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Proteomic analysis of regenerated rabbit lenses reveal crystallin
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Purpose: To explore lens crystallin characteristics and morphology of rabbit regenerated lenses in comparison with wild
type natural lenses by means of proteomic analysis and histological assay.

Methods: The lens regeneration model of the New Zealand rabbit was established, and lens regeneration was observed
by slit lamp examination and photography. A histological assay was evaluated under light microscopy and transmission
electron microscopy (TEM). Protein samples of regenerated lenses were collected from experimental rabbit eyes 2, 4, and
16 weeks after surgery. Two-dimensional gel electrophoresis (2-DE) was performed. Image analyses was done using the
ImageMaster 2D Elite 3.01 software package. The protein spots were trypsinized and identified by matrix-assisted laser
desorption/ionization-time-of-flight-mass spectrometry.

Results: Lens regeneration began in the periphery of the capsule bag about one to two weeks after the surgery and
proceeded to regenerate toward the center. The regenerated lens appeared spherical in shape with a fairly translucent
cortical structure and a nuclear opacity. Histological findings showed that the remnant lens epithelial cells differentiate
at the lens capsule equator and new lens fibers form in a concentric pattern in a manner similar to that observed in natural
lenses. However, TEM showed morphological changes in the epithelial cells of the regenerated lenses as compared with
natural lenses. 2-D electrophoresis revealed that the patterns of protein spots from regenerated lenses (two weeks, four
weeks, and 16 weeks) were analogous to those of 16-week-old natural lenses but were substantially different from those
of two-week-old natural lenses, particularly when the two-week-old regenerated lenses were compared with the two-week-
old natural lenses.

Conclusions: Proteomic analysis revealed that crystallin expression in regenerated rabbit lenses was analogous to that of
natural lenses of adult rabbits but was different from that of very young rabbits (two weeks old), and TEM revealed the
presence of morphological changes in the epithelial cells of regenerated lenses. These results suggest that the regrowth of
lens materials in the lens capsule after endocapsular phacoemulsification might actually represent the regeneration of
“mature” lens substances, which have led us to the conclusion that the regenerative process does not exactly mimic
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embryonic development.

Cataract phacoemulsification surgery and intraocular
lens implantation is highly successful. However, it is
associated with accommodation dysfunction and various
complications [1]. Since 1827 [2], spontaneous regeneration
of the lens following extracapsular extraction has been
extensively studied in rabbits as well as other mammals
[3-9]. Reports of cell regrowth in animal lenses led us to
consider whether regeneration of human lenses might
eventually be possible [10]. Therefore, we have undertaken
studies to further understand the process of regeneration in the
rabbit lens.

It has been demonstrated that after lens substance
evacuation, the remnant lens epithelial cells differentiate at
the lens capsule equator and new lens fibers form first in the
equatorial region. They then align with each other in a
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concentric pattern in a manner similar to that observed in
embryonic and young rabbits [11].The newly formed lens
contains all of the major crystallin classes, although several
specific crystallin subunits have been found to be absent or
present in abnormally low concentrations [12].
Embryonically, lens development involves a process of
continuous proliferation and differentiation of lens epithelial
cells. As in embryonic development, regeneration of rabbit
lens proceeds by cellular proliferation and differentiation
along the capsule [13,14]. It has been hypothesized that lens
epithelial cells at the equatorial zone may have features of
stem cells, i.e. the ability to proliferate and differentiate into
lens fibers and finally form a completely regenerated lens [8,
15-18]. Recent studies, however, have reported that even stem
cells are not exempt from aging [19-22]. Therefore, we are
interested in exploring whether adult lens epithelial cells can
really regenerate lens substance by mimicking the process of
the lens development.

Given the similarity between the processes of
development and regeneration of rabbit lens [3,5,6,13], we
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have studied the histological features and the profile of the
protein composition of regenerated lens materials and
compared them with the natural lens materials from rabbits of
different ages. A perfect regenerated lens should have the
healthy appearance and histological arrangement of a new
regenerated lens as well as an accurate protein composition.
In this study, we established a lens regeneration model in the
New Zealand rabbit as previously reported [14,23], observed
the process of regeneration and the histological features, and
performed proteomic analysis to explore the characteristics of
the lens proteins.

METHODS

Establishment of regenerated rabbit lens model: All the
experimental protocols using animals strictly adhered to the
ARVO Statement for the Use of Animals in Ophthalmic and
Vision Research under an approved animal protocol.
Following Gwon’s method, lens extraction was performed by
endocapsular phacoemulsification on the experimental eyes
of 12-week-old New Zealand albino rabbits (weighing 1.5—
2.5 kg) [14,23]. Following lens extraction, all treated eyes
received topical 1% tropicamide and 0.3% tobramycin four
times daily for seven days. Lens regeneration was evaluated
by slit lamp examination, and photographs were taken.
Rabbits were divided into groups of three, which were then
sacrificed at different times (two weeks, four weeks, and 16
weeks). The regenerated lens from each rabbit was dissected
carefully and stored under different conditions, depending
upon the analysis techniques to be used. Controls were natural
lenses from 2-, 4-, and 16-week-old wild-type rabbits.
Sample preparation for histopathological assay:
Paraffin-embedded tissue section preparation—The
whole, dissociated, regenerated lenses and natural control
lenses were fixed in 10% neutral buffered formalin. Tissue
was processed in an automatic tissue processor overnight and
was dehydrated in reagent grade alcohol, cleared with xylene,
and infiltrated with paraffin. The paraffin embedded tissue
was sectioned at 5 um and stained with hematoxylin and eosin.
Tissue preparation for transmission electron
microscopy—Lens capsules were removed from the lens
cortex. The capsule specimens were immediately placed in a
1% glutaraldehyde/4% formaldehyde solution and sent to the
pathology laboratory. Post-fixation was performed in osmium
tetroxide. The capsule specimens were dehydrated in
increasing concentrations of ethyl alcohol and embedded in
resin. Ultrathin, 100 nm sections were stained with uranyl
acetate and lead citrate, and transmission electron microscopy
(TEM) was performed with a Philip CM-10 electron
microscope (Philip, Eindhoven, The Netherlands). The TEM
slides were reviewed in a masked fashion.
Sample preparation for protein analysis: Lens samples were
collected from experimental regenerated lenses at different
times (2, 4, and 16 weeks after surgery) and from natural
control lenses. The capsules of the lenses were removed, and
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the lens materials were pooled and ground to fine powder with
a mortar in the presence of liquid nitrogen. The powder was
then dissolved in lysis buffer that contained 7 M urea, 2 M

thiourea, 2% w/v 3-[(3-
Cholamidopropyl)dimethylammonio]propanesulfonic  acid
(CHAPS), 1% dithiothreitol (DTT), 2%V/V carrier

ampholyte, pH 3-10, and protease inhibitor cocktail mix
(Boehringer Mannheim GmbH, Mannheim, Germany) and
then spun at 12,000 rpm at 4 °C for 20 min. The supernatant
was collected and stored at —70 °C until further use. Protein
concentration was measured by the Bradford assay [24].

Two-dimensional electrophoresis: The proteins of all samples
were first characterized using 13% SDS-PAGE. The
concentration of the sample was 2 mg/ml, and the amount was
20 pl/band. The gels were stained with Coomassie brilliant
blue R-250 (Sigma-Aldrich Corp., St. Louis, MO). Two-
dimensional gel electrophoresis (2-DE) was performed as
described by Gorg [25] using precast immobilized pH
gradient (IPG) strips (immobiline DryStrip pH3-10 NL,18cm;
GE Healthcare Life Science, Piscataway, NJ) in the first
dimension (isoelectric  focusing) according to the
manufacture’s instructions, and SDS-PAGE in the second
dimension. Total protein (150 pg) was loaded on each IPG
strip. After separation, the strips were immediately
equilibrated two times for 15 min each time; in the first 15
min, the strips were equilibrated with 50 mM Tris-HCI, pH
8.8, 6 M urea, 30% glycerol, 2% SDS, and DTT (0.5% W/V).
In the second 15 min step, 4.5% w/v iodoacetamide, but not
DTT was added to the equilibration solution.to alkylate thiols.
The separation in the second dimension was performed using
13% SDS-PAGE gel in the Protein II device (Bio-Rad,
Hercules, CA). The strips were held in place with 0.5%
agarose dissolved in SDS/Tris/glycine containing running
buffer, and electrophoresis was performed at a constant
current (30 mA/gel) at 16 °C. After electrophoresis, gels were
stained with Coomassie brilliant blue R-250.

Image analysis: The stained 2-D gels were imaged using the
ImageScanner (Amersham Pharmacia Biotech). Images were
digitized and evaluated with ImageMaster 2D Elite 3.01
software (Amersham Pharmacia Biotech). Image analysis was
conducted for spot detection, matching, background
subtraction, normalization, and isoelectric point/molecular
weight calibration.

Mass spectrometry. Trypsin in-gel digestion was performed
as described by Rosenfeld et al. [26]. Briefly, gel spots were
excised from the stained gel and cut into 1-2 mm? slices then
destained with 25 mM ammonium bicarbonate/50%
acetonitrile (Fisher Scientific, Springfield, NJ) and
lyophilized with a SpeedVac Plus SCI10A vacuum
concentrator (Savant, Holbook, NY). The gel was rehydrated
in trypsin solution (Boehringer Mannheim). The ratio of
enzyme to protein was about 1:20 [27]. After overnight
incubation at 37 °C, peptides were eluted with 5%
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trifluoroacetic acid (TFA) at 40 °C for 1 h followed by 5%
TFA/50% acetonitrile elution until the gel slices became
white. The eluate was collected in an Eppendorf tube and
lyophilized with SpeedVac Plus SC110A. The peptide
mixture was dissolved with 0.5% TFA for mass spectrometry
analysis. The peptide mixture with matrix solution, a-
cyano-4-hydroxycinnamic acid (CHCA; Sigma, St. Louis,
MO), was measured on matrix-assisted laser desorption/
ionization-time-of-flight-mass spectrometry (MALDI-TOF-
MS [Reflex III; Bruker, Billerica, MA]) fitted with N, lasers.
The protein search was performed on the Matrix Science
website with the search parameters set as follows: enzyme:
trypsin, mass values: monoisotopic, Peptide Mass Tolerance:
+0.5 Da, Peptide Charge State: 1+, Max Missed Cleavages:
1.

RESULTS

Shape and transparency of regenerated lens: During the first
one to two weeks after the surgery, lenses regenerated along
the periphery of the capsular bag between the anterior and
posterior capsules. With time, the earliest regenerated lens
fibers became progressively compacted and pushed toward
the center of the capsular bag. Finally, progressive regrowth
resulted in a regenerated lens exhibiting star-shaped nuclear
opacity. Cortical lens fibers, which were produced in the later
stages of regeneration, appeared quite translucent. The
capsular bag was almost completely filled with a new,
regenerated lens by the end of 12-16 weeks (Figure 1). After
the fully regenerated lens (16 weeks) was removed from the
eye, it appeared spherical in shape (less round than a normal
lens) and had a fairly translucent cortical structure with some
opaque spots and a star-shaped nuclear opacity (Figure 2).

Histological findings: Light microscopy revealed a single
layer of lens epithelial cells lining the anterior capsule (Figure
3). The nearer the cells were to the equator, the more similar
they were to epithelial cubical cells morphologically. Partial
cell differentiation was seen in the equatorial zone. As in
natural lenses, lens epithelial cells in regenerated lenses
proliferate and subsequently elongate in an anterior-posterior

Figure 1. Representative regenerated lens at 12 weeks observed by
slit lamp examination and photography. A: Relatively clear lens
substance is seen in the periphery. B: Central opacity is visible. The
capsular bag was almost completely filled with a new regenerated
lens by the end of 12—16 weeks.
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direction, forming a classical “arch zoster” due to anterior
displacement of the nuclei. A similar cellular morphological
change was noted in lens fiber differentiation. Lens fiber
alignment was uniform in the regenerated lens, particularly in
the peripheral area. However, TEM (Figure 4) revealed that
compared with natural lenses, the epithelial cells of the
regenerated lenses had some morphological changes in both
the central and peripheral equatorial areas, showing overly
dense, indented nuclei, some edematous mitochondria, and an
expanding endoplasmic reticulum.

Protein analysis: The protein expression profile of
regenerated and control lenses was analyzed by 2-DE and
mass spectrometry. Abundant protein spots detected at the 20—
43 kDa range (pH 5-9) appeared likely to represent
crystallins. Peptide mass fingerprinting (PMF) of 16 of these
spots demonstrated that 14 of them were indeed crystallins
(Appendix 1).The patterns of protein spots were very similar
among all the stages of regenerated lenses (two weeks, four
weeks, and 16 weeks; Figure SA-C) and shared a high degree
of analogy with those of 16-week-old natural lenses (Figure
5F). However, these patterns were significantly different from
those of two-week-old and four-week—old natural lenses
(Figure 5D,E). Specifically, the patterns of two-week-old
regenerated lenses showed remarkable analogy with those of
thel6-week-old natural lens (Figure 5F) but not with two-
week-old natural control lenses (Figure 5D). As expected,
there was not a close match between the regenerating stage of
the lens and the growth stage of the normally developing
rabbit.

Although the patterns of regenerated 16-week-old lenses
and 16-week-old control lenses were very similar, the protein
profiles of 16-week-old regenerated lenses revealed relatively
higher intensity of spot 2 (aA), spot 8 (BB1), spot 9 (BB2), and
spot 10 (BA2) and relatively lower intensity of spot 12 (BA3)
and spot 13 (BB3) when compared to 16-week-old natural
lenses using computer analysis (Table 1). The same

Figure 2. Regenerated lens at 16 weeks was compared with natural
control lens. A: The representative photograph shows the fully
regenerated lens, which looked flatter than the natural lens and quite
translucent. It has a star-shaped nuclear opacity and some opaque
spots. The anterior capsulotomy site were indicated by a small black
arrow. B: A natural control lens from a 16-week-old rabbit is shown.
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Figure 3. Histological characteristics of
regenerated lens seen by light
microscopy. A: A single layer of the lens
epithelial cell lines the anterior capsule.
Cells are similar to epithelial cubical
cells morphologically. B: Partial cell
differentiation is seen in the equatorial
zone. C: Proliferated epithelial cells
have elongated in an anterior-posterior
direction, forming a classical “arch
zoster” due to anterior displacement of
the nuclei. D: Lens fiber alignment was
uniformly arranged in the regenerated
lens, particularly at the periphery.

magnitude changes in the intensity of some spots
corresponding to several crystallins were also observed
among 2-, 4-, and 16-week-old regenerated lenses.

DISCUSSION

Gwon and coworkers [11-14,28] have extensively studied
rabbit lens regeneration, observing the regenerative process
in the New Zealand albino rabbit after endocapsular lens
extraction. They studied the histological changes and protein
composition of regenerated lenses, showing that regenerated
rabbit lenses differentiate normally at the equatorial zone and
produce a-, -, and y-crystallins in proportions similar to those
of natural lenses [11,12]. Based on these observations, they

proposed that lens regeneration mirrors the stages seen in
embryonic development.

We followed Gwon’s methods to establish the rabbit lens
regeneration models. Relatively clear regenerated lenses but
with a nuclear opacity and some opaque spots in the cortex
were formed within 12—-16 weeks after surgery. Similar to
what was reported by Gwon et al. [11,13], we found by light
microscopy that remnant lens epithelial cells differentiate at
the lens equator and new lens fibers aligned in a concentric
pattern, which is histologically similar to that of the early stage
of lens development. However, TEM revealed lens equatorial
epithelial cells with morphological changes including overly
dense, indented nuclei, edematous mitochondria, and
expanding endoplasmic reticulum. Although more complete
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Figure 4. Representative transmission electron micrograph of epithelial cells in a regenerated lens. Morphological changes are seen both at
the peripheral equatorial (A) and central (B) areas, including overly dense and indented nuclei, edematous mitochondria, and an expanding
endoplasmic reticulum when compared to natural lenses (C,D). Magnification is 8,000X).
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Figure 5. Two-dimensional electrophoresis photography of regenerated lens. A-C: Patterns of protein spots in regenerated lenses (two weeks,
four weeks, and 16 weeks). D-F: Patterns of protein spots of natural lenses (two weeks, four weeks, and 16 weeks). The protein patterns are
very similar among all stages of regeneration (two weeks, four weeks, and 16 weeks) and shared a high degree of analogy with those of 16-
week-old natural lenses (F). However, these patterns were significantly different from those of two-week-old or four-week-old natural lenses

(D,E).

analysis will be needed to draw definitive conclusions, these
results suggest changes usually associated with cellular
senescence and not with the normal lens developmental
process.

More importantly, proteomic 2-DE with peptide mass
fingerprinting identification showed that although the
regenerated lens indeed contains all the major a-, B-, v -
crystallins, there was not a close match between the protein
expression pattern of the lens substance in the regenerating
stage of lens and the pattern in the growth stage of the normally
developing lens.

The rabbits selected for surgery were about 12 weeks old.
We began to count the lens regeneration time when the surgery
was performed. For example, two weeks after surgery, we
recorded a regenerated lens as two weeks old, although the
rabbit’s age was 14 weeks. Four weeks after surgery, the rabbit
age is actually 16 weeks, but we recorded the regenerated lens
as four weeks, and so on. We compared 2-, 4-, and 16-week-
old regenerated lens substances with natural lens substances
from rabbits aged two weeks, four weeks, and 16 weeks. 2-
DE showed that the protein spots of all regenerated lenses (two
weeks, four weeks, and 16 weeks) were remarkably analogous
to those of natural clear lenses from adult 16-week-old rabbits.
The similarity was particularly evident in the major crystallin
subunit fractions. Interestingly, however, these fractions were
not at all analogous to natural lenses of earlier developing age

rabbits, particularly when the two-week-old natural lenses
were compared with the two-week-old regenerated lenses.

During the development of the natural lens, the protein
expression pattern is in a continuous changing process.
However, there is a more noticeable level of change from the
newborn stage or very early developing stage to adult stages
[29-32]. Although we did not follow the changes in the protein
expression over time in the regenerated lens, the protein
expression pattern of the early regeneration stage (such as
two-week-old regenerated lens) showed clear analogy with
those of adult rabbit natural lens (16 weeks old) with respect
to crystallin expression. The protein patterns are very similar
among all the stages of regeneration (two weeks, four weeks,
and 16 wks) from early regeneration time to late regeneration
time. The reason could be that even for the early regenerating
lens, the rabbit’s actual age is mature enough. Therefore, the
new regenerating lens substance has the similar protein
pattern with the natural adult lens but such a dissimilar protein
pattern from newborn or early developing lens. Moreover,
although 2-D gels show a similarity in protein expression
pattern between 16-week-old regenerated lenses (rabbit age
28 wks) and 16-week-old natural lenses (rabbit age 16 weeks),
further quantitative comparison revealed that the amounts of
crystallin subunit spots in 16-week-old regenerated lens
materials (rabbit age 28 weeks) were different from those
found in the natural lens materials of 16-week-old rabbits.
However, the real meaning of the differences will require
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TABLE 1. CHANGES IN NORMALIZED SPOT VOLUME OF CRYSTALLIN SUBUNITS IN REGENERATED RABBIT LENS.

Spot No. Crystallin name Regl
1 /* 2.12
2 aA 11.41
3 /* 3.43
4 BA4 7.82
5 BA3 (contains: PA1) 5.16
6 BB3 5.81
7 aB 2.02
8 BB1 5.53
9 B2 14.58
10 BA2 4.78
11 BA3 1.40
12 BA3 0.77
13 BB3 0.13
14 A 5.27
15 aB 14.77
16 yC /

Reg2 Reg3 Control
3.32 1.89 2.11
12.31 17.47 10.15
2.02 4.52 3.41
6.32 5.34 4.52
4.39 5.72 5.65
5.8 6.13 5.56
1.12 1.22 1.45
4.05 7.33 4.57
10.89 13.63 9.36
5.32 7.03 5.03
1.43 1.28 1.34
1.67 1.16 1.88
0.19 0.09 1.74
6.43 5.39 6.41
12.11 14.16 13.82
1.43 1.28 1.68

Normalized spot volume of each crystallin subunit is an average of three or four gels of each group. A spot is calculated by
dividing its volume by the total volume and multiply by 100. Regl: lenses from a two-week-old regenerated lens; Reg2: lenses
from a four-week-old regenerated lens, Reg3: lenses from a 16-week-old regenerated lens; Control: natural lenses from a 16-
week-old rabbit. The asterisk indicates that the protein spot was not identified as crystalline.

further investigation because the similar magnitude of the
increases and decreases of some crystalline subunit spots were
also observed among 2-, 4-, and 16-week-old regenerated
lenses.

In summary, rabbit lens regeneration is the result of pre-
equatorial epithelial cell proliferation and differentiation,
regardless TEM showed the morphological changes of the
nuclei and organelles in lens epithelial cells, consistent with
those previously reported that have lead to the hypothesis that
lens regeneration mimics the process of lens development.
However, proteomic analysis revealed that the protein profile
of regenerated lenses (even two-week-old regenerated lenses)
was not analogous to the one existing in the natural lenses in
the early developing stage (two-week-old rabbits) but shares
a much clearer similarity with profile of the natural lenses of
adult rabbits (16 weeks old). This finding suggests that the
regrowth of lens materials in the lens capsule after
endocapsular phacoemulsification might actually represent
the regeneration of “mature” lens substances. Our results have
led us to the conclusion that the regeneration process does not
exactly mimic embryogenesis. More studies are needed to
understand the synthesis of lens crystallin proteins as well as
posttranslational modification changes in the regenerative
process. Such understanding is critical for tissue engineering
efforts aimed at regenerating fully functional clear lenses
rather than old cataractous lenses.
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Appendix 1. Rabbit crystallins subunits identified by peptide mass
fingerprinting.

To access the data, click or select the words “Appendix
1.” This will initiate the download of a compressed (pdf)
archive that contains the file.
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