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Abstract

Summary: A common goal of microbiome studies is the elucidation of community composition

and member interactions using counts of taxonomic units extracted from sequence data. Inference

of interaction networks from sparse and compositional data requires specialized statistical

approaches. A popular solution is SparCC, however its performance limits the calculation of inter-

action networks for very high-dimensional datasets. Here we introduce FastSpar, an efficient and

parallelizable implementation of the SparCC algorithm which rapidly infers correlation networks

and calculates P-values using an unbiased estimator. We further demonstrate that FastSpar

reduces network inference wall time by 2–3 orders of magnitude compared to SparCC.

Availability and implementation: FastSpar source code, precompiled binaries and platform pack-

ages are freely available on GitHub: github.com/scwatts/FastSpar

Contact: s.watts2@student.unimelb.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microbiome analysis, which aims to assay the bacterial communities

present in a given sample set, is important in many fields spanning

from human health to agriculture and environmental ecology. The

current standard for investigating bacterial community composition

is to deep sequence the total genomic DNA or the bacterial 16S

rRNA gene and analyze the genetic diversity and abundance within

each sample. Unique sequences or sequence clusters are taken to rep-

resent operational taxonomic units (OTUs) present in the original

sample, and the frequencies of these across samples are summarized

in the form of an OTU table (Ju and Zhang, 2015). In many studies,

this data is then exploited to construct correlation networks of

OTUs spanning sample sets, which can be used to infer or approxi-

mate interactions between taxa (He et al., 2017; Nakatsu et al.,

2015).

The calculation of OTU correlation values is complicated by the

sparse and compositional nature of the data. OTU counts are typic-

ally normalized by dividing each observation within a sample by the

total count for that sample, giving a measure of relative abundance.

However this transformation introduces dependencies between nor-

malized sample observations, such that calculating simple correla-

tions from the resulting values is not statistically valid (Aitchison,

1982). To perform robust and unbiased statistical analysis of sparse

compositional data, it is generally first transformed from the sim-

plex to Euclidean real space.

Returning compositional OTU data back to Euclidean real space

can be achieved by taking the log ratio of OTU fractions. Utilizing

log-ratios restores independence for each OTU and allows compo-

nents to take on a positive or negative value. Building upon the use

of log ratios, Friedman and Alm (2012) articulate an important and
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robust algorithm, SparCC, to estimate the linear Pearson

Correlation between OTUs from variances of log ratios. Given that

correlations cannot be calculated directly from log ratio variances,

SparCC estimates the correlation statistic by using log ratio varian-

ces to approximate the true OTU variance on the assumption that

the number of strong correlates is small (Friedman and Alm, 2012).

A Python 2 implementation of the SparCC algorithm has been

released by the authors with several ancillary scripts for P-value esti-

mation. However, the performance of this implementation precludes

analysis of large datasets such as those generated from longitudinal

studies (Teo et al., 2017). Further, the P-value estimator used by

SparCC has been demonstrated to be biased and overestimate sig-

nificance (Phipson and Smyth, 2010).

Here we present FastSpar, a fast and parallelizable implementa-

tion of the SparCC algorithm with an unbiased P-value estimator.

We demonstrate that FastSpar produces equivalent OTU correla-

tions as SparCC while greatly reducing run time and memory con-

sumption on large datasets. We also show that FastSpar has superior

performance to the unpublished re-implementations of SparCC

available in the mothur and SpiecEasi packages (Supplementary

Fig. S1).

2 Implementation

FastSpar is written in Cþþ11, utilizing OpenBLAS and LAPACK

via the Armadillo library (Sanderson and Curtin et al., 2016;

Dongarra et al., 1992; Xianyi et al., 2012). The GNU Scientific

Library (GSL) provides functionality for OTU fraction estimation

and threading support is delivered by OpenMP (Dagum and Menon,

1998). In place of the P-value estimator used in SparCC, we utilized

an estimator which corrects P-value understatement by considering

the possibility of recalling repetitious permutations or original data

during testing (Phipson and Smyth, 2010).

3 Results

3.1 Algorithm fidelity
To demonstrate that FastSpar produces equivalent correlations as

SparCC, correlation networks were constructed by both programs

using random subsets of an OTU table generated from the American

Gut Project 16S rRNA sequence data (www.americangut.org), com-

prising a total of 6068 OTUs and 7523 samples. For each OTU pair,

the mean correlation values calculated across 20 replicate runs were

near identical for FastSpar and SparCC (Supplementary Figs S2 and

S3). The observed OTU correlations calculated by SparCC and

FastSpar are not reproduced exactly as there is a degree of random-

ness in the underlying algorithm. Specifically, OTU fractions are

estimated by drawing from a Dirichlet probability distribution (par-

ameterized using sample OTU counts with pseudocounts applied)

and are therefore non-deterministic. Hence replicate runs of either

program on the same input table produce similar but non-identical

results (Supplementary Fig. S2A and B). To allow direct comparison

of the algorithms, OTU fractions were pre-computed and provided

as an additional input to both SparCC and FastSpar [note that the

behaviour of the pseudo-random number generators (PRNG) used

by FastSpar (GSL) and SparCC (numpy) differ, thus seeding the

PRNGs is insufficient to enable direct comparison]. When using the

same pre-computed OTU fractions as input, FastSpar and SparCC

returned identical results (Supplementary Fig. S2D). These compari-

sons can be reproduced by running the code at github.com/scwatts/

fastspar_comparison.

3.2 Performance profiling
Performance was compared by running FastSpar and SparCC on

random subsets of the American Gut Project OTU table (Fig. 1). Ten

random subsets of each combination of sample sizes (n¼250, 500,

. . ., 2500) and OTUs (n¼250, 500, . . ., 2500) were generated, and

subjected to analysis using FastSpar (with and without threading)

and SparCC. Wall time and memory usage was recorded using GNU

time. The analysis was completed in an Ubuntu 17.04 (Zesty Zapus)

chroot environment with the required software packages

(Supplementary Table S1). Computation was performed with an

Intel(R) Xeon(R) CPU E5-2630 @ 2.30GHz CPU and 62 GB RAM.

The performance profiling can be reproduced by running the code at

github.com/scwatts/fastspar_timed.

Using 16 threads, FastSpar was up to 821� faster than SparCC,

(mean 221� faster; Fig. 1A). Using a single thread, FastSpar was up

to 118� faster than SparCC (mean 32� faster; Fig. 1A). The mem-

ory usage of FastSpar was up to 116� less than SparCC (mean 26�
less; Fig. 1B). Notably the memory performance of SparCC on data-

sets with more than 1000 OTUs improves considerably and is due to

the conditional use of a more memory efficient calculation for the

variation matrix (Fig. 1B). This conditional calculation appears to

be beneficial for SparCC when analyzing datasets with 500 or fewer

OTUs but causes a substantial performance degradation for datasets

with 500–1000 OTUs (Supplementary Fig. S4).

As expected, both run time and memory principally scale with

OTU number rather than sample number (Fig. 1C). For large

A

B

C

Fig. 1. Performance profile of FastSpar and SparCC across random subsets of

different sizes, extracted from the American Gut Project OTU table. (A) Wall

time and (B) memory profiles were recorded using GNU time. (C) Linear mod-

els describing FastSpar (single thread) performance metrics with relation to

input data dimensions
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datasets, it is therefore essential to perform pre-processing of the

OTU table in order to reduce the number of OTUs prior to calculat-

ing correlations. This can be achieved primarily using two

approaches: (i) filtering poorly represented OTUs, or (ii)

distribution-based clustering such as that used in dbOTU3. The lat-

ter approach aims to reunite OTUs derived from sequencing error

with the parent OTU by clustering OTUs based on nucleotide edit

distance and count distribution (Preheim et al., 2013). This has the

advantage of retaining count information and thus improving statis-

tical power. To simplify the workflow for large-scale correlation

network analyses of microbiome data, FastSpar is packaged with an

efficient Cþþ11 implementation of dbOTU3 (github.com/scwatts/

otudistclust) that has been optimized for analysis of large datasets

by applying concurrency design patterns.

FastSpar provides a more robust and efficient method for infer-

ring correlation networks from large microbiome datasets, which

was previously intractable yet is likely to become commonplace in

modern cohort studies.
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