1 poor peptide coverage
CCDC88A50 DAPLE (CCDC88C) poor peptide coverage

Reported HSF1 interacting Protein Related protein in this study Condition detected

SNX450 SNX9 HS
KPNA1, KPNA350 IMA1 (KPNA2) HS
PARP1, PARP1354 PAR12 (PARP12) HD
FBXW733 FBW1B (FBXW11) Con, HS, HD
SMARCA4 (BRG1)50,65,95 SMCA5 (SMARCA5) Below fold change threshold

0

1

2

3

4

5

-5 0 5 10

-lo
g 1

0(
p-

va
lu

e)

log2fold change protein abundance HSF1/IgG

Below threshold HSF1 interacting protein

HSF1

RICTOR

NESTIN

BAG3

SMC6
CBY1

CTCF

Control 

Figure 2. Protein-interactors identified in control, heat shock, and Huntington’s disease cell models with HSF1 immunoprecipitation–mass
spectrometry. A–C, volcano plot of HSF1-interacting proteins in Control A, HS B, and HD C; proteins passing fold change >2, p < 0.05, and Protein-
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Figure 3. Heat map of HSF1-interacting proteins shared in two or more conditions. The magnitude of the interacting protein detected in each
condition was compared; magnitude of interaction was calculated from robust mean normalization of raw intensity values for each protein present in the
HSF1 IP (see Table S1). Interactions that changed by threefold (down, light blue; up, light red) or sixfold (up, dark red; down, dark blue) with statistical
significance (p < 0.05) are indicated. Proteins found in similar levels across conditions are colored gray. Proteins indicated with crosses were not found in
both indicated conditions and were not compared. Underlined proteins indicate those recapitulated from previous studies (see Fig. 2E).
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involved in transcriptional activation. RuvBl1/2 interact with
and regulate the activity of other DNA-binding proteins, such
as Myc and β-catenin (66). Lastly, many different proposed
transcriptional activators, such as JHD2C and canonical
6 J. Biol. Chem. (2021) 296 100097
repressors, were found to interact with HSF1, including NFX1
and CTCF. These proteins may provide mechanistic insight
into how HSF1 mediates gene repression, a largely unexplored
aspect of HSF1 biology that contributes to disease conditions
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through a network of HSF1-repressed genes in cancer (19) and
other gene targets involved in inflammation (20–22, 52).

HSF1 is well known for its role in stress-regulated gene
activation, but it also serves to repress gene expression (19–22,
52). Because of its role as a multi-functional transcriptional
regulator, one HSF1-interacting protein of particular interest is
CCCTC-binding factor (CTCF), a high-confidence interactor
in unstressed, heat shocked, and HD cells (Fig. 2, A–C). CTCF
is a transcriptional regulator that binds DNA and proteins,
including other transcription factors, via eleven zinc fingers, to
coordinate transcriptional regulation across many loci
throughout the genome (67). CTCF also participates in chro-
matin organization, gene insulation, gene activation, and gene
repression by promoting interactions of chromosomal DNA
and recruiting chromatin remodeling enzymes (67–69). CTCF
interacts with several other DNA-binding proteins, including
Y-box–binding protein, multifunctional transcription factor
YY1, and Kaiso, and regulates their function (67). In addition, a
previous HSF1 chromatin immunoprecipitation (ChIP)-seq
study revealed high co-occupancy of CTCF at HSF1-bound
sites (26). Based on the HSF1–CTCF co-occupancy at re-
gions with histone 4 acetylation, but lacking RNA polymerase
II, it was proposed that CTCF may play a role at untranscribed
regulatory elements during heat stress (26). Interestingly,
CTCF also showed high co-occupancy with HSF1 at other
categories of HSF1-bound loci, including promoters of HSF1
J. Biol. Chem. (2021) 296 100097 7
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target genes (26). Because of the HSF1–CTCF interaction
identified in this study, and the previous observation that
CTCF and HSF1 bind at highly overlapping loci (26), we
explored the functional consequences of the CTCF–HSF1
interaction.

A direct interaction between HSF1 and CTCF is stimulated by
acute stress

To independently validate the quantitative CTCF–HSF1
interaction observed from HSF1 IP-MS (Fig. 5A), endogenous
HSF1 was immunoprecipitated from HEK 293T cells trans-
fected with hemagglutinin-tagged CTCF (HA-CTCF) and HA-
CTCF was probed by immunoblotting. HSF1 robustly inter-
acted with CTCF in unstressed cells but did not interact with
the negative control IgG precipitate (Fig. 5B). In addition, the
increased HSF1–CTCF interaction observed in heat-stressed
cells by IP-MS (Fig. 5A) was recapitulated by pull-down of
HA-CTCF in control and heat shock–treated HEK 293T cells,
with which HSF1 co-purified to a greater magnitude in heat
shock conditions (Fig. 5C).

HSF1 harbors multiple domains of distinct function. To
determine which region of HSF1 interacts with CTCF, plas-
mids encoding FLAG-tagged HSF1 truncations were con-
structed (Fig. 5D) and expressed by transfection into 293T
stable HSF1-knockdown cells (Fig. S3A) to prevent hetero-
multimerization with endogenous HSF1. CTCF co-purified
only with HSF1 truncations containing the DBD, whereas
HSF1 ΔN1, lacking the DBD, failed to interact with CTCF
(Fig. 5E). To evaluate whether the interaction with CTCF re-
quires HSF1 that is competent for DNA binding, the critical
Arg residue (R) of the HSF1 “SFVRQ” DNA binding recogni-
tion helix was mutated to Ala (HSF1 R71A). This Arg residue
is necessary for HSF1 DNA binding competence and makes
sequence-specific contacts to the guanine of the nGAAn heat
shock element (HSE) sequence, to which HSF1 binds (70–73).
In stable HSF1 knockdown HEK 293T cells, both wildtype
HSF1 and HSF1 R71A interacted with CTCF under control
and heat shock conditions (Fig. 5F). Similar results were
obtained by comparing HA-CTCF co-purification with WT
and R71A HSF1 in HSF1−/− mouse embryonic fibroblasts
(Fig. S3B). These results indicate that the DNA binding activity
of HSF1 is not required for interaction with CTCF.

To determine if the HSF1–CTCF interaction requires
additional proteins in vivo, an in vitro pull-down using purified
components was conducted. Human, codon optimized
STREP-HSF1 and CTCF-His were expressed in Escherichia
coli and purified by affinity chromatography (Fig. 5E). In an
in vitro STREP pull-down, we observed co-purification of
CTCF in the presence of STREP-HSF1, but not in the absence
of HSF1 (Fig. 5H). This indicates that CTCF and HSF1 interact
directly in vitro in the absence of other mammalian proteins.

CTCF and HSF1 show overlapping profiles of potential
repression targets

Although several studies have explored stress-induced gene
transcription by HSF1, fewer have focused on how HSF1 exerts
8 J. Biol. Chem. (2021) 296 100097
control over basal transcription and what regulatory factors
may affect this. As CTCF may likely exert its regulatory
function at the level of chromatin architecture and the three-
dimensional chromatin structure is largely conserved in
response to heat shock (74), this study focuses on HSF1 and
CTCF in the unstressed state. To begin to understand how
CTCF may influence basal HSF1-mediated transcription,
transcript abundance was analyzed by RNA-seq in HEK 293T
cells during transient siRNA-mediated knockdown of CTCF or
HSF1. This study explored transcriptional changes during
normal growth conditions, during which the CTCF–HSF1
interaction is observed (Fig. 5). Four biological replicates of
each condition were collected and demonstrated strong cor-
relation of transcriptional profiles with Spearman coefficients
greater than 0.95 (Fig. S4A). CTCF and HSF1 knockdowns
successfully and robustly depleted target transcripts (14% and
23% of HSF1 and CTCF mRNA abundance, respectively, were
observed compared to with negative control siScr) and do not
impact partner protein, transcript abundance, or splicing
(Fig. 6A, Fig. S4, B and C). Transcriptional changes of siRNA-
targeted and negative control samples were assessed with
DESeq2, categorizing genes as significantly changed as either
high or low confidence (p < 0.001), unregulated, or unex-
pressed. Genes with a minimum fold change of 1.25 were
considered high confidence calls and are reported here as up-
or down-regulated. Under these conditions, 501 down-
regulated transcripts were observed upon HSF1 depletion;
these could be basal targets for HSF1 activation, although
many are likely regulated in a non–HSF1-dependent manner
(Fig. 6B). Similarly, 316 transcripts were found with higher
abundance in siHSF1-treated cells, some of which may be
HSF1 repression targets (Fig. 6B).

Changes in a battery of established CTCF and HSF1 gene
targets demonstrate that knockdown in these conditions
resulted in predicted changes in target gene expression.
Transcript levels of established HSF1 targets were altered,
including both activation and repression targets. For example,
the abundance of HSF1 activation targets DNAJA1, HSPA1B,
HSPA14, JMJD6, and CKS2 was reduced in siHSF1 treatment
(Fig. 6C). HSF1 repression targets PBLD and CELSR1 were de-
repressed in siHSF1-treated cells (Fig. 6C). Expression of the
MMAA and FCGBP genes, established CTCF repression tar-
gets, is de-repressed in siCTCF-treated cells (69) (Fig. 6C). On
the other hand, activation targets of CTCF such as RAG1 and
FAM131C showed lower mRNA abundance in siCTCF-treated
cells (Fig. 6C). Comparison of the up- and down-regulated
genes in siHSF1 or siCTCF cells revealed a strong overlap,
particularly for genes with potential HSF1 repression.
Although 94 of the 501 down-regulated genes in siHSF1-
treated cells were shared with siCTCF-treated cells, 124 of
the 316 up-regulated genes in siHSF1 cells were up-regulated
also in the absence of CTCF (Fig. 6D). To assess if the indi-
vidual genes shared in siHSF1 and siCTCF treatments were
changed to a similar magnitude, the transcriptional changes of
potential activation and repression targets were compared.
The Pearson correlation of potential repression targets was
higher than all detected transcripts (Fig. S4D) and more
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correlated than potential activation targets, showing a Pearson
correlation of 0.820 versus 0.381 (Fig. 6E). The strongly
correlating changes in mRNA levels in siHSF1 and siCTCF
cells likely reflects the importance of CTCF in preparing
chromatin architecture for transcriptional regulation. In
addition, the physical interaction of HSF1 and CTCF under
non-stress and stress conditions demonstrates the importance
of controlling HSF1 and its interactome in both physiological
and pathophysiological conditions.
Discussion

The regulation of HSF1 in response to acute stress has been
studied since the discovery of the heat shock response in the
early 1960s (75). More recently, the dysregulation of HSF1 and
the crucial roles this stress-protective transcription factor plays
in the pathophysiological contexts of both neurodegenerative
disease and cancer have been of great interest (18, 19, 33).
Studies have shown the diminution in HSF1 levels in neuro-
degenerative diseases including HD, Alzheimer’s disease, and
Parkinson’s disease and the dysregulation of HSF1 target gene
expression (33, 59, 76–78). In HD, HSF1 genome-wide binding
and transcriptional network regulated by HSF1 are disrupted
and impaired HSF1 function further exacerbates chronic
protein misfolding (28, 33, 79). In contrast, in cancer, high
levels of active, nuclear HSF1 support malignancy by coordi-
nating a transcriptional signature partially distinct from heat
shock, including targets that regulate cell cycle progression,
chaperone production, and repression of apoptotic factors
(19). A more thorough understanding of the regulation of
HSF1 could offer new insights into how HSF1 is altered in
different disease states. Because one major mechanism for
HSF1 regulation is driven by protein–protein interactions
(22, 24, 50, 51, 54), this study explores how the networks of
HSF1-interacting proteins are altered in control conditions
and those of heat shock and chronic protein misfolding such as
that observed in HD. In addition, in contrast to previous
HSF1-proteomics studies, this study utilized mouse cells
derived from the striatum of the brain, the area most affected
in HD, and therefore may reflect regulatory interactions spe-
cific to cells in the central nervous system in a normal context
and in disease.

This study found a highly diverse group of HSF1-interacting
proteins with broad cellular functions. Overall, HSF1 interacts
with more proteins in response to acute or chronic stress
compared with basal conditions, where many of these stress-
induced interactions are shared between heat shock and HD
but are of lower magnitude in HD. One such protein is serine
threonine kinase (STK3), which is activated by pro-apoptotic
stimuli; STK3 showed an � sixfold reduced interaction in
HD compared with control cells and interacted with HSF1 �
tenfold more in acute heat shock than HD; HSF1 is known to
be regulated by various post-translational modifications,
and WT HSF1 or R71A HSF1, harboring a mutation that abrogates HSF1 DNA
antibody. G, Coomassie-stained SDS-PAGE gel of purified STREP-HSF1 and
together with STREP-HSF1, followed by immunoblotting with anti-CTCF and a
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including phosphorylation events, and the role of STK3 in
modulating HSF1 is currently unexplored. In addition, chibby
family member 1 (CBY1) was identified in our study in all
conditions tested and in a previous unbiased, multi-protein
interactome study (63); CBY1 is known to interact with and
regulate several other proteins, including β-catenin and thy-
roid cancer-1 (TC-1) (80). Further investigation of HD-specific
interactions may reveal new ways that HSF1 regulation is
altered in chronic protein misfolding stress. Interestingly,
HSF1 in HD was found to interact with several proteins
involved in DNA repair including SMC5 and SMC6, XRCC5,
and PARP12. DNA repair pathways have been implicated in
the advancement and onset of HD and other trinucleotide
repeat diseases as they can contribute to the further expansion
of the disease-causing trinucleotide tract (81, 82). Investigation
of these protein interactions may reveal a role for HSF1 in
genome integrity in HD as previously shown for mammary
tumors (54). Another protein of interest identified in HD
conditions in this study is nuclear export mediator factor
(NEMF), a component of the ribosome QC complex. In yeast,
translational stress activates HSF1 in a manner distinct from
heat shock, and the highly conserved yeast homolog of NEMF,
Tae2, is critical for the transmission of translational stress to
yeast HSF (83). Data described here suggest that the HSF1–
NEMF interaction, and the potential role this interaction
serves in the RQC-stress response pathway, may be conserved
in higher eukaryotes. In addition, the possible functional
consequence of the interaction of HSF1 with pre-mRNA
processing factors observed by us (PRP8, PRP17), and PRP8
by others (50), has yet to be explored.

Although many chaperone proteins including Hsp70,
Hsp90, and subunits of the TRiC–CCT complex were detected
in the HSF1 immunoprecipitation, most were not sufficiently
enriched in the HSF1 IP over the negative control IgG IP to
meet our strict threshold. This may, in part, be due to the low
affinity of the HSF1-chaperone interactions described. For
instance, a recent study found that HSF1 only interacts with a
subset of Hsp90 conformations and thus the overall affinity of
HSF1 for endogenous HSP90, which is sampling many
different conformations, is relatively weak (84). A similarly
low-affinity interaction of yeast HSF1 with the CE2 region of
Hsp70 was biochemically characterized (10). Furthermore,
multiple Hsp70-binding sites have different affinities for hu-
man HSF1, the interaction of which functions to unwind HSF1
oligomers (85). Lastly, the profound technical differences in
HSF1 IP-MS techniques used in this study as compared with
those studies optimized for the identification of chaperone
interacting proteins (86) could certainly contribute to the
relatively small number of HSF1-interacting chaperone pro-
teins identified in this study.

It is currently unclear why and how HSF1 interacts
with more proteins in response to stress, but this could be
a function of its oligomerization, nuclear localization, or
binding, followed by HA pull-down and immunoblotting with anti-HSF1
His-CTCF used in H. H, in vitro STREP purification of His-CTCF alone or
nti-HSF1 antibodies.
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stress-induced post-translational modifications that drive
specific regulatory interactions. For example, in the case of
CTCF, a nuclear protein, the retention of HSF1 in the nucleus
and increased level of chromatin-bound HSF1 would explain
the increased interaction in response to acute heat stress as
compared with unstressed cells. Whether these other, unex-
plored HSF1 interactors alter HSF1 function remains to be
determined. What is clear is the distinct HSF1-interacting
networks in unstressed, heat shock, or HD cells; future
studies of these protein interactors may reveal new facets of
HSF1 biology or new HSF1 regulatory mechanisms. In
particular, determining if any of the observed interactions are
striatum specific may provide insight into how HSF1 is regu-
lated in the striatum, the area of the brain that is most affected
in HD (35).

One highly interesting HSF1-interacting protein observed
was CTCF, which is primarily known for its role in chromatin
organization and transcriptional repression (68, 87). CTCF and
HSF1 interact in vivo and directly in vitro, and the potential
repression targets of CTCF and HSF1 overlap more strongly
than activation targets. A previous study found a high occu-
pancy of CTCF at HSF1-bound, particularly at untranscribed
regions (26). A more recent study found that, among known
and other proposed coregulators, CTCF is detected at HSE-
bound HSF1 but not at mutated HSEs (88). Based on these
innovative studies, the direct protein interaction observed in
our study, and the strong correlation of upregulated genes in
HSF1 or CTCF knockdown, we suggest that CTCF may be
important for targeting HSF1 to the CTCF-rich regions in the
chromatin and in HSF1-mediated gene repression.

CTCF could affect HSF1-mediated transcription in several
ways, including establishing and altering chromatin looping
interactions between transcription regulatory elements such as
promoters, enhancers, and insulators. Altered chromatin
interaction probabilities could, in turn, affect RNA Pol II
regulation at connected distal regions likely via other mecha-
nisms. It remains to be determined whether CTCF can recruit
HSF1 to CTCF-primed regions accessible for transcription
factor binding, or by HSF1 recruiting CTCF at HSE-bound
sites (26, 67, 88–91). CTCF can mediate a versatility of
changes in chromatin architecture by preventing the
encroachment of heterochromatin and by recruiting chro-
matin remodeling proteins, including enzymes catalyzing his-
tone acetylation or methylation (67, 68, 92, 93). Like many
transcription factors, HSF1–DNA binding depends on the
chromatin architecture; in some cases, protein interaction
partners of HSF1 influence these chromatin changes (25, 94).
HSF1 interacts with replication protein A, and this complex
recruits histone chaperone FACT, resulting in opening of the
chromatin structure (50). In addition, the transcriptional
activation domain of HSF1 interacts with BRG1, a SWI/SNF
chromatin remodeling complex, and this is important for the
production of full-length Hsp70 (65, 95).

Although this study does not encompass how CTCF may
affect genome-wide binding of HSF1, it raises questions of the
purpose of the HSF1–CTCF interaction. Whether CTCF is
involved in facilitating HSF1 DNA binding through protein-
12 J. Biol. Chem. (2021) 296 100097
protein interactions, or via chromatin remodeling, remains
to be determined. Interestingly, CTCF has been implicated in
regulation of DNA binding of other proteins, including TAF3
(96), which was previously shown to be necessary for chro-
matin architecture and HSF binding in Drosophila cells (97).
Future studies will determine whether CTCF modulates HSF1
target gene transcription, but our data suggest that the
involvement of CTCF may be, in part, for HSF1 basal
repression targets. Future studies may also address how HSF1
stress-induced transcription is affected by CTCF and what
other factors affect this protein–protein interaction, like post-
translational modifications. The repressive function of HSF1
has become increasingly important in recent light of the tar-
gets repressed by HSF1 that contribute to disease, including
inflammation, apoptosis, and protein misfolding diseases, such
as Tau (19–22, 52, 98–100).

Experimental Procedures

Cell culture and cell lines

Cell lines used in this study were as follows: mouse-derived
striatal cells STHdh(Q7) and STHdh(Q111) (Coriell Cell Re-
positories), 293T human embryonic kidney (HEK) cells
(ATCC CRL-1573), stable shScr and shHSF1 HEK 293T cells
(generated in this study), and HSF1−/− mouse embryonic
fibroblast (MEF) cells (from Dr Ivor Benjamin, Medical Col-
lege of Wisconsin). Striatal cells were maintained at 33 �C in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) and 91 μg mL−1 Normocin
(InvivoGen). HEK 293T cells were grown at 37 �C in DMEM
supplemented with 10% FBS and 91 μg mL−1 Normocin.
HSF1−/− MEF cells were grown at 37 �C in DMEM supple-
mented with 10% FBS, 0.1 mM nonessential amino acids, 100
U ml−1 penicillin/streptomycin, and 55 μM β-mercaptoetha-
nol. Striatal cells (STHdhQ7 and STHdhQ111) were authen-
ticated by immunoblotting with mHtt–specific antibody
(MAB2166) (33). The HSF1−/− MEF cells were authenticated
by immunoblotting for HSF1 with multiple anti-HSF1 anti-
bodies (Enzo 10H8, and Bethyl [5]).

Heat shock

Cells treated with heat shock were incubated at 42 �C for
30 min and compared with cells grown at normal growth
temperatures (33 �C for StHdh cells, 37 �C for 293T and MEF
cells).

Endogenous HSF1 immunoprecipitation

For HSF1 IP-MS analysis, endogenous HSF1 was immu-
noprecipitated from cells lysed in IP buffer (20 mM HEPES,
5 mM MgCl2, 1 mM EDTA, 100 mM KCl, 0.03% NP-40, 1%
Triton X-100) supplemented with 1X HALT protease and
phosphatase inhibitor cocktails (ThermoFisher). Protein ly-
sates were cleared with centrifugation (14,000 r.c.f., 4 �C,
15 min), and protein concentrations were quantified with
bicinchoninic acid assay method (Pierce). Samples were
normalized to 1 mg ml−1 and precleared with DynaG beads for
3 h. DynaG magnetic beads covalently cross-linked to either
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negative control IgG (Bethyl) or HSF1 (Bethyl) (5) were added
to samples and incubated overnight at 4 �C rotating. Beads
were washed four times with IP buffer and eluted with 50 μl of
TES (10 mM Tris pH 7.5, 1 mM EDTA, 0.5% (w/v) SDS) at
65 �C, 10 min. Eluates were snap frozen in liquid nitrogen until
being processed by mass spectrometry, immunoblot, or silver-
stained gel analysis. For HSF1 immunoprecipitation not used
for mass spectrometry, the protocol above was identical except
DynaG beads were not covalently linked to antibodies. Instead,
antibodies were incubated with lysates overnight, and subse-
quently, beads were added and incubated for 3 h before the
washes and elution. HA and FLAG pull-downs were per-
formed in the same manner using anti-HA magnetic beads
(Thermo Scientific) or anti-FLAG M2 magnetic beads (Sigma).
HA pull-downs were eluted in 0.1 M glycine pH 2.0, and
samples were neutralized using 1M Tris pH 8.5 or TES; FLAG
pull-downs were eluted in TES.

Covalent linkage of antibody to beads

To couple the beads and antibody, DynaG beads were
incubated with IgG or HSF1 in phosphate buffered saline
(PBS) for 3 h at 4 �C (30 μl beads per 20 μg antibody, 1 ml
PBS). Antibody-coupled beads were washed three times with
0.2 M sodium borate pH 9.0 and cross-linked with freshly
made 20 mM dimethylpimelimidate dissolved in 0.2 mM so-
dium borate pH 9.0. Cross-linking was performed for 40 min
at room temperature with rocking, followed by three washes
with acid wash buffer (0.58% v/v acetic acid, 150 mM NaCl)
and three washes with ice cold PBS. Beads were prepared and
used the same day for subsequent immunoprecipitation
experiments.

Mass spectrometry

Samples were diluted in TES and 1X Laemmli/SDS buffer,
which were supplemented with 1 μl 200 mM DTT each, and
heated at 70 �C for 10 min. Forty-nine microliters of each
sample was loaded onto an Invitrogen NuPAGE 4% to 12%
SDS-PAGE gel (for 1D protein separation) and run for
approximately 5 min to electrophorese all proteins into the gel
matrix. The entire molecular weight range was then excised in
a single gel band and subjected to standardized in-gel reduc-
tion, alkylation, and tryptic digestion. Following lyophilization
of the extracted peptide mixtures, samples were resuspended
in 12 μl of 2% acetonitrile/1% TFA supplemented with 12.5
fmol μl−1 yeast ADH. From each sample, 3 μl was removed to
create a QC pool sample.

Quantitative LC-MS/MS was performed using 4 μl of each
sample, using a nanoACQUITY UPLC system (Waters Corp)
coupled to a Thermo Q Exactive HF high resolution, accurate
mass tandem mass spectrometer (Thermo) via a nano-
electrospray ionization source. Briefly, the sample was first
trapped on a Symmetry C18 20 mm × 180 μm trapping col-
umn (5 μl min−1 at 99.9/0.1 v/v water/acetonitrile), after which
the analytical separation was performed using a 1.8 μm
ACQUITY HSS T3 C18 75 μm × 250 mm column (Waters
Corp) with a 90-min linear gradient of 5% to 30% acetonitrile
with 0.1% formic acid at a flow rate of 400 nl min−1 with a
column temperature of 55 �C. Data collection on the Q
Exactive HF mass spectrometer was performed in a data-
dependent acquisition mode with a r = 120,000 (at m/z 200)
full MS scan from m/z 375 to 1600 with a target automatic
gain control value of 3 × 106 ions followed by 15 MS/MS scans
at r = 30,000 (at m/z 200) at a target automatic gain control
value of 5 × 104 ions and 45 ms. A 20-s dynamic exclusion was
employed to increase depth of coverage. The total analysis
cycle time for each sample injection was approximately 2 h.

Following 19 total ultraperformance liquid chromatog-
raphy–MS/MS analyses (excluding conditioning runs, but
including four replicate QC injections), data was imported into
Rosetta Elucidator v 4.0 (Rosetta Biosoftware, Inc), and ana-
lyses were aligned based on the accurate mass and retention
time of detected ions (“features”) using PeakTeller algorithm in
Elucidator. Relative peptide abundance was calculated based
on area under the curve of the selected ion chromatograms of
the aligned features across all runs. The MS/MS data were
searched against the SwissProt Mus musculus database
(downloaded in May 2017) with additional proteins, including
yeast ADH1, bovine serum albumin, as well as an equal
number of reversed-sequence “decoys” for false discovery rate
determination. Mascot Distiller and Mascot Server (version
2.5, Matrix Sciences) were utilized to produce fragment ion
spectra and to perform the database searches. Database search
parameters included fixed modification on Cys (carbamido-
methyl) and variable modifications on Meth (oxidation) and
Asn and Gln (deamidation). After individual peptide scoring
using the PeptideProphet algorithm in Elucidator, the data
were annotated at a 1% peptide false discovery rate.

Four microliters of peptide digest (�30% of each sample)
were analyzed by ultraperformance liquid chromatography-
tandem mass spectrometry (LC-MS/MS). A QC pool con-
taining an equal mixture of each sample was analyzed first,
after every fifth sample, and end of the sample set (four times
total). Individual samples were analyzed in a random order.
Next, data were imported into Rosetta Elucidator v 4.0 and all
LC-MS/MS runs were aligned based on the accurate mass and
retention time of detected ions (“features”), which contained
MS/MS spectra using PeakTeller algorithm and intensity-
scaled based on a robust mean (10%) normalization of the
identified features. The overall dataset had 495,664 quantified
isotope (peptide) groups. In addition, 330,924 MS/MS spectra
were acquired for peptide sequencing by database searching
(see Experimental Procedures). Following database searching
and peptide scoring using the PeptideProphet algorithm, the
data were annotated at a 1% peptide false discovery rate,
resulting in identification of 12,497 peptides and 1691 pro-
teins. All proteins were intensity-scaled to levels of HSF1 and
subsequent analyses were from these normalized protein
levels.

Identification of hit proteins

To remove non-specific proteins or proteins with poor
peptide coverage from consideration, only proteins with a
J. Biol. Chem. (2021) 296 100097 13
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twofold or higher abundance in the HSF1 over the IgG IP (p <
0.05) and a ProteinTeller probability of ≥0.80 were used in
subsequent analysis. Q7 IgG was used as a negative control for
Q7 control HSF1 (unstressed) and Q7 HS HSF1 (heat shock);
Q111 IgG was used for Q111 HD. t tests were calculated on
log2-transformed data for each of these comparisons using a
two-tailed heteroscedastic t test in Excel (Microsoft). Of the
1691 proteins identified, 378 (22.4%) passed the aforemen-
tioned cutoff requirements.

Generation of 293T HSF1 stable knockdown cells

Stable HSF1 knockdown cells were generated following the
second-generation Addgene protocol. Briefly, 293T cells were
transfected with psPAX2 (viral packaging), VSVG (viral en-
velope) plasmids, and either non-targeting sequence shScr
plasmid (pLKO.1) or shHSF1 plasmid (TRCN0000007480,
Sigma). Transfection was completed with Lipofectamine
LTX Reagent (ThermoFisher) following protocol instructions
using 21 μg PAX2, 7 μg VSVG, and 28 μg Sigma Mission
TRC1 lentiviral shRNA plasmids. Approximately 18 h post
transfection, the media was replaced with fresh media.
Approximately 48 h post transfection, viral particles were
harvested. Supernatant containing lentiviral particles was
filtered with a 0.45-μm PES filter to remove any cells from viral
production.

Virus-containing, cleared supernatant was applied to 293T
cells in standard grown conditions. Twenty-four hours after
viral particle addition, media was changed to DMEM con-
taining 0.25 μg/ml puromycin for selection. This concentra-
tion of puromycin was determined to be the lowest
concentration at which 100% of parental HEK 293T cells
would die after 3 days of treatment. After 2 weeks of puro-
mycin selection, no more cell death was observed. shScr and
shHSF1 stable knockdowns were analyzed for loss of HSF1
protein to assess knockdown.

Transfection of plasmid DNA and transient siRNA knockdown

Plasmid transfections in 293T cells were completed using
Lipofectamine LTX (Invitrogen) according to the manufac-
turer’s protocol (MAN0007822) and were incubated for 24 h
before immunoprecipitation experiments. Plasmid trans-
fections in HSF1−/− MEFs with electroporation used the SE
Cell Line 4D-Nucleofector (Lonza) with 2 × 106 cells per
transfection and 2 μg plasmid DNA according to the manu-
facture’s protocol. Cells were used for immunoprecipitation
experiments 24 h after transfection.

Silencing RNAs (siRNA) were obtained from Thermo Fisher
Scientific (Silencer Select, assay ID s6950 and s20966 for hu-
man HSF1 and CTCF, respectively) and Qiagen (non-targeting
siRNA) for negative control scramble (1022076). Transient
siRNA knockdowns were completed with Lipofectamine
RNAiMAX according to the manufacture’s protocol using 25
pmol of siRNA per well of a 6-well plate. The duration of
transient knockdown was 48 h before analysis of transcript
abundance with qRT-PCR, DNA binding with chromatin
immunoprecipitation-qPCR, or immunoblot analysis.
14 J. Biol. Chem. (2021) 296 100097
RNA extraction, sequencing, and analysis

RNA was extracted and purified from mammalian cells
after 48 h of silencing (four biological replicates for each
condition) using RNEasy extraction kit (Qiagen) according
to the manufacturer’s instructions using QIAshredder col-
umns for homogenization. Library preparation and Illumina
sequencing were completed by GeneWiz using the Total
RNA process with polyadenylation selection using 2 μg of
RNA as input.

Quality of sequencing was assessed with FASTQC and
showed samples had sequencing depth of 26 to 36 M reads per
sample. Reads were filtered for quality and mapped to the
human genome (hg19) using TopHat2 (101). Significant
changes in mRNA levels between siRNA treatments were
called with DESeq2 (102) with a threshold of p > 0.001.
Significantly changed genes were broken into high confidence
(HC) changes and low confidence (LC) changes using fold
change 1.25 as a cutoff. Fold change of HC genes were
increased (UpHC) or decreased (DownHC) by 1.25 or more
with a p value < 0.001. Fold changes of LC genes were
increased (UpLC) or decreased (DownLC) by less than 1.25
with p < 0.001. Genes with a low read count (<0.1 normalized
reads in all conditions) were categorized as UnExp. Genes with
a detectable mRNA expression (minimum of 0.1 normalized
reads in any condition) but no significant changes detected
with DESeq2 were categorized as unregulated (UnReg).
Downstream analysis was conducted only for transcripts with a
minimum normalized read count of 10 per gene. Browser
images were generated using Integrated Genomics Viewer
(103) with density normalized mRNA counts. The raw FASTQ
files and density normalized BigWig files can be accessed via
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.
gov/geo/) using the access code GSE155541.

Protein purification of HSF1 and CTCF

Plasmids were constructed containing STREP-tagged HSF1
or His6-tagged CTCF (pET-15b, Addgene) and were codon-
optimized for bacterial expression. Plasmids were trans-
formed into BL21 (DE3) E. coli. Overnight cultures originating
from a single colony were diluted 1:100 and grown to log phase
at an OD600 of �0.5 at which point protein expression was
induced by addition of 1 mM isopropyl 1-thio-β-D-gal-
actopyranoside overnight at 15 �C. Cells were harvested by
centrifugation (10,000 r.c.f., 10 min, 4 �C). For STREP-tagged
purification, bacterial cell pellets were lysed with Buffer NP (50
mM NaH2PO4, 300 mM NaCl, pH 8.0) supplemented with
HALT protease inhibitors (Thermo Fisher). Cells were lysed
with sonication on ice (20-s bursts, 80 s total processing time),
and lysates were cleared with centrifugation (20,000 r.c.f., 15
min, 4 �C) and applied to a StrepTrap column (GE Heath
Sciences) using an Akta Pure FPLC (GE Health Sciences) at a
flow rate of 0.25 ml min−1, washed with six column volumes of
Buffer NP until the A280 was flat, and bound proteins were
eluted with Buffer NP supplemented with 2.5 mM desthio-
biotin. Fractions containing STREP-HSF1 were analyzed with
SDS-PAGE and buffer exchanged using an Amicon Ultra
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Centricon (molecular weight cut-off of 10,000 Da) into buffer
containing 25 mM HEPES pH 7.5 and 150 mM NaCl. For His-
tagged purification, cells were resuspended in NiNTA Lysis
Buffer (50 mM HEPES pH 7.5, 300 mM NaCl, 20 mM imid-
azole HCl) and homogenized with three passages through
French pressure cell at >12,000 p.s.i. Cell lysates were cleared
with centrifugation as above and incubated with 2 ml of bed
volume of Ni-NTA Agarose (Qiagen) for 2 h, 4 �C, rocking.
Beads were washed four times with NiNTA Lysis Buffer sup-
plemented with an additional 20 mM imidazole and bound
proteins eluted with NiNA Elution Buffer (50 mM HEPES pH
7.5, 300 mM NaCl, 250 mM Imidazole HCl). Fractions were
analyzed with SDS-PAGE and immunoblot. His-CTCF was
buffer exchanged using an Amicon Ultra Centricon (molecular
weight cut-off of 10,000 Da) into buffer containing 25 mM
HEPES pH 7.5, 150 mM NaCl, and 1 μM ZnCl2 (104).

HSF1–CTCF in vitro binding assay

Binding assays were performed in 1 ml of Buffer NP (50 mM
NaH2PO4, 300 mM NaCl, pH 8.0) with 5 nM of purified His-
CTCF alone or STREP-HSF1 and His-CTCF together. Proteins
were incubated for 1 h at 4 �C with rocking and 2 μl of
MagStrep type 3 XT resin (IBA) were added and incubated for
30 min at 4 �C with rocking. Beads were washed five times
with Buffer NP; interacting proteins were eluted with 25 mM
desthiobiotin and analyzed with immunoblot.

Immunoblot analysis

Protein extracts were electrophoresed on 4% to 20% SDS-
PAGE and transferred to nitrocellulose membranes (Bio-Rad
0.2 μm) using Transblot Turbo (Bio-Rad) in Tris–glycine
buffer (25 nM Tris base, 200 mM glycine) at 25 V. Immuno-
blots were blocked for 1 h at room temperature with 5% (w/v)
milk in PBS supplemented with 0.25% Tween 20 (PBST).
Primary antibodies were added to immunoblots (1:1000 in
2.5% milk in PBST) and incubated overnight at 4 �C with
rocking. Immunoblots were washed four times, 15 min each in
PBST; horseradish peroxidase–conjugated secondary anti-
bodies were added at a 1:5000 dilution in 2.5% milk in PBST;
after a final wash (4 times, 15 min each) in PBST, blots were
exposed with SuperSignal Chemiluminescent substrate
(Thermo Scientific). The primary antibodies used in this study
were as follows: anti-HSF1 (Bethyl) (5, 33) and (10H8, Enzo),
anti-CTCF (188408 and 37477, Abcam), anti-HA (Y-11, Santa
Cruz), anti-FLAG (M2, Sigma), and anti-GAPDH (6C5, Santa
Cruz).

Statistical analysis

p-values were obtained using a Student’s t test comparing
means, using two-tailed, unpaired t test for samples with
heteroscedastic variance. Error bars shown represent mean ±
SEM (standard error of the mean). Reported p-values corre-
spond to the following: *p < 0.05, **p < 0.01, ***p < 0.001; ns,
not significant. Pearson correlation and corresponding p-value
for the correlation was calculated in MATLAB and assessed
with Rosner’s or Grubb’s tests.
Data availability

All data supporting the findings of this publication can be
found within the supporting information and the primary pub-
lication except those noted here. Fingerprinted proteomics data
can be found atMassIVE under the datasetMSV000086045. The
raw FASTQ files and density normalized BigWig files can be
accessed via Gene Expression Omnibus (GEO; https://www.
ncbi.nlm.nih.gov/geo/) using the access code GSE155541.
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