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ABSTRACT

Transcription factors (TFs) and epigenetic modifica-
tions play crucial roles in the regulation of gene ex-
pression, and correlations between the two types of
factors have been discovered. However, methods for
quantitatively studying the correlations remain lim-
ited. Here, we present a computational approach to
systematically investigating how epigenetic changes
in chromatin architectures or DNA sequences re-
late to TF binding. We implemented statistical anal-
yses to illustrate that epigenetic modifications are
predictive of TF binding affinities, without the need
of sequence information. Intriguingly, by consider-
ing genome locations relative to transcription start
sites (TSSs) or enhancer midpoints, our analyses
show that different locations display various rela-
tionship patterns. For instance, H3K4me3, H3k9ac
and H3k27ac contribute more in the regions near
TSSs, whereas H3K4me1 and H3k79me2 dominate
in the regions far from TSSs. DNA methylation plays
relatively important roles when close to TSSs than
in other regions. In addition, the results show that
epigenetic modification models for the predictions
of TF binding affinities are cell line-specific. Taken
together, our study elucidates highly coordinated,
but location- and cell type-specific relationships be-
tween epigenetic modifications and binding affinities
of TFs.

INTRODUCTION

Transcription factors (TFs) regulate gene expression
through changes of their binding affinities to specific
genomic cis-regulatory sequences. Analyses on TF binding
sites (TFBSs) motivated the development of sequence-
specific Position Weighted Matrix (PWM) approach for
TFBS identification by summarizing all binding sites in
the genome into 4- to 30-base-pair (bp) binding motifs,

such as TRANSFAC (1) and JASPAR (2). This method
enables the study of factor-specific TFBSs and sequence-
specific changes of TF binding; however, it missed other
related factors, such as chemical modifications to genome
sequences and nearby histones (3).

Epigenetic modifications, including post-translational
covalent histone modifications and DNA methylation,
can mediate epigenetic regulation of gene expression, cell
growth and disease development (4–9). Patterns of epige-
netic modifications can serve as markers to represent gene
activities and expressions, and epigenetic modifications oc-
curring at different genome locations lead to distinct regula-
tory roles. Methylation of CpGs in gene promoters is gener-
ally associated with silencing of downstream genes (10–12),
in contrast to that of CpGs in gene bodies. Enrichments of
histone modifications, H3K4me2, H3K4me3 and H3ac, at
transcription start sites (TSSs) are positively related to the
extents of gene activities (4,13,14). Active cis-regulatory el-
ements are marked by H3K27ac, distinguishing from inac-
tive counterparts (15). Theoretical analysis also proved that
downstream histone modifications lead to more accurate
prediction of gene expression (16). To investigate the regula-
tory roles of histone modifications in gene expression, Chen
and Gerstein (16) and other researchers (17) are the pio-
neers to consider location information, by dividing genome
sequence into bins (16).

Epigenetic modifications have the ability to regulate gene
expression, and have strong correlations with TF binding
(3,18–20). Studies of associations between epigenetic modi-
fications and TF binding showed that certain histone mod-
ifications in chromatin act on both TF access (21,22) and
transcriptional initiation (23–25). For example, methylation
of histones can change the activation status of DNA and
thereby allow or block TFs to access the DNA (26). DNA
methylation is also related to TF binding and gene silenc-
ing (11,27–30). Moreover, the usage of regulatory elements
to associate TFs with DNA sequence exhibits a strong cell
type-specific property (31), which is frequently related to
one or more chromatin alterations (29,32–36).

Advances in development and improvement of high-
throughput experimental techniques have led to enormous
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explosion of genomic and epigenetic data. For instance, the
ENCODE project (15) generated data for >120 TFs and
various types of epigenetic modifications in a number of cell
lines, by using different experimental platforms. These ben-
efited our understanding of overall changes of chromatin
features around TFBSs (37–42), resulting in epigenetic
modification-involved, but still sequence-specific, TF bind-
ing motifs (or PWM) for TFBS identification (31,43,44).
This approach, unfortunately, failed to consider the quan-
titative relationships between epigenetic modifications and
TF binding affinities.

In this paper, we present a computational approach to
studying the correlations between epigenetic modifications
and TF binding affinities, by taking advantage of the wealth
of data from the ENCODE project (15). Instead of focus-
ing on sequence-specific TF binding site or motif analy-
ses, we explored quantitative relationships between epige-
netic modification levels and TF binding affinities. In order
to study the correlations in a combinatorial fashion, and
illustrate the possible differences, we divided genome re-
gions around TSSs (or enhancer midpoints) into bins of 100
bps to enable a location-specific study (Figure 1A). In each
bin, we applied regression models to investigate the ability
of epigenetic features to predict TF binding affinities. Af-
ter a large-scale computational experiment, we found that,
even without consideration of genome sequence, epigenetic
modifications are sufficient to model TF binding affinities.
Prediction accuracies vary according to genomic locations.
Moreover, the contributions of epigenetic features change
according to genome locations, indicating varieties exist in
the relationships between epigenetic modifications and TF
binding. For instance, H3K4me3, H3k9ac and H3k27ac are
likely to be crucial in the regions closer to TSSs but not
far from TSSs, in contrast to H3K4me1 and H3k79me2.
Our analyses additionally showed that epigenetic modifi-
cation models for predicting TF binding affinities are cell
line-specific, indicating correlations between the two factors
may vary in terms of cell conditions.

MATERIALS AND METHODS

Datasets

All data used in this work were downloaded from
the ENCODE project (http://genome.ucsc.edu/ENCODE/
downloads.html) (15). Genome-wide profiles of histone
modifications, including H3K9ac, H3K27ac, H3K4me3,
H3K4me2, H3K4me1, H3k79me2, H3K9me3, H3K27me3,
H3K36me3 and H4K20me1, and the histone variant, H2az,
were generated using the ChIP-Seq technique (45). The EN-
CODE project has profiled chromatin features across a few
normal and immortal cell lines; however, more complete
datasets are available from the K562 (erythrocytic leukemia
cells), GM12878 (B-lymphoblastoid cell), H1-hESC (em-
bryonic stem cells) and HepG2 (hepatocellular carcinoma
cells) cell lines. These four cell lines and the corresponding
data were selected in our analysis.

Genome-wide TF binding data were profiled by using the
ChIP-Seq technique. The database includes >120 TFs in a
number of cell lines. More complete data are available from
the K562, GM12878, H1-hESC and HepG2 cell lines, con-
taining 75, 69, 42 and 41 TFs, respectively (Supplemental

Table S1). These TFs can be further categorized into gen-
eral and sequence-specific groups. The former act coopera-
tively with RNA polymerase II and are involved in the tran-
scription of a large fraction of genes (46), and the latter are
bound to specific subsets of target genes (47). Our analyses
included both types of TFs.

DNA methylation levels were quantitatively profiled with
the RRBS technique and Infinium HumanMethylation450
BeadChip array. The former covers >1M CpG sites, while
the latter measures the methylation levels for 485 577 CpG
sites. DNA methylation data are available for almost all cell
lines. In this work, the methylation level of each CpG is de-
termined as the average of RRBS replicated experiments or
HumanMethylation450 BeadChip data, and ∼1.3M CpGs
were included.

All of these data were annotated with the human genome
version hg19. Genomic locations of 47 321 protein-coding
genes and 10 214 non-protein-coding genes with all infor-
mation, including TSSs and transcription termination sites
(TTSs), were obtained from the RefSeq database (down-
loaded from UCSC Genome Browser at http://genome.
ucsc.edu/). We excluded those genes with sequence lengths
(from TSS to TTS) less than 4k bps to ensure each gene has
a sufficient downstream region, and 33 292 genes were fi-
nally selected.

The FANTOM5 project (48) provides information of
49 199 enhancers (http://fantom.gsc.riken.jp/5/). These en-
hancers were detected by bidirectional capped transcrip-
tion, using the FANTOM5 CAGE expression atlas in 135
primary cell and 432 tissue samples from human.

Genome-region separation around TSSs and enhancer mid-
points

To understand direct correlations between epigenetic mod-
ifications and TF binding, and the influence from relative
genome locations, we divided the 8k-bp genome regions
around TSSs (−4 to +4 kb) into 80 bins. This approach
resulted in each bin of 100 bps in size, 40 upstream (‘−’)
and 40 downstream (‘+’) bins centered at TSS of each Ref-
Seq gene with length greater than 4k bps (Figure 1). Simi-
larly, we selected the genome regions by extending 8k bps
from gene enhancer midpoints to investigate the correla-
tions and possible changes. These 8k-bp regions were also
divided into 80 bins, with each consisting of 100 bps (Fig-
ure 1).

Based on ChIP-Seq data for a TF or histone mark, we cal-
culated the coverage of each nucleotide as number of reads
covering this nucleotide. To calculate TF binding affinity
and histone modification level in each bin, we averaged the
coverages of the 100 nucleotides (12,16,17). Then the cov-
erage of each bin was further normalized by computing the
value of reads per million (RPM), and averages were taken
from experimental replicates. For TF binding affinity, a log2
transformation (log2(RPM + 1)) was applied. If there were
not ChIP-Seq reads mapped into one bin, a pseudo-count
(−1) was assigned as the binding affinity instead of 0 to dis-
tinguish them from other non-zero but low-coverage bins.

For DNA methylation, we selected the methylation level
of CpG site(s) mapped into the bin to compute methylation
level for this bin. For bins with more than one CpG site, the
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Figure 1. Framework of epigenetic modification model for predicting TF binding. (A) The 8k-bp genome regions were evenly divided into 80 bins centered
at TSSs or enhancer midpoints. TF binding affinities and epigenetic modification levels were calculated in each bin based on ChIP-Seq data. (B) In each
bin, epigenetic modification levels were used to predict TF binding affinities with the MLR and RF models. The predicted results were compared with
observed values, and PCC/R2 values were used to evaluate the prediction performance.

average of methylation levels over these mapped CpG sites
was selected to represent this bin’s methylation level.

Predicting TF binding affinity

We constructed prediction models to quantitatively investi-
gate the relationships between epigenetic modifications and
TF binding. Because we were also interested in the relative
contributions of DNA methylation or other types of his-
tone modifications to TF binding, we selected the Multiple
Linear Regression (MLR) (with ‘mlr’ R package) and Ran-
dom Forest (RF) models (with ‘randomForest’ R package)
to construct the epigenetic modification model for predict-
ing TF binding affinity in each bin.

The RefSeq genes were separated into a training dataset
and a testing dataset. Specifically, we randomly selected
two-thirds of genes ( = 22 194) as the training dataset and
used the remaining one-third of genes as the testing dataset.
In each bin, the MLR and RF models were built for each TF
in training dataset with epigenetic modification levels as in-
puts and TF binding affinities as outputs, and subsequently
applied to the testing dataset with the corresponding epige-

netic modification levels as inputs to predict binding affini-
ties of the same TF. We then calculated the Pearson correla-
tion coefficient (PCC) between predicted TF binding affini-
ties and experimental measurements. The coefficient of de-
termination (R2) was employed as well to present predic-
tion accuracy, representing the proportion of genes whose
TF binding affinities could be explained by the model.

Cross-validation was used to estimate the prediction ac-
curacy. The above procedure was repeated 50 times, and
then the average PCC and R2 values between predicted and
experimentally measured TF binding affinities were calcu-
lated to represent the predictive accuracy of epigenetic mod-
ification model in each bin.

In the RF model, we used the ‘%IncMSE’ obtained from
‘randomForest’ R package to represent the relative impor-
tance of histone modifications and DNA methylation to
predict TF binding affinities. An epigenetic modification
with higher ‘%IncMSE’ value contributes more in predic-
tion. Due to the non-sense of ‘%IncMSE’ values when con-
sidering out of the current bin, we ranked epigenetic mod-
ification features by converting their ‘%IncMSE’ values to
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orders of relative importance within each bin. This method
enables cross-bin comparisons.

RESULTS

Epigenetic modifications are predictive to TF binding affini-
ties

We aimed to study the quantitative relationships of epige-
netic modifications to TF binding affinities. We employed
computational approaches (e.g. the MLR and RF models)
to study predicting ability of epigenetic modifications to TF
binding affinities in each genomic region (bin) and the rel-
ative importance of each epigenetic feature (see ‘Materials
and Methods’ section; Figure 1). As an example, within the
upstream −100 to −1 bp region (Bin −1), the RF models
achieved accurate predictions with PCC = 0.80 and PCC
= 0.79 for YY1 and ATF3, respectively (Figure 2A). And
within the downstream 1 to 100 bp region (Bin +1), simi-
lar accuracies were obtained for YY1 and ATF3 with PCC
= 0.82 and PCC = 0.81, respectively (Figure 2A). We note
that the use of pseudo-count −1 instead of 0 leads negligi-
ble changes in predictions (Supplemental Figure S1A). The
MLR models were also built and tested, but gave poorer
predictions, which indicates a non-linear relationship of epi-
genetic modifications with TF binding (Supplemental Fig-
ure S1B). The models were constructed and tested in all 80
bins. High prediction accuracies were observed (examples
were shown in Supplemental Figure S2), with the best pre-
dictions for the two TFs occurring at the same downstream
0–200 bp regions (Bins +1 and +2), and prediction accura-
cies gradually decreasing in two directions (Figure 2B).

We performed this analysis using the RF models for all
available TFs in each of 80 bins. Figure 2C and Supplemen-
tal Figure S3 show the prediction accuracies in the 80 bins
centered at TSSs in the four human cell lines. Each figure
contains various numbers of TFs, according to the availabil-
ity of ChIP-Seq data (Supplemental Table S1). High predic-
tion accuracies were achieved with average accuracy (PCC)
reaching ∼0.64 across bins and TFs in each cell line, indicat-
ing epigenetic modifications can reflect TF binding affini-
ties. The best predictions likely occur in the downstream 1
to 300 bp region (Bins +1 to +3), with median PCC reaching
∼0.80 and highest PCC = ∼0.93 in the four cell lines. Then
prediction accuracies decay in the two directions as a func-
tion of increased distances to TSSs. Taken together, the high
prediction accuracies across cell lines suggest the strong cor-
relations between epigenetic modifications and TF binding
affinities in all considered cell conditions.

Contributions of epigenetic modifications change according
to genome locations

Although epigenetic modifications regulate gene expression
cooperatively, their contributions are not identical (17,49).
Due to this fact, the correlations between each type of epi-
genetic modifications and TF binding affinities may change.
We therefore studied the relative contribution of each epi-
genetic feature in each genome bin in order to detect the
differences in the relationships between the two factors ac-
cording to genome locations.

The relative importance of each epigenetic feature was
obtained by analyzing its contribution to the aforemen-
tioned RF model in predicting TF binding affinities (see
‘Materials and Methods’ section). In the upstream −100 to
−1 bp region (Bin −1), the six most important epigenetic
modifications to binding affinities are H3K9ac, H3K27ac,
H3K4me3, H2az, H3K4me2 and DNA methylation (Fig-
ure 3A for YY1; Supplemental Figure S4A for ATF3). The
most important epigenetic modifications for YY1 in the
downstream 1 to 100 bp region (Bin +1) are similar to those
in the upstream region, but not for ATF3. H3K4me2 ranks
above H2az, although their contributions are similar (Fig-
ure 3B; Supplemental Figure S4B).

When we analyzed the relative importance of epigenetic
modifications across all 80 bins, a location-specific contri-
bution of each epigenetic feature was observed. For exam-
ple, in the upstream −500 to −401 bp region (Bin −5),
the six most important epigenetic modifications for YY1
are H3k27ac, H3k9ac, H3k4me3, H3k4me2, H2az and
H3k4me1; while for ATF3, the top six epigenetic modifi-
cations are H3K4me3, H3k9ac, H3k27ac, H3k4me2, H2az
and H3k79me2, with DNA methylation ranked at ninth
(Figure 3C; Supplemental Figure S4C).

Across all locations, H3K36me3 is generally not impor-
tant in those regions close to TSSs (Figure 3D; Supplemen-
tal Figure S5), although its signal displays stronger (nega-
tive) correlations with TF binding affinities (Supplemental
Figure S6B). Instead, H3K27ac, H3K9ac and H3K4me3,
positively correlated with TF binding affinities (Supplemen-
tal Figure S6), are relatively important to TF binding at
locations close to TSSs. DNA methylation plays impor-
tant roles at locations near the TSSs, and decreases its con-
tribution with increased distances from TSSs (Figure 3D;
Supplemental Figure S5), in spite of the higher levels in
these regions (Supplemental Figure S7). DNA methylation
is observed to be more important than a few histone mod-
ifications, such as H3K36me3 and H3K9me3, which also
have weaker correlations with TF binding affinities (Sup-
plemental Figure S6). On the other hand, H3K4me1 and
H3K4me2 are important in the locations far from TSSs
(only exception for POLII in the HepG2 cell line). This re-
sult is supported by the reported correlations between gene
expression and histone modifications, and the relative con-
tributions of histone modifications in predicting gene ex-
pression (12,50).

Of note, the relative contribution patterns of epigenetic
modifications generally exist across TFs and cell lines.
After a comprehensive analysis in terms of genome lo-
cations, TFs, and cell lines, we found that H3K4me1,
H3K4me2, H3k4me3 and H3k9ac are more likely to play
important roles in TF binding predictions, in contrast to
H3K27me3, H4k20me1 and H3k36me3, when considering
average importance across bins and TFs (Supplemental Fig-
ure S8). This is consistent with the reported importance
of chromatin features, such as H3K4me1, H3K4me2 and
H3K4me3, for gene activity (4,13,14). The average contri-
butions of epigenetic features change according to genome
locations. H3K4me3, H3k9ac and H3k27ac are likely to
be crucial when closer to TSSs, whereas H3K4me1 and
H3k79me2 contribute more in the locations far from TSSs.
Although DNA methylation is not top-ranked important,
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Figure 2. Comparisons between predicted TF binding affinities and experimental measurements from ChIP-Seq data. (A) The RF model was employed
to predict the binding affinities of YY1 and ATF3 using histone modification and DNA methylation levels in upstream −100 to −1 bp (Bin −1) and
downstream 1 to 100 bp regions (Bin +1). The linear regression line obtained from the ‘lm’ R package was shown in red. (B) Analyses for TF (YY1
and ATF3) predictions across 8k-bp regions centered at TSSs showed that epigenetic modifications were predictive to TF binding affinities, with the best
predictions located in downstream regions (Bins +1 and 2). (C) Box plots for the prediction accuracies of binding affinities of 75 TFs with epigenetic
modifications across 8k-bp regions in the K562 cell line. The RF model was employed in each bin for each TF. Generally high accuracies indicate that TF
binding affinities can be precisely reflected by epigenetic modifications in any genome locations. The best (average) prediction accuracies are achieved in
downstream 1 to 200 bp regions (Bins +1 and +2), and then predictions decreases in the two directions.

supported by previous researches that DNA methylation
cannot solely select TFs for gene transcription (51,52),
it displays a clear location-specific contribution pattern.
When closer to TSSs, it contributes more than histone mod-
ifications such as H3k36me3, H4k20me1 and H3k9me3,
while it is the least important feature in other locations. It is
consistent with previously reported results on the associa-
tion between DNA methylation and CTCF binding (53). All
results illustrate the location-specific relationships between
epigenetic modifications and TF binding.

Epigenetic modification models for TF binding predictions
are cell line-specific

Above analyses show that TF binding affinities can be pre-
dicted by epigenetic modifications in all considered cell con-
ditions. However, contributions of epigenetic modifications
in regression models for different cell conditions are distinct
from each other (e.g. Figure 4A and Supplemental Figure
S9A). This indicates that TF binding is related to epige-
netic modifications in a cell type-specific manner (29,31–
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Figure 3. Relative importance of epigenetic modifications in predicting binding affinities of YY1 determined by their contributions to the prediction model.
Different genome locations were plotted as examples: (A) −100 to −1 bp (Bin −1), (B) 1 to 100 bp (Bin +1) and (C) −500 to −400 bp regions (Bin −5). At
each location, contributions from various epigenetic features are different, and the contribution patters change according to relative genome locations. The
12 types of epigenetic features were sorted and assigned as ‘order of importance’ from 1 to 12 in each bin based on their contributions to the prediction
model. (D) The relative importance of epigenetic features in predicting binding affinities of YY1 across 80 bins centered at TSSs. Generally, H3K4me2,
H3K27ac, H3k4me3 and H3k9ac play more important roles, in contrast to H3K9m3, H4k20me1 and H3k36me3, especially in the regions close to TSSs.
DNA methylation is not top ranked, but plays relatively important roles in the regions closer to TSSs.

35,54,55). We further studied this cell line specificity of rela-
tionships between epigenetic modifications and TF binding
affinities.

As shown in Figure 4A and Supplemental Figure S9A,
the contribution of each epigenetic modification feature
in predicting YY1 binding affinities (in Bins +1 and −1)
changes with cell lines. We further applied the epigenetic
modification models obtained from one cell line (K562) to
others (GM12878, H1-hESC and HepG2), using the epige-
netic modification levels in the same location (bin) as inputs,
in order to explore whether the models can be generalized
across cell lines (see ‘Materials and Methods’ section). As
an example, the analyses within the downstream 1 to 100
bp (Bin +1) and the upstream −100 to −1 bp regions (Bin

−1) show that prediction accuracies of 0.65, 0.61 and 0.67
(Figure 4C), and 0.71, 0.60 and 0.65 (Supplemental Fig-
ure S9C) in the GM12878, H1-hESC and HepG2 cell lines.
These predictions are relatively lower than PCC = 0.89, 0.83
and 0.87 (Figure 4B), and 0.87, 0.82 and 0.87 (Supplemen-
tal Figure S9B), respectively. These results confirm the cell
line specificity of epigenetic modification models.

Similar observations were obtained for other TFs and
other bins. The epigenetic modification models were ob-
tained from the K562 cell line in all 80 bins, and then ap-
plied to the other three cell lines (GM12878, H1-hESC and
HepG2) using epigenetic modification levels in correspond-
ing bin as inputs. Due to the fact that not all TFs were
profiled by the ENCODE project, the numbers of available
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Figure 4. Epigenetic modification model for predicting TF binding affinity in each gene location is cell line-specific. (A) Relative importance of epigenetic
modifications in predicting binding affinities of YY1 in the four (blue: K562, red: GM12878, green: H1-hESC and purple: HepG2) cell lines. The orders
of relative importance of epigenetic features to model TF binding affinity across cell lines were shown on the top of each bar with corresponding colors.
(B) Comparisons between predicted and observed binding affinities for YY1 within downstream 1 to 100 bp region (Bin +1) in the GM12878, H1-hESC
and HepG2 cell lines. The RF models were trained and applied in the same cell line. (C) The epigenetic modification models learned from the K562 cell
line were applied to other cell lines (GM12878, H1-hESC and HepG2) for predictions of YY1 binding affinities in downstream 1 to 100bp region (Bin +1).
The epigenetic modification levels at the same genome location were used as inputs. (D) Box plots for the prediction accuracies of TF binding affinities
with epigenetic modification models obtained from the K562 cell line and applied to the GM12878 cell line. 34 TFs were included due to the availability
of ChIP-Seq data. In all 80 bins, prediction accuracies are clearly decreased, compared to the predictions with the models obtained in the same cell line,
indicating that epigenetic modification models for TF binding predictions are cell line-specific.
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Figure 5. Performance of epigenetic modification models in upstream 4k-bp and downstream 4k-bp regions of gene enhancer midpoints. Prediction accu-
racies for YY1 in K562 cell lines were presented (A) in the regions of −100 to −1 bp (Bin −1) and 1 to 100 bp (Bin +1), and (B) across the 80 bins. (C)
Prediction accuracies of all TFs in K562 cell lines. (D) Relative importance of epigenetic modifications in predicting YY1 binding affinities in K562 cell
line.

TFs in the four cell line are different. We included the TFs
profiled in both the K562 and one of other three cell lines
(Supplemental Table S1), that is, 34, 27 and 24 TFs in the
GM12878, H1-hESC and HepG2 cell lines, respectively.

After applying the models constructed from the K562
cell line to the same TF in other three cell lines, the results
show that prediction accuracies dramatically decreased,
compared to predictions with models obtained in the same
cell line (Figure 4C; Supplemental Figure S10). Average pre-
diction accuracy (PCC) is reduced to ∼0.49, compared to
0.64 in each cell line. The best predictions still appear in the
downstream 1 to 300 bp regions (Bins +1 to +3), while the
median and highest prediction accuracies are decreased to
∼0.59 and 0.73, clearly lower than 0.80 and 0.93 when the
models obtained in the same cell line were used. These re-
sults elucidate that epigenetic modification models for TF
binding predictions are cell line-specific.

Epigenetic modifications predict TF binding affinities
genome-widely

Our analyses have shown the ability of epigenetic modifica-
tions to predict TF binding in the regions surrounding TSSs
of protein-coding genes, where many TFs tend to cluster
at (40,56–58). To comprehensively understand correlations
between the two factors, we further tested our predictive ap-
proach in other regions, such as gene enhancers, which are
usually far from TSSs (59,60) and suggested to consist of
densely clustered TFBSs (56,58,61), and regions surround-
ing TSSs of non-protein-coding genes.

Enhancers were defined by the FANTOM5 consortium
(48). We considered the 8k-bp genome regions centered at
the midpoint of each enhancer (Figure 1A). The RF mod-
els were rebuilt and applied to each bin with epigenetic fea-
tures as inputs and TF binding affinities as outputs (Fig-
ure 1B). The predictions show that epigenetic modification
signals are predictive to TF binding affinities in gene en-
hancers with high accuracies, e.g. PCC ∼ 0.80, for YY1 in
K562 cell lines (Figure 5A and B) and for all TFs across the
8k-bp genome regions (Figure 5B; Supplemental Figure S11
for the GM12878, H1-hESC and HepG2 cell lines). Anal-
yses on the contributions of epigenetic features to the RF
models based on ‘%IncMSE’ values show that DNA methy-
lation contributes the least in gene enhancer (Figure 5C).
Instead, histone variant H2az plays the most important
role, followed by H3K27me3, H3K4me1, H3K4me2 and
H3K4me3.

We also test the correlations in the regions surround-
ing TSSs of non-protein-coding genes. We first trained the
RF models in regions (−4k to 4k-bp) centered at non-
coding genes’ TSSs (Figure 1). For YY1 binding affinity
predictions in K562 cell lines, the applications of this model
achieved accuracies as 0.86 and 0.87 in bin −1 and bin +1,
respectively (Figure 6A). We then tested the predicting abil-
ity of RF model trained for protein-coding genes to non-
protein-coding genes. The results show that the prediction
accuracies are reduced to 0.78 and 0.79 in the two bins, re-
spectively (Figure 6B). Across the considered genome re-
gions, prediction accuracies are generally reduced about
PCC = 0.1 (Figure 6C; Supplemental Figure S12 for the
GM12878, H1-hESC and HepG2 cell lines). For all TFs,
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Figure 6. Epigenetic modification models for predicting TF binding affinities in non-protein-coding gene promoter regions. (A) Comparisons between
predicted and observed binding affinities for YY1 within upstream −100 to −1 bp (Bin −1) and downstream 1 to 100 bp regions (Bin +1) in the K562
cell line. (B, C) The epigenetic modification models learned from protein-coding genes were applied to non-coding genes for prediction of YY1 binding
affinities (B) in upstream −100 to −1 bp (Bin −1) and downstream 1 to 100 bp regions (Bin +1) in K562 cell line, and (C) across the 80 bins centered
at TSSs. The epigenetic modification levels at the same genome location were used as inputs. (D) Box plots for the prediction accuracies of TF binding
affinities with epigenetic modification models obtained from protein-coding genes and applied to non-coding genes. Red: epigenetic modification models
were trained and applied to non-coding genes; Blue: epigenetic modification models were trained for protein-coding genes and applied to non-coding genes.

similar results were discovered when models obtained for
protein-coding genes were applied to non-protein-coding
genes (Figure 6D). Taken together, these observations in-
dicate that, epigenetic modifications are predictive of TF
binding affinities genome-widely, although different pat-
terns of histone modifications and TFs tend to appear at
the promoters of protein-coding and non-coding genes or
other regions (33,40,44,60,62–64).

DISCUSSION

Regulation of gene expression by altering TF binding quan-
tities and chemical modifications of DNA sequence is a
fundamental mechanism. Certain relationships between TF
binding and epigenetic modifications have been discovered.
When studying these correlations, researches have only fo-
cused on the influence of epigenetic modifications on TF
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Figure 7. Relative importance of nucleosome occupancy across the 80 bins centered at TSSs for predicting YY1 binding affinities in K562 cell line.

binding sites or motifs (5,31,41,49,65,66). Our model en-
ables a systematic analysis of correlations between the two
factors in a quantitative manner. Also we revealed that the
correlations vary according to genome locations and cell
types.

We analyzed the correlations in both TF binding peak
and non-peak genome regions. The latter were normally
considered less important and ignored in previous peak-
based studies. As a fact, although non-peak regions con-
tribute less in the study of overall TF binding motifs or
binding sites, it is required to investigate the correlations
in these regions for a comprehensive understanding. Lower
binding quantities may be related to different contribu-
tions of DNA sequence or various epigenetic modifications.
By dividing genome regions into bins, our model enables
to study the genome-wide correlations between epigenetic
modifications and TF binding, and to discover the location-
associated relationships quantitatively.

Our method benefits the study of histone modification
and DNA methylation status, and their direct correlations
with TF binding. The profiles of histone modifications usu-
ally show very broad peaks across genome and are not con-
venient to be analyzed with the peak-based method. By rep-
resenting levels with average coverage of 100 nucleotides
in each bin, we can locally evaluate histone modification
levels and their direct correlations with TF binding. For
DNA methylation, available methods considered the CpG
sites within a certain distance from TF binding peaks (e.g.
(28,53,67)). Instead, our method enables to study direct cor-
relations of DNA methylation to TF binding.

We confirmed that, even without depending on sequence
information, epigenetic modifications are predictive of TF
binding affinities, and besides specific regions, such as en-
hancers (68), correlations between epigenetic modifications
and TF binding exist in all genome regions. These correla-
tions do not happen by chance, but are raised from the nat-
urally biological mechanisms (see Supplemental Materials,
and Supplemental Figure S13). TFs can account for around
10% of genes in human, representing the largest family of
proteins (69). These TFs may interact with DNA sequences
across the whole genome with specific sequence motifs and
binding patterns. Chemical/epigenetic modifications to ge-
nomic sequences and nearby histones may also happen at
most genome locations (3,19,20). These changes can affect
gene transcription from initiation to elongation and termi-

nation, and consequently overall gene expression. For ex-
ample, H3K4me1/2/3 mainly exist in promoter regions and
promote transcription initiation, while H3K36me3 con-
tributes to transcription elongation in transcribed regions.

Our analyses illustrated strong correlations between epi-
genetic modifications and TF binding affinities, since the
former is informative for accurate predictions of the latter.
We further validated the generality of these correlations. For
example, previous studies indicated that TF binding affini-
ties are highly dependent on expression levels of genes that
are bound by the TF (70,71). We tested if our predictions are
changed according to gene expression levels. Results show
that our predicting model is generally valid for all genes with
similar prediction accuracies, regardless of their expression
levels (see Supplemental Materials, and Supplemental Fig-
ure S14). Moreover, to test whether the correlations gener-
ally exist across the whole genome, we extended the testing
regions to upstream 10k bp of protein-coding genes. In this
region, our results also illustrate the strong correlations be-
tween the two factors by achieving high prediction accura-
cies with epigenetic modification models (see Supplemental
Materials, and Supplemental Figure S15A and B).

Taken together, the genome regions considered in
this work cover both TF-clustered and non-TF-clustered
genome sequences. TFs tend to regulate gene expression
through a combination of physical mechanisms (56,72–74).
As well, previous studies of ChIP-Seq analyses showed that
75% of TF peaks are localized in only 0.8% of the genome,
and each TF-clustered region is less than 2k bp (56,75).
These TF-binding sequences may locate in the regions near
TSSs (promoters) (40,56–58) or at a distance of thousands
of bps away from TSSs (enhancers) (56,58), with the former
spanning less than 2k-bp genome sequence (76,77) and the
latter ranging between 50 and 1500 bp (78,79). The lengths
of enhancers can also be obtained with the information
from the FANTOM5 consortium (48) (Supplemental Fig-
ure S16). Our analyses also illustrated that predictions may
vary among functional regions of the genome, e.g., epige-
netic modification models achieved significantly better pre-
dictions in gene enhancers than in promoters (Supplemen-
tal Figure S17).

Epigenetic features can reflect the genome-wide correla-
tions between the two factors in any considered cell condi-
tions, but the prediction models are cell line-specific. Previ-
ous peak-based studies have discovered that the usage of
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regulatory elements for TF binding displays a cell type-
specific fashion. This specificity is associated with DNA
sequence (31) and one or more chromatin alternations,
including histone modifications (32–35), DNA methyla-
tion status (29,36), accessibility of regulatory elements
(31,80,81) and chromatin conformation and DNA looping
(54). Our model enables to analyze this type of correla-
tions by considering both histone modifications and DNA
methylation. Moreover, models for different cell lines are
not interchangeable, indicating cell type-specific correla-
tions between TF binding and epigenetic modifications.

Our analysis elucidated that epigenetic features work in a
combinatory and non-linear fashion to reflect the TF bind-
ing affinities, and implied that only a few histone modi-
fications are necessary to faithfully model TF binding at
each genome location. This is supported by experimen-
tal evidences, e.g. certain histone modifications, such as
H3K4me2 and H3K4me3, but not all the H3 ones, are cru-
cial to TF binding (82,83), and can work as marks for tran-
scriptional activity (4,13,14). This result also agrees with
previous findings about contributions of histone modifi-
cation to gene expression variants (49). Our model fur-
ther illustrated that contributions of epigenetic modifi-
cations may change according to genome locations and
cell lines/conditions, indicating the location- and cell line-
specific associations (31,54).

We proved that, although DNA methylation does not
play dominant roles in modeling of TF binding, it has a
relatively higher contribution than a few types of histone
modifications, especially in the regions near TSSs. The rel-
ative importance of DNA methylation generally decreases
with an increase of distance, which is consistent with previ-
ously reported association between DNA methylation level
and CTCF binding (53).

The model can be extended by including other epigenetic
or chromatin structure information. For example, genome
regions that are more strongly bound by TFs are flanked by
better-positioned nucleosomes (44), and nucleosomes are
suggested to be gatekeepers of TFBSs (64). The consider-
ation of nucleosome positioning data will be helpful for un-
derstanding the relationship between chromatin structure
and TF binding. Our analyses show that prediction accura-
cies (PCCs) are ∼0.02 higher when including nucleosome
positioning data, and nucleosome occupancy is not top
ranked in the prediction model when close to TSSs (see Sup-
plemental Materials, and Supplemental Figures S18 and
S19), but more important when away from TSSs (Figure 7).
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Supplementary Data are available at NAR Online.
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