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Background and purpose   Joint replacement with metal-on-
metal (MOM) bearings have gained popularity in the last decades 
in young and active patients. However, the possible effects of 
MOM wear debris and its corrosion products are still the subject 
of debate. Alongside the potential disadvantages such as toxicity, 
the influences of metal particles and metal ions on infection risk 
are unclear.

Methods   We reviewed the available literature on the influ-
ence of degradation products of MOM bearings in total hip 
arthroplasties on infection risk. 

Results   Wear products were found to influence the risk of 
infection by hampering the immune system, by inhibiting or 
accelerating bacterial growth, and by a possible antibiotic resis-
tance and heavy metal co-selection mechanism. 

Interpretation   Whether or not the combined effects of MOM 
wear products make MOM bearings less or more prone to infec-
tion requires investigation in the near future. 

 

Many young patients with painful coxarthrosis want to return 
to a high level of activity and require an implant that provides 
durability. The low wear rates of metal-on-metal (MOM) 
bearings have led to a resurgence in the use of MOM bear-
ings (Wagner and Wagner 2000, Silva et al. 2005, Pollard et 
al. 2006, Vendittoli et al. 2007, Delaunay et al. 2008). 35% of 
all prostheses in the United States in 2006 (Bozic et al. 2009) 
and 16% of all prostheses implanted in Australia from 1999 
through 2007 had MOM bearings (Graves et al. 2008). 

Metal alloys used in MOM bearings degrade through wear, 
from corrosion, or by a combination of the two (Yan et al. 
2006, Jacobs et al. 2008). Consequently, MOM bearings 
produce nanometer- to submicrometer-sized metal particles 
(Campbell et al. 1996, Doorn et al. 1998). The high number 

of these very small particles presents a large cumulative sur-
face area for corrosion. The biological effects of these parti-
cles and their corrosion products in the human body are for 
the most part unclear. Since the renewed interest in MOM 
bearings, extensive research has been done to determine the 
consequences of local and systemic exposure to wear parti-
cles and accompanying biologically active corrosion prod-
ucts (Amstutz and Grigoris 1996). It is well known that metal 
debris can induce pathological changes such as the release 
of inflammatory cytokines from macrophages, histiocytosis, 
fibrosis, and necrosis (Basle et al. 1996, Granchi et al. 1998, 
Caicedo et al. 2008, 2009). Metal debris is also thought to 
be associated with hypersensitivity and osteolysis (Hallab et 
al. 2000, 2010, Goodman 2007b, Carr and DeSteiger 2008, 
Huber et al. 2009). However, there is very little literature 
on the bacteriological effects of these degradation prod-
ucts (Anwar et al. 2007, Hosman et al. 2009). It is therefore 
unclear whether they can influence the risk of infection. 

The Australian and New Zealand joint registries have 
shown that between 9% and 15% of all total hip arthroplasty 
(THA) revisions are carried out because of infections related 
to the primary prosthesis (Rothwell et al. 2007, Graves et al. 
2008). In cases of infection, bacteria adopt a biofilm mode 
of growth on the surface of the prosthesis, thus increasing 
the antibiotic resistance and resulting in major difficulties 
in treatment (Trampuz and Widmer 2006). Removal and 
replacement of an infected implant is usually required to 
eliminate the infection (Bozic and Ries 2005, Vincent et al. 
2006). Recent research has suggested that particulate debris 
of any composition promotes bacterial growth by providing 
a scaffold for bacterial adhesion and biofilm growth (Anwar 
et al. 2007). On the other hand, high concentrations of metal 
ions have been shown to have bacteriostatic properties 
(Hosman et al. 2009). 
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Considering the paucity of publications on the effects of 
MOM particles on infection, we performed a review of the 
literature on the influence of MOM wear particles and their 
corrosion products on the risk of infection. 

MOM bearings
History. First-generation MOM hip bearings include pros-
theses developed in the 1960s, such as the McKee-Farrar, the 
Ring, the Stanmore, and the Sivash prostheses (McKee and 
Watson-Farrar 1966, Ring 1968, Scales and Wilson 1969, 
Sivash 1969). Implants from this era survived for more than 
25 years because of low wear rates and minimal osteolysis 
(Amstutz and Grigoris 1996). An analysis of 253 Ring MOM 
hip arthroplasties revealed a cumulative survival rate of 60% 
after 21 years (Bryant et al. 1991). The McKee-Farrar prosthe-
sis performed equally well compared to the Ring arthroplasty, 
up to 26 years after initial implantation (Schmalzried et al. 
1996). However, alongside these encouraging durability 
results, first-generation MOM studies also demonstrated metal 
wear debris in tissues adjacent to the implants, particularly in 
prostheses with loose components or impingement (Howie 
1990). Furthermore, early MOM designs turned out to cause 
frequent early cup loosening (Schmalzried et al. 1996). 

First-generation MOM articulations were commonly used 
until the mid-1970s. Most were abandoned in favor of metal-
on-polyethylene (MOP) articulation. The main reason for 
this change was the introduction of the Charnley low-friction 
arthroplasty (Charnley 1972), which is still one of the most 
extensively documented hip prostheses in the literature (Cal-
laghan et al. 2000, 2004, Wroblewski et al. 2007). Long-term 
results of first-generation MOM implants had boosted their 
popularity and led to the development of second-generation 
MOM implants in the early 1980s. In addition, polyethylene 
wear from MOP implants was then hypothesized to cause 
osteolysis around the implant (Wroblewski 1994, Oparaugo 
et al. 2001), which stimulated renewed interest in alternative 

bearings lacking a MOP interface, such as the second-genera-
tion MOM bearings (Brown et al. 2002). 

Second-generation MOM implants have an improved bear-
ing interface and are composed of alloys with an increased 
metal hardness. Newly produced bearings therefore have sub-
stantially lower rates of wear than highly cross-linked poly-
ethylene (Fisher et al. 2006). On the whole, volumetric wear is 
reduced by 20- to 100-fold compared to MOP implants (Silva 
et al. 2005), suggesting that second-generation MOM prosthe-
ses may considerably reduce osteolysis (Sieber et al. 1999). 
Although medium- and long-term clinical results with MOM 
bearings appeared to have demonstrated excellent durability, 
recent studies have shown that MOM bearing systems are not 
refractory to osteolysis (Korovessis et al. 2006). 

Alloys. For implant alloys worldwide, two nomenclatures 
are used in parallel to each other (Table 1). First of all, ASTM 
standards with a capital “F” (medical devices) are practiced 
mainly in the USA (Holzwarth et al. 2005). Secondly, ISO 
standards are accepted in the rest of the world. The 2 approved 
cobalt-chromium (Co-Cr) alloys contain almost similar 
amounts of alloying elements. However, there is no informa-
tion available on the exact content of certain elements such 
as nickel (Ni) and iron (Fe), as these standards only report 
maximum amounts.

Wear products
Wear. Wear in bearings can result in scratching and pound-
ing of the surfaces, and eventually erosion of the material. 
Wear and corrosion are probably the major causes of release 
of metal into the tissues of MOM patients, and this poses a 
major concern regarding the use of MOM articulating devices. 
Linear wear rates range from 5 to 25 µm/year and are depend-
ent on a multitude of factors such as the type of implant and 
positioning (Onda et al. 2008, Shimmin et al. 2008, Williams 
et al. 2008b) (Table 2). 

Metal particles. Currently, tribological research is being 
conducted on the exact process of particle generation. Recent 
tribological investigations have revealed that a nano-crystal-
line layer 250–400 nm thick is formed on the MOM implant 
surfaces, containing (amongst others) proteins from the inter-
facial medium (Pourzal et al. 2009). Cracking of this nano-
crystalline layer due to surface fatigue has been suggested 
to be the main mechanism of generation of wear particles 
(Buscher et al. 2005). Abrasive particles of MOM prostheses 
can cause local damage, resulting in an accelerated release of 
metal particles and ions (Yan et al. 2009). 

Germain et al. (2003) emphasized that the nature, size, and 
amount of particles are important determinants of the biologi-
cal effects of wear debris on cells in vitro. The reaction of the 
body is dependent on the characteristics of the particles (Table 
3). Size analysis of particles isolated from failed arthroplasties 
has revealed a mean size of 660 nm for polyethylene particles 
in patients with MOP bearings (Minoda et al. 2008) and a size 
range from 51 to 116 nm for MOM debris (Doorn et al. 1996). 

Table 1. Chemical composition and mechanical properties of 
CoCr28M06 alloy required by standards ASTM F75 and ISO 
5832-4 

 
 ASTM F75  ISO 5832-4 

Rm a (MPa) 655 665
Rp 0.2% b (MPa) 450 450
Cobalt, Co balance to 100% balance to 100%
Chromium, Cr 27–30% 27–30%
Molybdenum, Mo 5.0–7.0% 4.5–7.0%
Nickel, Ni < 0.5% < 1%
Iron, Fe < 0.75% < 1%
Silicon, Si < 1% < 1%
Manganese, Mn < 1% < 1%
Carbon, C < 0.35% < 0.35%

a Tensile strength is the stress at which a material breaks or 
  permanently deforms. 
b Yield strength is the stress at which a material begins to 
  deform plastically. 
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Metal ions. The first report of visible corrosion of an ortho-
pedic Vitallium implant (consisting of 60% Co and 20% Cr) 
was published by Weightman et al. in 1969. Before this clini-
cal finding, it was generally accepted that Vitallium alloys 
provided adequate corrosion resistance (Scales et al. 1961). 
However, generation of metal ions is also evident in modern, 
more corrosion-resistant MOM alloys. 

Various mechanisms of corrosion can cause the release of 
metal ions. One is fretting corrosion due to the movement of 
articulating surfaces causing damage to one or both surfaces. 
Disruption of the passive oxide layer causes direct contact 
with the metal surface, promoting fretting corrosion (Figure), 
which can be enhanced further by the presence of adhering 
microorganisms (Muthukumar et al. 2003). 

Metal ions of different valencies are released from Co-Cr 
alloys and their effects vary with the type of oxide compound 
they form (Virtanen 2006) (Table 4). Co2+ and Cr3+ ions pre-
dominate under physiological conditions because these ions 
are the most stable at neutral pH. However, no stable Co oxide 
exists and thus formation of soluble Co ions instead of solid 
Co oxides is favored. On the other hand, Cr3+ oxides are stable 
under physiological conditions. In vitro models have shown 
that the toxic effects of Co-Cr are probably due to Co2+ ions 
(Rae 1975, Garrett et al. 1983). 

Local concentrations
Metal ions may spread throughout the body. Ion levels have 
been measured in whole blood, serum, erythrocytes, and vari-
ous solid tissues (Cobb and Schmalzreid 2006, Savarino et al. 
2008, Lazennec et al. 2009). Serum Co levels are the most 
frequently reported metal ion concentrations, and they were 
found to be 5- to 6-fold higher in patients after MOM implan-
tation than preoperatively (Lazennec et al. 2009). 

Two well-received consensus papers have described the 
need to measure metal ion concentrations in the joint fluids of 
patients with MOM bearings (Amstutz et al. 1996, MacDon-
ald et al. 2004) in addition to measuring metal concentrations 
in serum (Vendittoli et al. 2007, Savarino et al. 2008). Most 
research into metal ion concentrations does not, however, 
report the regional or local dissemination, as synovial biopsies 
are undesirable in otherwise healthy patients (Savarino et al. 
2008).

There is therefore very little reliable information about 
the exact local concentrations of Co-Cr around prostheses 
(Table 5). Concentrations of Co ions have been found in the 
6–6,000,000 µg/L range. This difference is not only related 
to alignment and the type of the prosthesis (Onda et al. 2008, 
Shimmin et al. 2008, Williams et al. 2008b) but also to improv-
ing detection methods (Dorr et al. 1990). 

Table 2. Wear rates of MOM bearing couples defined in different units

   
Type of wear Wear rate Method  Ref.

Linear wear rate of femoral heads per year 7.6 μm (range 2.9–13) to Explanted implant(s) Reinisch et al. (2003)
  250 μm (range 50–810)  Radiographic analysis Stilling et al. (2009) 
 First year 25 μm Explanted implant(s) Sieber et al. (1999)
 > 3 years 5 μm Explanted implant(s) Sieber et al. (1999
Volumetric wear rate of femoral  2.0 mm3 (range 0.55–3.7) Explanted implant(s) Reinisch et al. (2003)
  heads per year 5.0 mm3 (range 0.22–22)  Explanted implant(s) Willert et al. (1996)
Mass wear rate per year 17 mg (range 4.6–31) Explanted implant(s) Reinisch et al. (2003)
No. of particles per unit 
  volume of wear per mm3 2.7 × 1012 – 1.5 × 1013 Pin-on-plate Tipper et al. (1999)
Number of particles per 106 cycles 4   × 1012 – 6    × 1013 Pin-on-plate Tipper et al. (1999)
Number of particles per year 6.7 × 1012 – 2.5 × 1014  Explanted implant(s) Doorn et al. (1998)

Note: Retrieval study data were obtained from patients undergoing revision of THAs with MOM bearing couples. Radiographic wear analysis 
was performed by analysis of digitized anteroposterior (AP) radiographs using a computerized method. 

Table 3. Size and morphology of wear particles generated by a hip simulator or derived from tissue samples 

   
Size and morphology Particle generation and type of prosthesis  Method a Ref.

80 ± 40 nm, round Hip simulator with bearing ASTM F 799 and F1357 Co-28Cr-6Mo TEM Catelas et al. (2001)
50–90 nm, oval or 
   needle-shaped Hip simulator with bearing ASTM F 799 and F1357 Co-28Cr-6Mo SEM Tipper et al. (1999)
25–36 nm, round Hip simulator with bearing ASTM F 799 and F1357 Co-28Cr-6Mo TEM Firkins et al. (2001)
< 50 nm (range 6–834 nm),  Periprosthetic tissue samples of 2 McKee-Farrar and one
  oval or round McMinn prosthesis TEM Doorn et al. (1998)
< 50 nm, irregular Periprosthetic tissue samples of 640 Sikomet SM21  SEM Brown et al. (2007)
40–120 nm, needle-shaped Periprosthetic tissue samples of one Bicon plus Ti shell with TEM, SEM Milosev and Remskar (2008)
< 90 nm, round polyethylene liner, Sikomet SM21 head, and SL-Plus stem and XPS   

a TEM: transmission electron microscopy; SEM: scanning electron microscopy; XPS: X-ray photoelectron spectroscopy.
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Wear rates reported in recent hip simulator studies have 
turned out to show a close correlation with Co ion levels (Wil-
liams et al. 2008a), but measurement of ion levels in the lubri-
cant of hip simulators resembles only certain aspects of the 
clinical situation. There is no free exchange between blood 
and synovial fluid (Dorr et al. 1990) and therefore wear prod-
ucts can accumulate in simulator systems, resulting in higher 
Co-Cr levels than would occur clinically (Table 6). 

Influence of MOM wear particles and corrosion prod-
ucts on the immune system
Orthopedic metals and their corrosion products modulate the 
activities of the immune system by influencing immunocom-

Schematic drawing illustrating: a. generation of wear particles; b. a metal alloy 
(gray scaffold) with an oxidized surface film on the upper surface (molecules 
marked in red); c. damage to the passive surface film (e.g. by scratching or 
pounding); d. occurrence of corrosion due to the lack of a protective layer; e. 
liberation of soluble compounds and wear particles; and f. repassivation of the 
surfaces including wear particles (arrows).

Table 4. Oxidation states of the elements in Co-Cr compounds

Co Cr Mn Fe Ni  Si Mo

–1 –2 –3 –2 –1 –4 a –2
+1 –1 –2 –1 +1 –3 –1
+2 a  +1 –1 +1 +2 a –2 +1
+3 a +2 +1 +2 a +3 –1 +2
+4 +3 a +2 a +3 a +4 +1 +3
+5 +4 +3 +4  +2 +4 a
 +5 +4 a +5  +3 +5
 +6 a  +5 +6  +4 a +6 a
  +6    
  +7 a
   
a represents the most common oxidation states.

Table 5. Maximum levels of Co and Cr ions in local tissues of patients with a MOM implant

     
Sample Prosthesis Cobalt (μg/L) Chromium (μg/L) Method a Ref.

Capsule Cemented and loose 26,000 88,000 NAA Evans et al. (1974)
Synovial fluid  Cemented and loose 250
Capsule  22,000  NAA Jones et al. (1975)
Femoral neck  Cemented 50,000 170,000 SES Smethurst and Waterhouse 
Acetabulum   170,000 170,000  (1977)
Lining from femoral stem   130,000 1,300,000  
Adjacent to articular surfaces  70,000 70,000
Acetabular pelvic lining  200,000 200,000 
Capsule Loose 6,000,000 1,500,000 AAS/NAA Postel and Langlais (1977)
Synovial fluid Cemented and loose 13,000 63,000 GSGSD Dobbs and Minski (1980)
Capsule   63,000 327,000
Granuloma  193,000 323,000
Tissue (mid-femur)  6,900 5,500 
Synovial fluid Cemented and loose 155 358 AAS Davies et al. (2005a)
Synovial fuid Cemented 199 347 GFAAS Dorr et al. (1990)
Capsule (well-fixed and loose) 3,971 1,465
Fibrous membrane  2,451 1,634
Synovial fluid Cementless 1,015 617
Capsule (well-fixed and loose) 1,272 6,219
Fibrous membrane  3,812 20,609 
Synovial fluid  Cemented and well-fixed 6 16 GFAAS Brien et al. (1992) 
Synovial fluid Cemented and loose 152 238 

a NAA: neutron activation analysis; SES: spark emission spectroscopy; AAS: atomic absorption spectroscopy; GFAAS: graphite furnace atomic absorption spec-
trophotometry; GSGSD: gamma-spectroscopy with Ge-semiconductor detector.
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petent organs and cells by a variety of immunostimulatory 
and immunosuppressive mechanisms. Metal particles and 
ions spread throughout the whole body via lymph and blood, 
and have, for instance, been identified within macrophages in 
the liver and spleen (Urban et al. 2000, 2004). The long-term 
effects of the distant spread and accumulation of wear par-
ticles in the liver and spleen are unknown, but indicate that the 
immune system may be hampered. In this context, it should 
be emphasized that the mere presence of a foreign body itself 
already reduces the minimum number of bacteria required to 
cause infection (Zimmerli et al. 1982). 

Another important issue is the hypothetical carcinogenesis 
due to MOM implants and its accompanying occupation of 
the immune system in combination with the use of immuno-
suppressive drugs. Ion release has been suspected to increase 
the risk of DNA damage (Savarino et al. 2000, Ladon et al. 
2004) and it was recently found that Co-Cr nanoparticles can 
cause DNA damage across a cellular barrier (Bhabra et al. 
2009). In addition, a reduction in the number of circulating 
cytotoxic CD8+ T-cells, which are responsible for destroying 
tumor cells, has been found in patients with a MOM implant 
(Mabilleau et al. 2008, Ogunwale et al. 2009). However, epi-
demiological studies do not allow conclusions regarding the 
incidence of cancer in patients with MOM implants (Nyren 
et al. 1995, Visuri et al. 1996, Dumbleton and Manley 2005) 
and they will not become available in the near future, as such 
studies would require thousands of patients to be followed for 
several decades (MacDonald et al. 2004).

The spleen. The spleen is an important meeting point 
between antigenic information transported by the blood and 
the immunocompetent cells. Because of its central position in 
the bloodstream and its large blood supply of about 5% of the 
total blood volume per minute, the spleen will inevitably be 
exposed to corrosion products of MOM bearings. High con-
centrations of metal ions (375,000 µg/L Co and 200,000 µg/L 
Cr) have been shown to cause alterations in spleen architec-
ture and depletion of T4 and B-cells. The immune system and 
its defense against bacteria may therefore become hampered 
by metal ions (Ferreira et al. 2003). 

The liver. The liver is part of the human immune system and 
it not only contains many immunologically active cells but 
also detoxifies environmental toxins. Metals cannot be elimi-

such as neutrophils are vital in the host defense against infec-
tion. These “first responders in microbial infection” are usu-
ally found in infected periprosthetic tissues. However, corro-
sion products of Co-Cr implant materials have been reported 
to inhibit the rapid release of reactive oxygen species required 
for bacterial killing by neutrophils (Shanbhag et al. 1992). In 
vitro studies have also shown that Co-Cr particles induce toxic 
effects after they are phagocytosed because of the drop in pH 
within the phagosome (Huk et al. 2004). Due to wear debris-
induced granulocyte defects, patients with MOM implants 
may be predisposed to infection at the implant site (Zimmerli 
et al. 1982, 1984, 2004). 

Degradation products, either in the form of metal ions or 
wear particles, can complex with local proteins and induce an 
allergic response comparable with a delayed-type hypersensi-
tivity response (type IV), through activation of T-lymphocytes 
(Davies et al. 2005b, Goodman 2007a). The histological 
response in patients with MOM bearings is unique in its kind 
and is referred to as aseptic lymphocyte-dominated vasculitis-
associated lesion (ALVAL) (Willert et al. 2005). In addition, 
a statistically significant reduction in circulating lymphocytes, 
in particular of CD8+ and T-cells, has been observed in patients 
with MOM bearings (Mabilleau et al. 2008, Ogunwale et al. 
2009). However, at concentrations of Co and Cr below 5 µg/L, 
no such reduction was detected. No adverse clinical symptoms 
have been observed in patients with increased metal ion con-
centrations in serum (Hart et al. 2006). 

Influence of MOM degradation products on bacteria 
Heavy metal toxicity. Metal ions have been used for centuries 
to cure infections, and it is conceivable that wear products of 
MOM prostheses may be toxic to bacteria. There is in vitro 
and in vivo evidence that wear particles have toxic effects 
on human cells (Jones et al. 1975, Papageorgiou et al. 2007, 
Caicedo et al. 2008). In vitro research on influences of Co and 
Cr ions on bacteria have provided evidence of bacteriostatic 
effects (Anwar et al. 2007), hypothetically involving competi-
tion with Fe for uptake in the bacterial cell. Fe is an important 
nutrient element that is required by specific microbial species 
that use oxidation of elemental Fe or conversion of Fe2+ to 
Fe3+ as an energy source for their metabolism. Inhibition of 
Fe-dependent metabolic activities by Co ions has been shown 

Table 6. Maximum levels of Co and Cr ions as measured with inductively cou-
pled plasma mass spectroscopy in hip simulator lubricant, catogorized by head 
size of MOM implant and number of cycles 

    
Head size Co (μg/L) Cr (μg/L) Cycles (×106) Ref

55 mm  ~ 18,000 ~ 6,000 0.13 Leslie et al. (2008)
39 mm  ~ 12,000 ~ 4,000   
55 mm  10,915 3,675 0.13 Leslie et al. (2009)
39 mm 9,066 3,302 
36 mm  ~ 6,800,000 ~ 2,800,000 4  Williams et al. (2008a)
28 mm ~ 12,000,000 ~ 8,000,000

nated from tissues by metabolic degradation, but 
only by renal or gastrointestinal excretion (Cobb 
and Schmalzreid 2006). There is evidence from 
a recent animal study to suggest that Cr ions can 
accumulate in the liver (Jakobsen et al. 2007). 
High levels of metal in the body may cause hepa-
tocellular necrosis, as observed after acute inges-
tion of Cr4+ in humans. Clinically relevant con-
centrations of Cr4+ (10–25 µM) have been found 
to inhibit macromolecular syntheses in the liver 
(Keegan et al. 2007). 

Immunocompetent cells. Phagocytosing cells 
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to lead to growth retardation and cell death in Pseudomonas 
aeruginosa (Kothamasi and Kothamasi 2004). 

Within the cells of tissues, nanoparticles are exposed to a 
series of oxidative mechanisms designed to destroy the foreign 
body, which leads to the generation of metal ions (Lundborg 
et al. 1992). Reactions with metal ions can lead to generation 
of free radicals: reactive oxygen species (ROS) and reactive 
nitrogen species (RNS), which can, in turn, cause cellular dys-
function. ROS and RNS are known to be involved in protein 
oxidation, leading to their degradation, lipid peroxidation, and 
DNA damage. Generation of ROS and RNS may, hypotheti-
cally, cause toxicity in bacteria as well. 

Bacterial growth and biofilm formation 
Some recent studies have evaluated the influence of Co and 
Cr ions and Co-Cr particles on bacterial growth. Co and Cr 
concentrations of up to 20 µg/L and 9 µg/L, respectively, that 
have been reported to occur in serum showed no consistent 
influence on biofilm formation, but higher concentrations of 
200,000 µg/L Co and 93,000 Cr µg/L statistically significantly 
reduced Staphylococcus aureus and CNS planktonic growth 
and biofilm formation (Hosman et al. 2009), suggesting that 
MOM bearings may be less prone to biofilm formation and 
subsequent infection. On the other hand, Anwar et al. (2007) 
showed that wear debris from MOM bearings accelerated the 
growth of planktonic bacteria. Aggregated particulate debris 
was suggested to promote growth by providing a scaffold on 
which biofilm can grow. In addition, it can be hypothesized 
that nanosized particles scattered throughout a biofilm would 
enhance the strength of its structure by working as a compos-
ite scaffold at the macroscopic level. Moreover, it is also pos-
sible that embedded particles in a biofilm might detach and act 
as carriers of biofilm throughout the joint and body. 

Heavy metal resistance 
Bacteria have co-existed with abundantly found toxic heavy 
metals since the beginning of life. Thus, it was essential for 
bacteria to develop mechanisms of metal resistance. Bacte-
rial resistance to metal toxicity is not only an environmen-
tally important phenomenon but also has clinical implications 
for metal-bacterium interactions in MOM patients. Bacterial 
resistance mechanisms differ widely (Silver and Misra 1988) 
and are currently the subject of extensive studies. There are 
enzyme oxidases and reductases to convert metal ions from 
more toxic species to less toxic species (Caccavo Jr et al. 1994, 
Cervantes et al. 2001, Lloyd and Lovley 2001, Kamaludeen et 
al. 2003). There is also the possibility of binding heavy metals 
in the bacterial cell wall (Komeda et al. 1997). Blocking of 
cellular uptake is also an option by altering the uptake path-
way. Once the toxic heavy metal has reached the cytoplasm, it 
can be pumped out again by a high-efflux system (Nies et al. 
1989, Nies 1995). Efflux pumps are the major group of resist-
ance systems currently known. 

Co-selection of antibiotic and metal resistance 
There is growing concern that metal contamination may 
function as a selective agent in the proliferation of antibiotic 
resistance (Baker-Austin et al. 2006). It is hypothesized that 
antibiotic-resistant bacteria can be maintained in the envi-
ronment owing to the co-regulation of resistance pathways 
(Baker-Austin et al. 2006, Wright et al. 2006). These co-
selection mechanisms include co-resistance (with different 
determinants of resistance being present on the same genetic 
element) and cross-resistance (with the same genetic determi-
nant being responsible for a conjoint resistance to antibiotics 
and metals). Co-resistance to multiple metals and antibiotics 
has been described in clinical isolates of Staphylococcus spe-
cies (Ug and Ceylan 2003), but the most common co-resis-
tance involves Cr, Pb, and penicillin. Co and Cr increase the 
sensitivity of staphylococci to penicillin, whereas sensitivity 
to tetracycline becomes less (Mnatsakanov 1967). The mech-
anisms behind this co-selection are currently being investi-
gated.

It has been found that reduction of the permeability of bac-
teria causes Co and Ag resistance through a mechanism simi-
lar to that responsible for inhibiting β-lactam, ciprofloxacin, 
tetracycline, and chloramphenicol from entering the bacte-
rium (Silver and Phung 1996, Ruiz et al. 2003). On top of this 
reduced permeability, a rapid efflux mechanism is also used to 
prevent Co, Cu, Zn, Cd, and Ni from entering the micro-organ-
ism, similar to the mechanism of resistance to ß-lactam, tet-
racycline, and chloramphenicol (Levy 2002, Nies 2003). The 
clinical incidence of co-selection mechanisms of resistance 
factors in pathogenic bacteria for antibiotics and heavy metals, 
and also their clinical implications, still remain unknown.

Conclusions
Unfortunately, long-term clinical data on infection rates for 
MOM bearings are not yet available and therefore actual clini-
cal influences on infection cannot be evaluated. To assess the 
clinical influence of bearing type on infection risk, studies 
will require thousands of patients to be followed for several 
decades. Such data may soon become available from national 
joint registries, and their evaluation will shed light on the net 
influence of bearing type on infection risk. However, this 
review suggests that wear particles and their corrosion prod-
ucts may have an influence on the risk of infection by hamper-
ing the immune system, by inhibiting or accelerating bacterial 
growth, and by possible antibiotic resistance and metal resist-
ance mechanisms involving co-selection. Whether this influ-
ence results in an increase in clinical infection rates or in a 
decrease has not yet been investigated. 
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