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Abstract: Aluminum alloys are soft and have low melting temperatures; therefore, machining them
often results in cut material fusing to the cutting tool due to heat and friction, and thus lowering the
hole quality. A good practice is to use coated cutting tools to overcome such issues and maintain good
hole quality. Therefore, the current study investigates the effect of cutting parameters (spindle speed
and feed rate) and three types of cutting-tool coating (TiN/TiAlN, TiAlN, and TiN) on the surface
finish, form, and dimensional tolerances of holes drilled in Al6061-T651 alloy. The study employed
statistical design of experiments and ANOVA (analysis of variance) to evaluate the contribution
of each of the input parameters on the measured hole-quality outputs (surface-roughness metrics
Ra and Rz, hole size, circularity, perpendicularity, and cylindricity). The highest surface roughness
occurred when using TiN-coated tools. All holes in this study were oversized regardless of the
tool coating or cutting parameters used. TiN tools, which have a lower coating hardness, gave
lower hole circularity at the entry and higher cylindricity, while TiN/TiAlN and TiAlN seemed to be
more effective in reducing hole particularity when drilling at higher spindle speeds. Finally, optical
microscopes revealed that a built-up edge and adhesions were most likely to form on TiN-coated
tools due to TiN’s chemical affinity and low oxidation temperature compared to the TiN/TiAlN and
TiAlN coatings.

Keywords: Al6061-T651; coating; TiAlN; TiN; TiN/TiAlN; drilling; surface roughness; hole size;
circularity; perpendicularity; cylindricity

1. Introduction

Aluminum and its alloys are used in many industries, including automotive, building,
electrical, and aerospace, owing to characteristics such as low metal density (lightweight),
durability, electrical conductivity, high strength, corrosion resistance, ductility, and low
cost compared with other metals. Aluminum demand is growing worldwide and is
expected to grow significantly due to the increased demand as various industries move
toward lightweight materials [1,2]. Al6061 is one of the most widely used aluminum
alloys in the industry. Its list of applications includes [2]: building material (wide roof
structures), welded assemblies, automobiles, aircraft and truck frames, chemical equipment,
electronic components, fasteners, yacht building, boats and bicycle frames, and camera
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lenses. Al6061 consists mainly of aluminum, magnesium, and silicon. The other metallic
elements include, in descending quantity order: iron, copper, chromium, zinc, manganese,
and titanium [3,4]. Machining of aluminum alloys can be economically, effectively, and
efficiently done because their machining properties are superior to those of pure aluminum
due to the unique metallurgical structure [2,4,5].

Machining Al6061 and other alloys may pose some challenges, including the wear
of the tools. However, it is advisable to use a feed rate up to twice that used for drilling
steel for the ease of penetration of most aluminum alloys, given the feed varies with drill
diameter. Twist drills are perhaps the most widely used cutting tools for hole-making
operations [6]. A good cutting tool should be able to reduce the likelihood of chip adhesion
and burr formation to improve the quality of the machined surface. Carbide tools are used
for rapid hole drilling due to their prolonged life compared to tools made from high-speed
steel and higher hardness [7,8]. The microstructure of the cutting tool was previously
reported to influence the machined part’s surface finish and cutting forces when machining
Al6061 alloy [9]. Coolants can be an excellent choice to improve part finish when machining
light alloys and to prolong tool life [10,11], but this is not always possible, depending on
the final part requirements. The choice of feed rates and cutting speeds depends on
the workpiece’s mechanical properties, the material of the cutting tool, and its coating.
Previous studies [12–23] used PCD (polycrystalline diamond), coated and uncoated HSS
(high-speed steel), and carbide tools for drilling aluminum alloys. Carbide tools showed
superior results in terms of surface finish and prolonged tool life, especially under dry
cutting conditions [22]. In addition, coated carbide tools provided lower surface roughness
compared to uncoated ones [17]. PCD cutting tools were superior in terms of minimizing
adhesion and were most suitable for cutting aluminum alloys under dry machining due
to their low coefficient of friction (COF) and low chemical affinity with aluminum [23,24].
On the other hand, a built-up edge (BUE) on the cutting tools is common when machining
aluminum alloys [23]. The BUE layer formed on the tool surface comprises aluminum alloy
and its precipitates.

Table 1 summarizes the main findings in several studies that investigated the influence
of different tool properties on the quality of machining for Al6061 alloy with and without
reinforcements. In this table, different analysis methods also were utilized, and their
effectiveness to identify the optimum operating conditions was evaluated. The first study
in Table 1 [21] can be taken as an example of the effect of different cutting parameters, such
as cutting speed, feed rate, point angle, clearance angle, and drill diameter, on machining
quality represented by surface roughness, burr thickness, and circularity variance. This
study highlighted the effect of cutting speed over other input parameters. The second
study in this table [19] showed that Grey relational analysis is an effective method to
find the optimum operating conditions. The third study [13] found that feed rate is the
most affecting factor in burr formation. Table 1 also shows some studies [13–15,19,21,25]
that investigated the influence of input parameters, such as spindle speed, feed rate,
drill diameter, coating and Al6061 reinforcements, on machining quality and tool defects.
For Al6061, Al6061-SiC, and Al6061/20%SiCp, the feed rate was found to be the main
parameter that affects hole drill efficiency when the drill tool is HSS or solid carbide [19,25].
For drilling hybrid Al-6061/SiC/B4C/talc using HSS, Kumar et al. [15] stated that cutting
speed had a significant impact on the surface-roughness values, and consequently, the
surface roughness values were further found to impact negatively on wear of the tool, the
drill bit angle, and the cutting speed. The dynamic impact of both feed rate and cutting
speed also varies with material reinforcement, material alloys, or components, and tool
material and size of the cutting tool [12,21,26]. The most effective parameter may vary
according to the reinforcement and the considered machining quality, including the effect
on the tool’s surface. It can be concluded from the reviewed studies that the interaction
between the workpiece and the tool’s surface is of great importance and improving the
tool’s surface may have a considerable effect on the outcome of the machining process.
Accordingly, many improvements have been applied to the HSS and solid-carbide drill
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tools, including various types of coatings. The wide range of coatings and operating
conditions that can be used for various workpiece materials encourage research in this
field, which contributes to the knowledge in the field of machining. It was also observed
that in most machining studies, design of experiments and optimization techniques were
usually used to analyze and optimize the measured responses [27]. Optimization is carried
out by studying the input parameters of a drilling process such as its tool geometry,
coating, cutting parameters, or other related machining parameters that might affect the
performance of the analyzed outputs [28].

Surface roughness as a statistical measurement for the characteristics of surface asper-
ities can be of great importance in the manufacturing and machining processes. Higher
roughness may reflect asperities of deeper micro-valleys, which in turn results in higher
stress concentration and thus increases the possibilities of microcrack initiation [29]. Ac-
cordingly, and due to the fracture mechanics theory, surface roughness is related to the
fatigue performance and the life of the mechanical component [30]. For the drilling process,
one of the quality measurements for the drilled holes is to check the value of surface
roughness, which should be within the accepted range [31]. The variation of machining
parameters affects the surface roughness of the machined part according to the different
vibration, heat, and traction forces generated, which are also affected by the tool’s material,
geometry, and surface properties or coating. Accordingly, the operating parameters should
be optimized to obtain the lowest roughness. Surface roughness can be represented by
many amplitude parameters, such as Ra and Rz, which are used in the current study.
Different factors, such as the cutting-tool material, coating, and cutting parameters can
influence the tool life and vibration during drilling, which in turn will affect the form
and dimensional tolerances of the hole and cause it to deviate from the perfect circular
shape [32].

Achieving the required drilling diameter accurately and reducing the hole circularity
reflect the quality of the drilling process. Perpendicularity and cylindricity are important
geometrical tolerances that could cause assembly problems, such as fluttering at high
pressure in a nozzle check valve, even though other surface tolerances, such as roughness,
are within the design limits [33]. The perpendicularity error describes how much the axis of
the drilled hole deviates from the normal to the datum surface of the workpiece surface [34].
The perpendicularity error can be measured by the angle between the hole’s axis and the
normal to the datum surface. Another widely used perpendicularity measurement is the
tolerance between the drilled hole and the maximum pin size to be fitted in the hole normal
to the datum surface. The cylindricity error, or tolerance, can be defined as the minimum
radial distance separating two coaxial cylinders fitted to the cylindrical surface under
examination [33].

It was observed that many of the reviewed studies investigated the effect of cutting-
tool coatings on machining Al6061 alloy. Nevertheless, there was no single study that
evaluated the effect of the cutting-tool coating when all other cutting parameters were fixed
(i.e., all cutting tools had the same diameter, point and helix angles, hardness, tolerance, etc.)
on hole quality in Al6061 alloy. Accordingly, this study aims to fill this gap in the field of
cutting-tool coatings and assess the influence of drilling parameters (spindle speed (n), feed
rate (f )) and the type of tool coating (TiN/TiAlN, TiAlN, and TiN) on hole-quality metrics
(surface roughness, hole-size circularity, cylindricity, and perpendicularity) during drilling
of Al6061 alloy. Moreover, the current study evaluates the different forms of damage that
may form on the surface borehole in Al6061 alloy when drilling using those three types
of tool coatings, and the mechanisms responsible for their formation. The results of the
drilling experiments were further evaluated using the statistical method ANOVA (analysis
of variance) to assess the percentage contribution of each input parameter and their linear
effects on the analyzed outputs.
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Table 1. Summary of reviews of research publications on the impact of machining parameters on machining quality of
aluminum alloys.

Material Tool Details Input Parameters Analyzed Outputs Refs

Al6061 drilling

Uncoated HSS
Helix angle: 45◦

Point angle: 100◦, 110◦, 118◦

Drill diameter: 8, 10, and
12 mm

Feed rate: 0.3, 0.5, 0.6
(mm/rev)

Spindle speed: 600, 800, 1000
(rpm)

SR, BH, BT, CIRC [19,21]

AI6061 drilling TiN-HSS Point angle: 118◦

Drill diameter: 8 mm

Feed rate: 0.04, 0.08
(mm/rev)

Spindle speed: 1000, 1500,
2000 (rpm)

CF, TW, BH, BT, CIRC,
CHF [13]

Al6061/20%SiCp
composite drilling

Tipped carbide
Point angle: 90◦, 118◦, 135◦

Drill diameter: 10 mm

Feed rate: 0.12, 0.16, 0.20
(mm/rev)

Spindle speed: 900, 1120,
1330 (rpm)

CF, SR [20]

Al6061/B4C composite
milling

Uncoated carbide inserts
Cutting diameter: 40 mm

Feed rate: 0.08, 0.1, 12, 0.16
(mm/tooth)

Milling speed: 220, 285, 370,
480 (mm/min)

SR, PO [16]

Al6061-T6 drilling Uncoated HSS
Drill diameter: 11.7 mm

Feed rate: 0.2, 0.3, 0.4
(mm/rev)

Cutting speed: 60, 75, 100
(rpm)

HS, CIRC, SR [26]

Al6061/SiC/B4C/t lc
composite drilling

Uncoated HSS
Drill diameter: 6, 7, 8 mm

Feed rate: 15, 25, 35
(mm/min)

Cutting speed: 750, 1000,
1250 (rpm)

CF, SR, CIRC [15]

Al2124/20 % B4C
end milling Uncoated carbide

Feed rate: 0.1, 0.2, 0.3
(mm/rev)

Cutting speed: 50, 100, 150
(rpm)

SR [14]

Al6061 and Al6061-SiC
drilling

Uncoated carbide
Point angle: 96◦, 118◦, 140◦

Drill diameter: 10 mm

Feed rate: 0.1, 0.15, 0.2
(mm/rev)

Cutting speed: 40, 60, 80
(rpm)

BH, BT [25]

Al6061-T6
turning -

Feed rate: 0.2, 0.1, 0.05, 0.01
(mm/rev)

Spindle speed: 1000 (rpm)
SR (rendering) [35]

Note: SR: surface roughness; BH: burr height; BT: burr thickness; CIRC: circularity; CF: cutting forces; TW: tool wear; HS: hole size; CHF:
chip formation; PO: power.

2. Materials and Methods
2.1. Workpiece Material

Al6061-T651 was used in the current study. The material is an aluminum alloy
hardened by precipitation, containing Mg (magnesium) and Si (silicon) as its main alloying
components. Table 2 shows detailed information on the mechanical, electrical, and thermal
properties. The size of the Al6061-T651 workpiece used in this work was 210 × 150
× 10 mm3. Three drilling tools with three different coatings (TiN/TiAlN, TiAlN, TiN)
with a 10 mm diameter were used. For each type of coating, two parameters (spindle
speed and feed rate) were tested with three levels for each parameter, thus requiring the
drilling of 27 holes. However, to reduce any scattering in the results, each drilling was
repeated three times, and thus the total number of holes drilled in this study was 81.
Accordingly, 9 × 9 holes were drilled in the workpiece with a center-to-center distance of
15 mm between adjacent holes in each row, and a 15 mm distance between the adjacent
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rows. These distances were chosen to ease the drilling process and minimize the effect of the
drilling on adjacent holes in the workpiece. The hardness of the workpiece was measured
using a Vickers hardness tester (Köseler, Istanbul, Turkey) using a 30 Kgf pyramid indenter,
and was found to range between 111.5 and 112.5 HV.

Table 2. Al6061-T651 alloy material properties Adapted with permission from ref. [36]. Copyright
2017 Elsevier, and component element properties Adapted with permission from ref. [37]. Copyright
2012 Elsevier.

Properties Metric Element Percentage

Density (g/cc) 2.7 Aluminum (Al) 98

Ultimate Tensile Strength (MPa) 310 Chromium (Cr) 0.04–0.35

Tensile Yield Strength (MPa) 276 Copper (Cu) 0.15–0.4

Modulus of Elasticity (GPa) 68.9 Iron (Fe) 0.7

Bearing Yield Strength (MPa) 386 Magnesium (Mg) 0.8–1.2

Poisson’s Ratio 0.33 Manganese (Mn) 0.15

Fatigue Strength (MPa) 96.5 Silicon (Si) 0.4–0.8

Fracture Toughness (MPa-m1/2) 29 Titanium (Ti) 0.15

Machinability (%) 50 Zinc (Zn) 0.25

Shear Modulus (GPa) 26

Specific Heat Capacity (J/g-◦C) 0.896

Melting Point (◦C) 582–652

Hardness (HV) 107

2.2. Cutting Tools

Carbide-coated twist drills 10 mm in diameter with a point angle of 140◦ and a helix
angle of 30◦ were used in the current study. For most drills, the standard helix angle
is usually 30◦ [6], although the majority of drills have a 118◦ drill point angle, and the
advised point angles for drilling operations on Al6061-T651 alloy materials are within
130◦–140◦ [12–15,19,25,36,38–40]. Additionally, large helix angles, typically greater than
24◦, allow rapid evacuation of chips, whereas large point angles boost chip evacuation
and minimize burrs. The silicon content in the aluminum alloy governs the point angle of
the drill. For example, a point angle of 130◦–140◦ is recommended for aluminum alloys
with low or no silicon content [12–15,19,25,36,38–40] It has also been reported that point
and helix angles affect the surface roughness, such that increasing these parameters can
minimize burr formation and improve surface quality [13]. In addition, the 10 mm diameter
drill bit was selected, as it is a regular size in Al6061 applications for creating holes, and
this hole size allows the insertion of the stylus probe for the surface-roughness tester inside
the hole.

Figure 1 shows geometrical details of the drilling bits and the workpiece. Table 3
shows the three types of tool coatings investigated in this study. Firex coating is the
multilayer coating of titanium aluminum nitride (TiN/TiAlN) applied to carbide drills. It
provides maximum wear resistance and high thermal stability during drilling operations,
and it is more suitable for dry machining. According to previous studies [12,41], firex
coating performs better than TiN coating; combines the benefits of TiN, TiAlN, and TiCN;
and resists fire and heat. Titanium nitride (TiN) coating is commonly used for general
cutting of metals and plastics [12]. TiN coating has high ductility and can protect the
cutting tool from abrasive and adhesive wear [12,42]. The good thermal stability and low
COF of TiN coating lower burrs and improves the heat removal from the cutting zone.
Titanium aluminum nitride (TiAlN) coating also has good ductility and is more suited for
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dry-machining applications; it has an enhanced oxidation resistance and higher hardness
than TiN coating [12,41].
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Table 3. Details of the cutting-tool materials and coatings Adapted with permission from ref. [12].
Copyright 2019 Elsevier.

Description Tool A Tool B Tool C

Tool material Solid carbide Micrograin carbide Solid carbide

Drill diameter (mm) 10 10 10

Helix angle (◦) 30 30 30

Point angle (◦) 140 140 140

Tolerance M7 M7 M7

Coating Firex coating
(TiN/TiAlN) TiAlN TiN

Flute length 47 47 43

Overall length 89 89 89

Color Red violet Black violet Gold

Coating thickness
(µm) 1.5–5 1.5–4 1.5–3

Layer structure Multilayer Monolayer Monolayer

Nano hardness (HV
0.05) 3000–3300 3300 2400

Friction coefficient 0.5 0.5–0.55 0.4–0.5

Oxidation resistance
(◦C) 930 700–800 593

Manufacturer GUHRING
(Germany) OSG (Japan) GUHRING

(Germany)

2.3. Experimental Procedure

Drilling tests were carried out on a Rapimill 700-CNC milling machine (Knuth,
Neumünster, Germany) that provides spindle speeds of up to 7000 rpm. The Al6061 sample
was mounted by machine work-holding fixtures and held in place. The drilling parameters
used in the current study are shown in Table 4. To validate the study’s repeatability, each
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combination of experimental parameters was repeated three times, and their mean values
were reported thereafter. To detect the effect of input parameters (i.e., spindle speed, feed
rate, and tool coating) on measured outputs, the analysis used a full factorial design with
three variables and three levels, as shown in Table 4. The surface-roughness metrics and
hole form and dimensional tolerances were analyzed using ANOVA in MINITAB 18 soft-
ware (18.1, State College, Centre County, PA, USA) to check their contributions and the
interaction of the input parameters on the analyzed outputs.

Table 4. Details of cutting parameters and tool coatings used in the study.

Factor Level 1 Level 2 Level 3

Spindle speed (rpm) 1000 2000 3000

Feed rate (mm/min) 50 100 150

Coating TiN/TiAlN TiAlN TiN

For each type of tool coating, a fresh drill was used to drill a set of nine holes com-
bining three feed rates and three spindle speeds to minimize any effects arising from tool
wear [12]. The drilling tests were conducted under dry conditions. The cutting parameters
were chosen based on previous literature on the machining of metal alloys and tool manu-
facturers’ recommendations. As evident from the past literature, the typical feed rate for
drilling aluminum alloys ranged between 0.05 and 0.3 mm/rev, with spindle speeds of 1000
to 10,000 rpm [6,18,29] depending on the size of the cutting tool, grade of the aluminum
alloy, and analyzed outputs.

2.4. Measurement of Surface Roughness

The arithmetic height average Ra is one of the most widely adopted measurements
for surface roughness. Ra is the average of the absolute height deviation from the mean
line over sampling length, as shown in Equation (1) [43]. The 10-point height roughness
parameter Rz was also used in the current study, as it is more sensitive than Ra to irregular
heights or depths of the peaks and valleys, respectively. According to the international
standard ISO, Rz is the difference between the average of the five maximum heights and the
average of the five lowest valleys over the measured length, as shown in Equation (2) [43].

Ra =
1
l

∫ l

0
|y(x)|dx ≡ 1

n

n

∑
i=1
|yi| (1)

Rz(ISO) =
1
n
(

n

∑
i=1

pi −
n

∑
i=1

vi) (2)

where y(x) is the profile function, pi is the peak points, vi is the valley points, and n is the
number of samples.

The roughness parameters Ra and Rz were measured using a Mitutoyo SJ-210 surface-
roughness tester (Mitutoyo, Kawasaki, Japan). The device has a measuring range of
17.5 mm and a detector range of 360 µm (−200 µm to +160 µm). It also has a measuring
force of 4 mN and a 5 µm stylus diamond tip. The driving speed of the stylus was kept
constant at 0.5 mm/s during the measurement. The Al6061 workpiece was placed vertically,
with the axes of the holes in the horizontal direction [12,38]. The roughness tester was
placed in front of each hole to allow the stylus arm, which has the probe tip, to be inserted
inside the holes. The overall travel length was set to approximately 10 mm. For each hole,
four measurements were taken its periphery at 0◦, 90◦, 180◦, and 270◦, and their average
was reported for each hole-roughness value (Ra and Rz).

In addition, the holes were cut in half and the wall of the hole was examined using a
Zygo Zegage contactless surface profilometer (Zygo ZEGAGE, Zygo Corporation, Mid-
dlefield, CT, USA). In addition, ZeMaps and MetroPro surface-analysis software (version,
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Zygo corporation, CT, USA) were used to monitor the surface topography and further
analyze the surface roughness of the holes. From this, Sa, which is the extension of Ra
(arithmetical mean height of a line) to a surface, and ISO SRZ which is the extension of Rz
were measured to evaluate the surface roughness metrics for certain areas of interest on
the borehole surface (below hole entry, at the middle portion of the hole, and near the hole
exit). Sa and ISO SRZ were measured by scanning an area from the surface using an optical
profiler. As stated by the manufacturer, the texture results obtained from the instrument
comply with the ISO 25178 standard. Therefore, Sa and ISO SRZ, which are reported in
the aerial graphs, reflects the surface texture of all points in the scanned area, rather than
a profile.

2.5. Measurement of Hole Form and Dimensional Tolerances

A coordinate-measuring machine (CMM) traces the profile of the hole using a stylus
or probe to map the coordinates of a specific number of points on the perimeter of the
hole. In the current study, the hole form and dimensional tolerances were measured
using a Mitutoyo CMM machine equipped with a RENISHAW PH10MQ head (Renishaw,
Gloucestershire, UK), as shown in Figure 2. The workpiece with the 81 holes was placed
horizontally on the machine table and the measurements were taken at two levels, which
were called top and bottom; they were at 1 mm below and above the upper and lower
surfaces of each hole, respectively.
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Figure 2. Al6061 workpiece setup inside the CMM machine.

2.6. Scanning Electron Microscopy

Scanning electron microscopy was carried out to analyse the borehole surface quality
throughout its thickness. A Hitachi SU5000 field emission scanning electron microscope
(SEM, Hitachi, Chiyoda, Japan) was used to scan a portion of the hole after it was cross-
sectioned. The SEM scans were taken at the entry and the exit of each hole, as well as the
overall borehole surface.

3. Results and Discussion

Table 5 shows the percentage contribution of the cutting parameters (i.e., spindle
speed, feed rate) and tool coating on the analyzed outputs. The data was extracted from the
ANOVA analysis carried out in Minitab software. This table will be used in the following
sections to support the discussion of the observed results. The values in red font color are
those with significance in the statistical ANOVA model, i.e., p-value < 0.05.
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Table 5. ANOVA analysis to show the percentage contribution of spindle speed, feed rate, and coating type for the cutting
tool on the investigated hole-quality parameters.

Parameter Ra Rz HST HSB HCT HCB HC HP

Model 50.79% 50.48% 91.91% 86.34% 64.50% 60.94% 73.62% 97.00%

Blocks 0.34% 0.42% 0.32% 1.80% 0.70% 1.27% 0.83% 0.09%

Linear 36.81% 35.95% 42.73% 23.94% 36.88% 26.04% 41.30% 66.75%

Spindle speed 27.47% 26.02% 16.89% 3.75% 10.35% 0.43% 4.14% 50.61%

Feed rate 4.11% 4.88% 1.95% 3.39% 4.06% 6.08% 2.75% 1.68%

Coating 5.23% 5.05% 23.90% 16.80% 22.48% 19.53% 34.41% 14.46%

2-Way Interactions 6.03% 6.35% 35.11% 47.32% 21.73% 15.64% 20.04% 19.93%

Spindle speed*Feed rate 3.00% 3.13% 13.63% 11.80% 0.15% 5.89% 6.84% 0.66%

Spindle speed*Coating 2.76% 3.13% 19.24% 26.99% 16.71% 6.63% 4.17% 10.79%

Feed rate*Coating 0.27% 0.09% 2.24% 8.52% 4.87% 3.11% 9.04% 8.48%

3-Way Interactions 7.61% 7.76% 13.74% 13.27% 5.19% 18.00% 11.45% 10.23%

Spindle speed*Feed
rate*Coating 7.61% 7.76% 13.74% 13.27% 5.19% 18.00% 11.45% 10.23%

Error 49.21% 49.52% 8.09% 13.66% 35.50% 39.06% 26.38% 3.00%

Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Note: HST: hole size (top); HSB: hole size (bottom); HCT: hole circularity error (top); HCT: hole circularity error (bottom); HC: hole
cylindricity error; HP: hole perpendicularity error.

3.1. Analysis of Surface-Roughness Metrics

Figure 3 shows the results of the surface roughness (Ra and Rz) for holes drilled with
different cutting parameters and tool coatings. Generally, Ra ranged between 0.49 µm and
1 µm, while Rz ranged between 1.38 µm and 4.68 µm. The results of surface roughness
Ra reported here were around 30–40% lower than those reported by Aaamir et al. [44],
who drilled holes in Al6061 alloy using a similar range of cutting parameters and 6 mm
uncoated carbide twist drills. This could indicate that increasing the drill diameter does not
lead to an increase in the surface roughness. Moreover, this also confirms that coated tools
in general have a positive effect in reducing the surface roughness. The results also showed
that the surface-roughness metrics Ra and Rz were influenced by both cutting parameters.
For example, Ra and Rz increased with the rise of the feed rate for the TiN/TiAlN and TiAlN
coatings, which was mainly due to the increase in uncut chip thickness. Similar trends were
observed in holes drilled using TiN-coated tools when drilling at n = 1000 rpm. Increasing
the spindle speed tended to decrease due to the reduction in uncut chip thickness and
increasing the effect of ploughing, rather than cutting with chip formation with increasing
the spindle speed. Increasing the spindle speed further caused an increase in both rough-
ness metrics, which was attributed to the increased deformations and cutting temperatures
at higher spindle speeds. The highest and lowest Ra and Rz were found in holes drilled
using TiN-coated tools (highest Ra and Rz at n = 1000 rpm and n = 150 mm/min, lowest Ra
and Rz at n = 2000 rpm and f = 100 mm/min). Similarly, the lowest Ra and Rz for the other
two coatings was also observed to occur under n = 2000 rpm, which could indicate that this
spindle speed is most suitable for drilling Al6061 alloy with minimal surface roughness.
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Generally, it is not possible to make a firm conclusion on which coating provided
the lowest surface roughness. This is mainly because of the relatively similar surface-
roughness results obtained from the three coatings. Indeed, previous studies that compared
the performance of TiN- and TiAlN-coated tools for machining aluminum alloys found
that they produced similar roughness results [45]. However, it was observed that holes
drilled using TiN-coated tools showed a somewhat greater deviation and the highest
recorded roughness values, despite TiN coating having a slightly lower COF than the
other two coatings. This could be related to the lower thermal stability and heat resistance
under dry-machining conditions. According to Table 3, TiN coating has a much lower
oxidation resistance and hardness compared to TiAlN and TiN/TiAlN coatings, which
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could adversely impact surface-roughness metrics. It was also found that the surface
roughness in some of the holes drilled using TiN-coated tools was higher than in those
drilled using the other two coatings at the same cutting parameters. This could be attributed
to the coating’s chemical affinity to interact with the alloy, causing chips to diffuse and
adhere to the cutting-tool surface, therefore increasing the built-up edge and further
increasing the surface roughness of the machined holes. Some of the cut aluminum chips
would not escape the cutting zone and ended up binding with the coating on the cutting-
tool surface, aluminizing the drill-bit surface and raising the contact friction between the
drill and the material, which further increased the hole surface roughness [12]. It should
be also noted that the repeatability of surface roughness, in general, was low; this, in turn,
affected the ANOVA results, which showed that only the spindle speed had a significant
effect on the surface-roughness metrics (about 26–27.5%), while the feed rate and the
cutting-tool coating or their linear interactions did not have any effect.

It is important to notice that with a 2D roughness measurement using a mechanical
stylus, only specific lines along the hole path from entry to exit are checked for rough-
ness quality, while a 3D surface analysis provides a broader area evaluation for surface-
roughness metrics. However, a limitation with using 3D surface-roughness techniques is
the small area that can be evaluated for roughness, which requires taking many measure-
ments along the hole depth and is time-consuming. Therefore, further surface analysis
was carried out using 3D optical microscopy. The roughness measurements were taken at
three distinct locations, as stated earlier: below the hole entry, at the middle portion of the
hole, and above the exit side. At the hole entry, it was observed that holes drilled using
TiN-coated tools at n = 1000 rpm produced the worst surface-roughness finish for both Ra
and Rz, which were also found to increase with the increase of the feed rate. At the middle
portion of the hole and its exit, the surface roughness in holes drilled at n = 1000 rpm using
TiN-coated tools was higher than those drilled using the other two types of tool coatings.
Holes drilled using TiN/TiAlN-coated tools showed a somewhat better surface finish than
those found in holes drilled using the other two types of tool coatings, as shown in Figure 4.
This was mainly attributed to less damage and debris observed on the borehole surface.

However, since only one set of holes was evaluated for each type of tool coating, these
can be considered as observations for the hole quality in that set, and cannot be used to
make a conclusion on which coating gave the best surface finish. It was also observed
that all holes drilled at n = 3000 rpm and f = 50 and 100 mm/min tended to produce the
worst surface finish, regardless of the type of tool coating used. This would indicate that
these sets of cutting parameters are not suitable for drilling Al6061 alloy, and should be
avoided if surface roughness is to be minimized. In addition, under all tested parameters,
it appears that drilling at n = 2000 rpm and f = 100 and 150 mm/min somewhat gave the
lowest surface-roughness metrics Ra and Rz, regardless of the type of tool coating used, as
can be seen in Figure 5.
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Figure 4. Hole condition showing (a) quality of holes at the exit, and (b) 3D surface-roughness topography at the exit
showing average Ra and Rz values (from left to right: using TiN/TiAlN, TiAlN, and TiN coating).



Materials 2021, 14, 1783 14 of 27

Materials 2021, 14, x FOR PEER REVIEW 13 of 26 
 

 

However, since only one set of holes was evaluated for each type of tool coating, 
these can be considered as observations for the hole quality in that set, and cannot be used 
to make a conclusion on which coating gave the best surface finish. It was also observed 
that all holes drilled at 𝑛 =3000 rpm and 𝑓 =50 and 100 mm/min tended to produce the 
worst surface finish, regardless of the type of tool coating used. This would indicate that 
these sets of cutting parameters are not suitable for drilling Al6061 alloy, and should be 
avoided if surface roughness is to be minimized. In addition, under all tested parameters, 
it appears that drilling at 𝑛 = 2000 rpm and 𝑓 = 100 and 150 mm/min somewhat gave the 
lowest surface-roughness metrics Ra and Rz, regardless of the type of tool coating used, as 
can be seen in Figure 5. 

 
Figure 5. Comparison of hole surface quality in a hole drilled using TiN-coated tools at (a) 𝑛 =2000 rpm and 𝑓 =  150 mm/min, and (b) 𝑛 = 3000 rpm and 𝑓 = 50 mm/min. 

This could be attributed to the phenomenon of material side flow, which can signifi-
cantly deteriorate the machined surface quality and can be seen in Figure 5b. Material side 
flow, which is the displacement of workpiece material in a direction opposite to the feed 
direction, occurs due to the plastification of the workpiece material during the machining 
process as a result of high cutting temperatures and pressure. The material side flow is 
highly influenced by the cutting-tool geometry and characteristics, and increases when 
the tools have lower thermal stability and hardness, such as the case with TiN-coated tools 
when compared to TiN/TiAlN- and TiAlN-coated tools, due to increased changes in tool 
geometry during the drilling process [46]. Kishawy et al. [47] previously reported that the 
material side flow at the feed marks is mainly attributed to the trailing edge wear where 
material plastic flow fills the groove, and the excess material is pressed to the side of the 
tool. A close examination of the borehole surfaces drilled using different cutting-tool coat-
ings shows that extensive material plastic flow was more likely to occur when drilling 
using TiN-coated tools, as can be seen in Figure 6. 

Figure 5. Comparison of hole surface quality in a hole drilled using TiN-coated tools at (a) n = 2000
rpm and f = 150 mm/min, and (b) n = 3000 rpm and f = 50 mm/min.

This could be attributed to the phenomenon of material side flow, which can signifi-
cantly deteriorate the machined surface quality and can be seen in Figure 5b. Material side
flow, which is the displacement of workpiece material in a direction opposite to the feed
direction, occurs due to the plastification of the workpiece material during the machining
process as a result of high cutting temperatures and pressure. The material side flow is
highly influenced by the cutting-tool geometry and characteristics, and increases when the
tools have lower thermal stability and hardness, such as the case with TiN-coated tools
when compared to TiN/TiAlN- and TiAlN-coated tools, due to increased changes in tool
geometry during the drilling process [46]. Kishawy et al. [47] previously reported that
the material side flow at the feed marks is mainly attributed to the trailing edge wear
where material plastic flow fills the groove, and the excess material is pressed to the side of
the tool. A close examination of the borehole surfaces drilled using different cutting-tool
coatings shows that extensive material plastic flow was more likely to occur when drilling
using TiN-coated tools, as can be seen in Figure 6.

To summarize, the analysis of the influence of cutting parameters and tool coatings
on Ra and Rz indicates that intermediate spindle speeds and low feed rates give a lower
surface roughness regardless of the cutting tool coating used. This conclusion also agrees
with a previous study on drilling hybrid aluminum composite material [12]. In addition,
the dry drilling of Al6061 laminates with the tool coatings investigated in this study led to
a range of surface roughness for Ra between 0.49 µm and 1 µm. Looking at past studies
in the open literature and technical documents, it is clear that there is no fixed value of
surface roughness that is recommended for the acceptable surface finish of a machined hole.
As a rule of thumb, a lower surface finish is always desirable to reduce the fatigue and
corrosion effects on metals in general [48]. Some technical reports recommend that hole
surface roughness Ra be less than 1.6 µm in aluminum parts if used in critical applications,
such as in the aerospace industry [49,50]. This means that the roughness results obtained in
this study were within the recommended values, and similar or better than those reported
in the previous literature on machining Al6061 alloy under dry conditions [15,16,20,21,40].
Another interesting conclusion is that previous studies showed that TiAlN coating tends
to give better or equivalent surface roughness when machining aluminum alloys under
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dry conditions compared to other coatings, including TiN-coated tools [38,51–53], which
agrees with what was found in the current study.
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3.2. Effects of Cutting Parameters and Tool Coatings on Hole Size

Figure 7a,b show the average hole size at the top and bottom of each hole under
different spindle speeds, feed rates, and tool coatings. The results indicated that all holes
were oversized at the two measured locations throughout the hole. This means that drilling
Al6061 alloy using carbide drills would always produce oversized holes regardless of the
tool coating used. This was also reported in previous studies [40,49,54], which found that
oversized holes were always produced when drilling aluminum alloys.
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The hole size at the bottom was always smaller than that at the top under all cutting
parameters and tool coatings used. This is possibly due to the drill “wander” on contact
with the workpiece, where it is point-supported, then at further depth, where it is point-
and side-supported [39,54]. Vibratory displacement occurred during the initial contact
between the chisel edge and the workpiece (i.e., hole entry), which triggered dynamic
instability, causing higher hole-size deviations at the top than at the bottom [39,45]. Hole
size in this study ranged between 15.47 µm and 79.9 µm, as shown in Table 6.
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Table 6. Range of hole-size deviation for each tool coating.

Coating Top (µm) Bottom (µm)

TiN/TiAlN 24.23–79.9 20.6–48.13

TiAlN 17.83–34.87 19.87–29.17

TiN 25.13–51.53 15.47–32.7

Generally, TiAlN-coated tools produced holes with the least deviation at the top
and bottom. This could be due to the higher nano-hardness of the cutting tools, which
maintains higher rigidity during the drilling process relative to the other two coatings. The
largest deviation in hole size occurred at n = 1000 rpm, for holes drilled using TiN/TiAlN-
coated tools at the top and bottom locations. Also, holes drilled using TiAlN-coated tools
gave the lowest deviation at the top of the hole, and holes drilled using TiN-coated tools
showed the lowest deviation at the bottom of the hole. This could be attributed to the
formation of the white layer at the exit side of the hole drilled using TiN/TiAlN-coated
tools (Figure 8), which might have had some influence on increasing the hole geometrical
metrics. During the drilling process, the cut chip is removed from the workpiece by the
action of the cutting tool, while some of the uncut chip reaches a high temperature and is
melted then resolidifies on the borehole surface, forming a new layer. This is caused by
the severe plastic deformation and high machining temperatures that occur during the
drilling process. The resolidified material is usually observed to exist near the hole exit
surface; it reattaches to the surface after the tool exits the workpiece from the other side,
forming a layer known as the white layer [55]. The white layer may contain elements from
the tool-coating material; this will be the scope of a future study. It was observed that
a significant presence of white layers was found to form at the exit of the holes drilled
using TiN/TiAlN-coated tools, and its thickness was 200 µm on average and reached up to
400 µm. The white layer was found to increase with the increase of the feed rate, and did
not seem to be affected by the spindle speed. The white layers also were found to form on
the holes drilled using TiAlN-coated tools when drilling at a high feed rate of 150 mm/min.
This would imply that the presence of aluminum in the TiN/TiAlN- and TiAlN-coated
tools was responsible for increasing the chemical interaction between the cutting tool and
the workpiece, leading to the formation of such white layers.
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At n = 2000 rpm, the difference in the performance of the three coatings became
less noticeable, and varied according to the feed rate; however, the TiAlN showed some
marginal lead compared to the other two coatings at the top and bottom of the hole. At
n = 3000 rpm, the three coatings showed a similar trend, with slightly better performance
for holes drilled using TiN coating at the highest spindle speed and feed rate at both
locations. It was also found that for holes drilled using TiN/TiAlN- and TiAlN-coated tools,
the hole size at the top decreased with increasing feed rate when drilling at n = 1000 and
2000 rpm. No other possible trends were possible to deduct from Figure 7a,b. However,
ANOVA analysis revealed that the cutting parameters and tool coatings, and their linear
interactions, all had a significant influence on hole size at the top and bottom. For example,
it was found that the tool coating showed the highest contribution to the hole size at the
top and bottom (23.9% and 16.8%, respectively). The spindle speed also had a significant
influence on hole size at the top (16.89%), and a minor effect at the bottom (3.75%). Although
the feed rate influenced the hole size, it nevertheless was minimal, and ranged between
1.95% at the top and 3.39% at the bottom. The linear interactions between the cutting
parameters and tool coatings had a significant effect on hole size at the top and bottom.
For example, the interaction between the spindle speed and the tool coating had a 19.24%
contribution at the top and 26.99% at the bottom. This indicates that the hole size is
a function of spindle speed and tool coating; therefore, to optimize the hole size, it is
important to consider proper spindle speeds that would not increase the temperatures at
the cutting zone. Therefore, it can be said that the performance of each coating was affected
by its mechanical and thermal properties, such as hardness and oxidation resistance, where
the advantage was for TiN/TiAlN and TiAlN coatings; and thermal diffusivity, where TiN
has the highest, followed by TiAlN and TiN/TiAlN [56]. Overall, it can be said that holes
drilled using TiAlN-coated tools produced holes with the least deviation from the nominal
diameter. The effect of the feed rate cannot be described by a single trend for all spindle
speeds and coatings. However, one of the observed trends was the reduction of hole-
size error with increasing feed rate at specific speeds, which can be seen for TiN/TiAlN
coating at 1000 rpm (top), 2000 rpm (top), and 1000 rpm (bottom); and TiN coating at
n = 1000 rpm (top), 2000 rpm (top), and 3000 rpm (bottom). On the other hand, no specific
trend could be identified for TiAlN. Similar to the feed rate, no single trend could describe
the effect of the spindle speed. However, reducing the hole-size error with increasing the
spindle speed was observed for TiN/TiAlN coating at 50 mm/min (top), 100 mm/min
(top), 100 mm/min (bottom), and 150 mm/min (bottom); and TiN coating at 50 mm/min
(top) and 150 mm/min (top). The opposite trend was observed for TiAlN at 150 mm/min
(bottom); and TiN at 50 mm/min (bottom). Figure 7a also shows a reduction in the hole
size at the top for TiN coating when increasing the feed rate and spindle speed, but keeping
the ratio of the constant as 50/1000, 100/2000, and 150/3000. Also, Figure 7b shows a
similar trend for TiN/TiAlN at the bottom of the hole.

To conclude the hole-size analysis, industries such as aerospace have strict demands
when drilling metallic structures, as they require an H7 hole tolerance fit (±12 micron
deviation from the hole nominal diameter) based on the ISO 286 standard [57]. However,
such stringent tolerances are difficult to achieve, and therefore more hole tolerances are
relaxed, requiring between H8 (±18 microns) and H9 (±30 microns). Moreover, cutting-tool
manufacturers suggest that an acceptable hole-size tolerance in metals such as aluminum
alloys can be anything between ±20 and ±40 microns [50,58]. Of course, for automotive
applications, the tolerances are further relaxed due to a less-critical impact on the structural
integrity of the vehicle. This means that most of the hole-size data found in this study are
within the recommended range of hole tolerance required in aerospace and automotive
applications, except for holes drilled at low spindle speeds of n = 1000 rpm using TiN-
coated tools.
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3.3. Effects of Cutting Parameters and Tool Coatings on Circularity Error

Figure 9 shows the average hole circularity at different feed rates and spindle speeds
using the three tool coatings. The results showed a similar trend to that observed for
hole size. The circularity error at the bottom of the hole was always less than that at
the top of the hole, which may be related to the stability of the tool at different depths.
This observation is in agreement with previous work, which reported that when drilling
metals, the hole-circularity error at the exit side was lower than at the hole entry due to
the dynamic instability of the drill during the first contact between the chisel edge and the
workpiece [45,57]. This could be attributed to the weakening of the workpiece structure
below the tip of the cutting tool due to the reduction in uncut material thickness from
the hole as the drill progressed throughout the hole toward the exit [57]. The reduction
in hole circularity with depth in metallic alloys was due to the increased support to the
cutting tool by the hole walls, which provides a form of self-pointing guidance action to
the cutting tool [26,57,59,60]. Indeed, previous studies indicated that there is a presence
of highly nonlinear variations in hole circularity throughout the depth of the hole when
drilling aluminum alloys due to other factors such as the fixture setup of the workpiece, the
dynamic interaction between the drill and the workpiece, and resulting vibrations in the
cutting tool, as well as cutting-tool deflections and damping characteristics [39,54,57]. Such
factors were not considered in this work, but will be the scope of a new study in the future.
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Figure 9. Average hole circularity errors: (a) at the top of the hole; (b) at the bottom of the hole.
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Overall, the average hole-circularity error ranged between 12 and 59.63 µm at the top;
while at the bottom, it was between 7.03 and 19.7 µm, as shown in Table 7. Similar to the
hole-size error, the holes drilled with TiN/TiAlN-coated tools showed higher circularity
error at the top of the hole for most speeds and feed rates; however, this was not the case
on the bottom of the hole, since this coating showed the lowest circularity error among the
other coatings. This could be due to the higher oxidation resistance of TiN/TiAlN-coated
tools, which becomes critical with hole depth where temperatures are expected to rise.

Table 7. Range of hole-circularity errors for each tool coating.

Coating Top (µm) Bottom (µm)

TiN/TiAlN 18.33–59.63 7.03–15.13

TiAlN 6.63–42.2 8.93–15.6

TiN 12–26.4 9.3–19.7

It also can be said that TiN coating showed somewhat lower hole-circularity errors at
the top compared to the other coatings under most cutting parameters. This could be due
to the lower COF and lower hardness, which does not cause severe deformations when the
hole is in initial contact with the workpiece top surface. In terms of which tool coating gave
the lowest hole circularity, in general, a higher feed rate resulted in a higher circularity
error on the bottom of the hole. On the top level, no specific trend could be recognized
at all spindle speeds. For TiN/TiAlN, the relation between circularity error and feed rate
was inverse at 1000 rpm, positive at 3000 rpm, and parabolic at 2000 rpm. The lowest
circularity error was observed at the highest spindle speed and feed rate in holes drilled
using TiAlN- and TiN-coated tools. To a certain extent, at the top level, the effect of spindle
speed can be recognized by a parabolic behavior for TiN/TiAlN. For TiAlN, on the top
level, circularity error related almost inversely to the spindle speed. For TiN, the relation
was almost positive between spindle speed and circularity error on the top level, while no
clear relation could be observed on the bottom level.

Holes drilled using TiN/TiAlN-coated tools showed the highest hole circularity among
the three coatings (at n = 1000 rpm and f = 50 mm/min). Holes drilled using TiAlN-coated
tools showed the lowest hole circularity at the top among the three coatings (at n = 3000 rpm
and f = 150 mm/min). Similarly, holes drilled using TiN-coated tools gave the highest hole
circularity at the bottom (at n = 3000 rpm and f = 150 mm/min), while the lowest hole
circularity at the bottom occurred at n = 3000 rpm and f = 50 mm/min using TiN/TiAlN-
coated tools. Generally, lower hole circularity is preferred; however, an acceptable value
for hole circularity can vary depending on the requirements of the machined part, and
thus there is no standard for acceptable hole circularity [57]. Nevertheless, it is possible
to compare the circularity results in this study with the results from previous literature
shown earlier on drilling Al6061 and other aluminum alloys [21,39,61]. That said, previous
literature shows that the circularity ranged as low as 4 µm and as high as 182 µm, which
means that the results reported in this study are well within those ranges. Indeed, the
results in the current study were similar to those reported by Sreenivasulu et al. on drilling
Al6061 alloy [21].

The ANOVA analysis provided in Table 5 shows that both cutting parameters and tool
coating had a significant influence on hole circularity at the top. The tool coating had the
highest contribution, with 22.48%, followed by the spindle speed and the feed rate, with
10.35% and 4.06%, respectively. The interaction between the spindle speed and the tool
coating had a significant impact of 16.71%, which shows that a proper combination of tool
coating and spindle speed can reduce the circularity error in holes drilled in Al6061 alloy.
For hole circularity at the bottom, only the feed rate and the tool coating had a significant
impact, with 6.08% and 19.53%, respectively. This indicates that the cutting parameters
(spindle speed and feed rate) had different effects on hole circularity, depending on the
measured location throughout the hole depth. A firm conclusion can be reached that better
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control of spindle speed at the top and better control of the feed rate at the bottom will
result in the best hole circularity. The results reported here are in agreement with previous
studies, which found that both cutting parameters had a significant influence on the hole
circularity, with spindle speed showing a larger contribution [38,62].

3.4. Effect of Cutting Parameters and Tool Coatings on Hole Cylindricity and Perpendicularity

Figure 10 shows the average hole cylindricity and perpendicularity under different
cutting parameters and tool coatings. The average hole cylindricity ranged between 20.17
and 78.10 µm, while the average hole perpendicularity ranged between 48 and 84.83 µm,
as shown in Table 8. The highest hole cylindricity and perpendicularity occurred at
n = 1000 rpm and f = 50 mm/min in holes drilled using TiN/TiAlN-coated tools. The low-
est hole cylindricity and perpendicularity occurred at n = 3000 rpm and f = 1000 mm/min
in holes drilled using TiAlN-coated tools.
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Table 8. Range of hole cylindricity and perpendicularity for each tool coating.

Coating Cylindricity (µm) Perpendicularity (µm)

TiN/TiAlN 33.27–78.10 53.23–76.03

TiAlN 20.17–74.17 48–84.77

TiN 22.77–44.67 66.57–84.83

The range of cylindricity error in the current study is relatively low if it is compared
to the hole cylindricity error reported in previous studies, which reached up to 260 µm in
the aluminum alloy [63]. However, the cylindricity error observed in the current study
had a similar range for that when aluminum-silicon nitride is drilled with a conventional
method [64]. For TiN, the cylindricity error was reduced by increasing the feed rate at
n = 1000 and f = 3000 rpm. For other coatings, no clear relationship could be found between
the cylindricity error and feed rate. For TiN/TiAlN, the cylindricity error was inversely
related to spindle speed at a feed rate of f = 100 and 150 mm/min. For TiAlN, the relation
was inverse at f = 100 mm/min and proportional at f = 150 mm/min. Figure 10 also shows
a reduction in the cylindricity error for TiN coating when increasing the feed rate and
spindle speed, but keeping the ratio of the constant as 50/1000, 100/2000, and 150/3000.

Overall, it was observed that holes drilled using TiN-coated tools showed the highest
perpendicularity, especially when drilling at medium and high spindle speeds in the study
(n = 2000 and 3000 rpm). Similarly, holes drilled using TiAlN-coated tools gave lower
perpendicularity values compared to those observed in holes drilled using TiN/TiAlN-
coated tools when drilling at n = 2000 and 3000 rpm. For these two coatings, i.e., TiN/TiAlN
and TiAlN, their performance in reducing hole perpendicularity became noticeable when
drilling at higher spindle speeds and increasing feed rate. This means that these coatings
are more suitable for high-speed machining applications due to the superior performance
of their coating characteristics over TiN coating when drilling aluminum alloys. In general,
the perpendicularity error was reduced by increasing the spindle speed. For TiN/TiAlN,
increasing the feed rate increased the perpendicularity error at n = 2000 and 3000 rpm,
while the opposite was almost true for TiAlN and TiN at the same speeds. Similar to
the cylindricity error, the range of perpendicularity error in the current study was less
than that found for aluminum drilled with cryogenic cooling [63], and it was much less
than aluminum drilled using abrasive-water-jet machining [65], with the annotation that
different federates and spindle speeds were used in the aforementioned studies.

3.5. Cutting-Tool Examination

The microconstituents found in aluminum alloys have an essential influence on
the properties of the machining. Nonabrasive components have a beneficial effect, and
insoluble abrasive components can have a harmful impact on surface quality. Insoluble
but flexible and nonabrasive components are advantageous, as they help split the chips;
these components are deliberately used to formulate high-strength free-cutting alloys for
machining in high-speed automated machines. Generally, the softer alloys and, to a lesser
degree, some of the stronger alloys are likely to develop a built-up edge on the tool’s
cutting surface. This edge consists of aluminum particles that have been welded to the
edge of the tool because the heat produced in cutting has melted them. Figure 11 shows the
optical microscopic inspection of the tools after drilling. In this figure, the built-up edge
can be seen on all tools, but it is relatively more built-up on the TiN, which is in line with
results reported by Giasin et al. [12] when drilling fiber metal laminates containing sheets
of aluminum alloy. This may be due to the lower thermal stability of TiN under the high
temperatures generated due to dry drilling. It can also be seen that some of the aluminum
particles adhered to the surface of the tool. These particles were melted and squashed on
the tool’s surface due to the high speed. The accumulation and adhesion of aluminum on
the tip were observed for all tools. Pitting was also observed for all tools, but there was
relatively more on the surface of the TiN tools. These pittings were sometimes filled with
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alumina particles. Based on the optical examination, the surface and the edge of the TiN
tool were most affected by the operating conditions in this study. However, a conclusion
on the tool life for each of the coated tools could not be reached due to the limited number
of holes drilled in this study.
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The SEM images in Figure 12 revelated that the burr formation and hole edge quality
at the exit was the worst when drilling using TiN-coated tools, followed by TiAlN-coated
tools. For TiN/TiAlN-coated tools, despite the formation of the white layer at the exit side
of the hole, the burr formation and edge quality were superior to the hole drilled using the
other two tool coatings. This would indicate that drilling using TiN/TiAlN-coated tools
would produce holes with the minimal burr at the exit, thus avoiding the need for any
deburring operations, which is a highly desirable outcome in the aerospace industry, where
large numbers of holes are drilled in a short period, and deburring them would add extra
costs to the overall manufacturing process. At the hole entry, no conclusion could be made
regarding which tool coating produced the best edge quality and least burr formation, as
all holes gave somewhat similar results.
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4. Conclusions

In this study, the drilling performance of Al6061 aluminum alloy was analyzed to
investigate the hole surface roughness, form, and dimensional tolerances. More specifically,
these included hole size and circularity at the upper and lower portions, and cylindric-
ity and perpendicularity. The aim of the study was to analyze the influence of cutting
parameters (spindle speed and feed rate), and particularly, three types of cutting-tool
coatings (TiN/TiAlN, TiAlN, and TiN) using solid carbide twist drills. This work aims
to complement the tool-coating studies reported in the open literature and fill the gap,
since the effect of these three types of cutting tool coatings on drilling Al6061 aluminum
alloys was not previously investigated in a single study. Moreover, this work specifically
aimed to study the effect of tool coatings by using a fixed tool geometry (i.e., same drill
size, point angle, helix angles, tool hardness, etc.). The contribution of cutting-tool coatings
is considered a critical aspect when machining aluminum alloys to better understand how
they influence the quality of machined parts. From the experimental results and statistical
analysis, the following results were obtained:

• The surface-roughness metrics Ra and Rz in most holes did not exceed 1 µm and 3 µm,
respectively. Holes drilled using TiN-coated tools had the highest surface roughness.
This was mainly attributed to the lower oxidation temperature and hardness of TiN
coating and its high affinity to react with aluminum during the drilling process, as
evident in the microscopic images.

• Hole size and circularity at the top were better than those at the bottom regardless
of the tool coating or cutting parameters used. TiN/TiAlN-coated tools produced
the worst hole size and circularity at the top, especially at low and medium spindle
speeds, followed by holes drilled using TiN and TiAlN coatings.

• Under all cutting conditions, the holes produced were always oversized (between 15
and 80 µm). Similarly, hole circularity at the top and bottom ranged between 7 and
60 µm.

• TiN/TiAlN-coated tools produced the worst hole cylindricity, followed by the TiAlN
and TiN tools. Hole cylindricity was the worst in TiN/TiAlN-coated tools, especially
at low and medium spindle speeds. Holes drilled using TiN-coated tools gave the
lowest hole cylindricity among the three coatings.

• TiN coatied tools were more suitable for drilling Al6061 alloy at low cutting parame-
ters, while TiN/TiAlN- and TiAlN-coated tools were more suitable when machining at
higher cutting parameters, where the thermal performance of the tool coating became
more critical to the quality of machined holes.

• The ANOVA results showed that both the cutting parameters and the cutting-tool
coatings had an impact on hole size, circularity, cylindricity, and perpendicularity. The
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contribution of the cutting-tool coating was more significant at the hole entry than at
the exit. The spindle speed had a major effect on hole perpendicularity compared to
feed rate and type of tool coating.
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32. Kivak, T.; Habali, K.; Şeker, U. The effect of cutting paramaters on the hole quality and tool wear during the drilling of Inconel
718. Gazi Univ. J. Sci. 2012, 25, 533–540.

33. Sheth, S.; George, P. Experimental investigation, prediction and optimization of cylindricity and perpendicularity during drilling
of WCB material using grey relational analysis. Precis. Eng. 2016, 45, 33–43. [CrossRef]

34. Giasin, K. The effect of drilling parameters, cooling technology, and fiber orientation on hole perpendicularity error in fiber metal
laminates. Int. J. Adv. Manuf. Technol. 2018, 97, 4081–4099. [CrossRef]

35. Bartkowiak, T.; Brown, C.A. Multiscale 3D curvature analysis of processed surface textures of aluminum alloy 6061 T6. Materials
2019, 12, 257. [CrossRef] [PubMed]

36. Pitchayyapillai, G.; Seenikannan, P.; Balasundar, P.; Narayanasamy, P. Effect of nano-silver on microstructure, mechanical and
tribological properties of cast 6061 aluminum alloy. Trans. Nonferrous Met. Soc. China 2017, 27, 2137–2145. [CrossRef]

37. Bang, H.; Bang, H.; Jeon, G.; Oh, I.; Ro, C. Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials
Al6061-T6 aluminum alloy and STS304 stainless steel. Mater. Des. 2012, 37, 48–55. [CrossRef]

38. Giasin, K.; Ayvar-Soberanis, S.; Hodzic, A. An experimental study on drilling of unidirectional GLARE fibre metal laminates.
Compos. Struct. 2015, 133, 794–808. [CrossRef]

39. Giasin, K.; Hodzic, A.; Phadnis, V.; Ayvar-Soberanis, S. Assessment of cutting forces and hole quality in drilling Al2024 aluminium
alloy: Experimental and finite element study. Int. J. Adv. Manuf. Technol. 2016, 87, 2041–2061. [CrossRef]

40. Islam, M.; Boswell, B. Effect of cooling methods on cutting temperature, cutting force and hole quality in drilling of three
ferrous alloys. In Proceedings of the International Conference on Mechanical and Manufacturing Engineering (ICME2018), Johor,
Malaysia, 16–17 July 2018; p. 012068.

41. Goindi, G.S.; Sarkar, P. Dry machining: A step towards sustainable machining–Challenges and future directions. J. Clean. Prod.
2017, 165, 1557–1571. [CrossRef]

42. Yıldırım, Ç.V.; Kıvak, T.; Erzincanlı, F. Influence of Different Cooling Methods on Tool Life, Wear Mechanisms and Surface
Roughness in the Milling of Nickel-Based Waspaloy with WC Tools. Arab. J. Sci. Eng. 2019, 44, 7979–7995. [CrossRef]

43. Gadelmawla, E.S.; Koura, M.M.; Maksoud, T.M.A.; Elewa, I.M.; Soliman, H.H. Roughness parameters. J. Mater. Process. Technol.
2002, 123, 133–145. [CrossRef]

44. Aamir, M.; Tolouei-Rad, M.; Giasin, K.; Vafadar, A. Machinability of Al2024, Al6061, and Al5083 alloys using multi-hole
simultaneous drilling approach. J. Mater. Res. Technol. 2020, 9, 10991–11002. [CrossRef]

45. Kurt, M.; Kaynak, Y.; Bagci, E. Evaluation of drilled hole quality in Al 2024 alloy. Int. J. Adv. Manuf. Technol. 2008, 37, 1051–1060.
[CrossRef]

46. Bresseler, B.; El-Wardany, T.; Elbestawi, M. Material side flow in high speed finish boring of case hardened steel. In Proceedings
of the 1st French and German Conference on High Speed Machining, Metz, France, June 1997; pp. 196–206.

http://doi.org/10.14807/ijmp.v6i1.254
http://doi.org/10.1007/s11665-999-0006-6
http://doi.org/10.1115/1.4024546
http://doi.org/10.1016/j.ijrmhm.2008.04.008
http://doi.org/10.1016/j.jestch.2016.02.007
http://doi.org/10.3390/s20030885
http://www.ncbi.nlm.nih.gov/pubmed/32046037
http://doi.org/10.3103/S1068798X16090161
http://doi.org/10.1007/s00170-016-9850-3
http://doi.org/10.1016/S1007-0214(10)70031-6
http://doi.org/10.1016/j.precisioneng.2016.01.002
http://doi.org/10.1007/s00170-018-2241-1
http://doi.org/10.3390/ma12020257
http://www.ncbi.nlm.nih.gov/pubmed/30646602
http://doi.org/10.1016/S1003-6326(17)60239-5
http://doi.org/10.1016/j.matdes.2011.12.018
http://doi.org/10.1016/j.compstruct.2015.08.007
http://doi.org/10.1007/s00170-016-8563-y
http://doi.org/10.1016/j.jclepro.2017.07.235
http://doi.org/10.1007/s13369-019-03963-y
http://doi.org/10.1016/S0924-0136(02)00060-2
http://doi.org/10.1016/j.jmrt.2020.07.078
http://doi.org/10.1007/s00170-007-1049-1


Materials 2021, 14, 1783 27 of 27

47. Kishawy, H.; Elbestawi, M.A. Effects of process parameters on material side flow during hard turning. Int. J. Mach. Tools Manuf.
1999, 39, 1017–1030. [CrossRef]

48. Whitehouse, D.J. Handbook of Surface and Nanometrology; CRC Press: Boca Raton, FL, USA, 2010.
49. Giasin, K. Machining Fibre Metal Laminates and Al2024-T3 Aluminium Alloy. Ph.D. Thesis, University of Sheffield, Sheffield,

UK, 2017.
50. Coromant, S. Machining carbon fibre materials. In Sandvik Coromant User’s Guide-Composite Solutions; Sandvik: Stockholm,

Sweden, 2010.
51. Nouari, M.; List, G.; Girot, F.; Coupard, D. Experimental analysis and optimisation of tool wear in dry machining of aluminium

alloys. Wear 2003, 255, 1359–1368. [CrossRef]
52. Kurt, M.; Bagci, E.; Kaynak, Y. Application of Taguchi methods in the optimization of cutting parameters for surface finish and

hole diameter accuracy in dry drilling processes. Int. J. Adv. Manuf. Technol. 2009, 40, 458–469. [CrossRef]
53. Shareef, I.; Natarajan, M.; Ajayi, O.O. Dry machinability of aluminum alloys. In Proceedings of the World Tribology Congress III,

Washington, DC, USA, 12–16 September 2005; pp. 831–832.
54. Abdelhafeez, A.M.; Soo, S.L.; Aspinwall, D.K.; Dowson, A.; Arnold, D. Burr Formation and Hole Quality when Drilling Titanium

and Aluminium Alloys. Procedia CIRP 2015, 37, 230–235. [CrossRef]
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