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Skin cancer is one of the most dangerous diseases in the world. Correctly classifying skin
lesions at an early stage could aid clinical decision-making by providing an accurate
disease diagnosis, potentially increasing the chances of cure before cancer spreads.
However, achieving automatic skin cancer classification is difficult because the majority of
skin disease images used for training are imbalanced and in short supply; meanwhile, the
model’s cross-domain adaptability and robustness are also critical challenges. Recently,
many deep learning-based methods have been widely used in skin cancer classification to
solve the above issues and achieve satisfactory results. Nonetheless, reviews that include
the abovementioned frontier problems in skin cancer classification are still scarce.
Therefore, in this article, we provide a comprehensive overview of the latest deep
learning-based algorithms for skin cancer classification. We begin with an overview of
three types of dermatological images, followed by a list of publicly available datasets
relating to skin cancers. After that, we review the successful applications of typical
convolutional neural networks for skin cancer classification. As a highlight of this paper, we
next summarize several frontier problems, including data imbalance, data limitation,
domain adaptation, model robustness, and model efficiency, followed by
corresponding solutions in the skin cancer classification task. Finally, by summarizing
different deep learning-based methods to solve the frontier challenges in skin cancer
classification, we can conclude that the general development direction of these
approaches is structured, lightweight, and multimodal. Besides, for readers’
convenience, we have summarized our findings in figures and tables. Considering the
growing popularity of deep learning, there are still many issues to overcome as well as
chances to pursue in the future.

Keywords: generative adversarial networks, convolutional neural network, deep learning, skin cancer,
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1 INTRODUCTION

Given the rising prevalence of skin cancer and the significance
for early detection, it is crucial to develop an effective method to
automatically classify skin cancer. As the largest organ of the
human body (1), the skin shoulders the responsibility of
protecting other human systems, which increases its
vulnerability to disease (2). Melanoma was the most common
cancer in both men and women with approximately 300,000 new
cases (3) diagnosed globally in 2018. In addition to melanoma,
two other major skin cancer diseases, basal cell carcinoma (BCC)
and squamous cell carcinoma (SCC), also had a relatively high
incidence, with over 1 million cases in 2018 (4). As (5) reported,
more skin cancers are diagnosed each year than all other cancers
combined in the United States. Fortunately, if detected early, the
chances of cure will be greatly improved. According to (4),
melanoma has a 5-year survival rate of 99% when it does not
metastasize. If it metastasizes to other organs in the body, its
survival rate reduces to 20%. However, because early indications
of skin cancer are not always visible, diagnostic results are often
dependent on the dermatologist ’s expertise (6). For
inexperienced practitioners, an automatic diagnosis system is
an essential tool for more accurate diagnoses. Beyond that,
diagnosing skin cancer with naked eyes is highly subjective and
rarely generalizable (7). Therefore, it is necessary to develop an
automatic classification method for skin cancer that is more
accurate, less expensive, and quicker to diagnose (8). Besides,
implementing such automated diagnostic systems can effectively
minimize mortality from skin cancers, benefiting both patients
and the healthcare systems (9).

However, owing to the complexity and diversity of skin
disease images, achieving automatic classification of skin
cancer is challenging. First of all, different skin lesions have
lots of interclass similarities, which could result in misdiagnosis
(10). For example, there exist various mimics of BCC in
histopathological images, such as SCC and other skin diseases
(11). As a result, it is difficult for the diagnosis systems to
effectively discriminate skin malignancies from their known
imitators. Secondly, several skin lesions differ within their same
class in terms of color, feature, structure, size, and location (12).
For example, the appearance of BCC and its subcategories is
almost different. This makes it difficult to classify different
subcategories of the same category. Furthermore, the
classification algorithms are highly sensitive to the types of
camera devices used to capture images. When the test images
come from a different domain, their performance suffers (13).

Although traditional machine learning approaches are
capable of performing well in particular skin cancer
classification tasks, these algorithms are ineffective for
complicated diagnostic demands in clinical practice.
Traditional machine learning methods for skin cancer
diagnosis typically involve extracting features from skin-disease
images and then classifying the extracted features (14). For
example, ABCD Rule (15), Menzies Method (16), and 7-Point
Checklist (17) are effective methods for extracting various
features from skin disease images. The handcrafted features are
Frontiers in Oncology | www.frontiersin.org 2
then classified using several classification methods such as SVM
(18), XGBoost (19), and decision tree (20). Due to the restricted
number of selected features, machine learning algorithms can
often only classify a subset of skin cancer diseases and cannot
generalize to a broader range of disease types (21). Besides, given
the wide variety of skin cancers, it is not effective to identify each
form of cancer solely based on handcrafted features (22).

Without the need for domain expertise and feature extraction,
deep learning algorithms have been widely used for skin cancer
classification in recent years; however, there are still several
difficulties and challenges ahead. Compared with traditional
machine learning methods, deep learning algorithms can
analyze data from a large-scale dataset faster and more
accurately, which allows them to effectively extract relevant
characteristics (23). At the same time, deep learning algorithms
can also aid clinicians in more thorough data analysis and
examination of test results (24). A number of studies, such as
(25–27) demonstrated that deep learning algorithms can
diagnose at a level comparable to that of a dermatologist.
However, these algorithms still have many obstacles to
becoming a complete diagnostic system. Firstly, data imbalance
and the lack of a large volume of labeled images have hindered
the widespread use of deep learning methods in skin cancer
classification (12). When these algorithms are used to classify
skin cancers that are rare in the training dataset, they frequently
result in a misdiagnosis (28). Furthermore, when working with
high-resolution images (such as pathological images) with
millions of pixels, the deep learning models often result in
significant computing costs and additional training time (29).
Besides, different noises will be generated as a result of the
various conditions (such as different imaging devices,
backgrounds). Therefore, the robustness and generalization
ability of these algorithms should also be taken into account (30).

These years, a number of reviews that detail the diagnostic
breakthroughs in skin cancer classification have been published;
however, no review has provided a specific analysis of frontier
challenges in skin cancer classification tasks, such as data
imbalance and limitation, domain adaptability, model
robustness, and model efficiency (31). reviewed the recent
developments in skin lesion classification using dermoscopic
images (32). presented a detailed overview of studies on using
CNNs to classify skin lesions (33). showed how the use of CNNs
in correctly identifying skin cancer has developed (34). presented
a review of different machine learning algorithms in dermatology
diagnosis, as well as some of the obstacles and limitations (12).
and (28) summarized a number of deep learning-based
approaches for skin cancer classification, as well as various
challenges and difficulties (35). provided an in-depth review of
the current articles about melanoma classification and compared
their results with human experts (36). summarized the latest
CNN-based methods in skin lesion classification by utilizing
image data and patient data (37). provided a review of deep
learning-based methods for early diagnosis of skin cancer. We
present these relevant surveys with details and highlights in
Table 1. By summarizing the previous reviews, we find that all of
the preceding publications methodically studied a specific topic
July 2022 | Volume 12 | Article 893972
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in skin cancer classification. However, most of them treated skin
cancer classification as a classical classification problem, without
addressing the model’s significant practical constraints in clinical
work, such as data imbalance and limitation, cross-domain
adaptability, model robustness, and model efficiency. Although
several earlier reviews summarized some of the methods to solve
the abovementioned frontier problems, their summaries were
incomplete. Some novel techniques were not covered, such as
pruning, knowledge distillation, and transformer. Therefore, in
this review, we comprehensively summarize the frontier
challenges in skin cancer classification and provide
corresponding solutions by analyzing articles published until
the year 2022. It gives readers in-depth information on the
advances and limitations of deep learning in skin cancer
classification and also provides different ideas for researchers
to improve these algorithms.

The rest of this paper is organized as follows: first of all,
Section 2 introduces three types of dermatological images and
several popular public datasets. In Section 3, we review several
typical CNN frameworks and frontier problems with their
corresponding solutions in skin cancer classification tasks. A
brief conclusion is given in Section 4.
2 DERMATOLOGICAL IMAGES
AND DATASETS

High-quality images of skin diseases are important for both
dermatologists and automated diagnostic systems. On the one
hand, dermatologists rely on high-resolution (HR) images to
make diagnoses when direct observation is impossible (38). This
is especially common in telemedicine, medical consultations, and
regular clinics (39). On the other hand, training reliable
algorithms has always necessitated the use of high-quality data.
Frontiers in Oncology | www.frontiersin.org 3
In particular, deep learning algorithms always need a vast
volume of labeled data for a better accuracy (28). As a result,
high-quality dermatological images are critical for both clinical
diagnosis and the design of new algorithms. In this section, we go
over three different types of images commonly used in skin
cancer diagnosis, as well as some public datasets.

2.1 Dermatological Images
The three main types of image modalities used to diagnose skin
diseases are clinical images, dermoscopy images, and
histopathological images (see Figure 1). Clinical images are
frequently captured by mobile devices for remote diagnosis or
as medical records. Dermoscopy images and histopathological
images are commonly utilized in clinical diagnosis to assess the
severity of the illness. In the next part, we introduce
them separately.

2.1.1 Clinical Images
Clinical images are obtained by photographing the skin disease
site directly with a camera. They can be used as a medical record
for patients and provide different insights for dermoscopy images
(12). The biggest issue of utilizing clinical images for skin cancer
classification is that they include limited morphological
information while also introducing considerable inaccuracies
into the diagnostic results, owing to the effect of diverse
imaging settings (such as lighting, angle, and so on) (40).

2.1.2 Dermoscopy Images
Dermoscopy images are captured with dermoscopy, a type of
optical observation tool used to assess the fine details of skin
diseases (41). Clinicians frequently utilize dermoscopy to
diagnose benign nevi and malignant melanoma (42). It serves
as a bridge between clinical and pathological aspects, and thus
dermoscopy is often referred to as a dermatologist’s stethoscope.
TABLE 1 | A summary of the current review related to skin cancer classification.

Ref. Title Venue Remarks

(32) Skin Cancer Classification Using Convolutional Neural
Networks: Systematic Review

Journal of Medical Internet
Research

This study presents a detailed overview of studies on using CNNs
to classify skin lesions.

(31) Techniques and algorithms for computer aided diagnosis of
pigmented skin lesions—A review

Biomedical Signal Processing
and Control

This paper gives a review of the recent developments in skin lesion
classification using dermoscopic images.

(33) Classification of Skin cancer using deep learning,
Convolutional Neural Networks -Opportunities and
vulnerabilities-A systematic Review

International Journal for
Modern Trends in Science
and Technology

This article reviews the development of deep learning for skin
cancer classification tasks.

(34) Machine Learning in Dermatology: Current Applications,
Opportunities, and Limitations

Dermatology and Therapy
volume

This paper reviews the fundamentals of machine learning and its
wide range of applications in dermatology.

(12) Artificial intelligence-based image classification methods for
diagnosis of skin cancer: Challenges and opportunities

Computers in Biology and
Medicine

This review discusses the developments in AI-based methods for
skin cancer diagnosis, as well as challenges and future directions
to enhance them.

(35) Skin cancer classification via convolutional neural networks:
systematic review of studies involving human experts

European Journal of Cancer This paper analyses studies comparing AI–based skin cancer
classifiers with dermatologists.

(37) Skin Cancer Detection: A Review Using Deep Learning
Techniques

International Journal of
Environmental Research and
Public Health

This paper provides a review of deep learning-based methods for
early diagnosis of skin cancer.

(36) Integrating Patient Data Into Skin Cancer Classification Using
Convolutional Neural Networks: Systematic Review

Journal of Medical Internet
Research

This review summarizes the latest CNN-based methods in skin
lesion classification by utilizing image data and patient data.

(28) Skin disease diagnosis with deep learning: A review Neurocomputing This paper analyses several deep learning algorithms for
diagnosing skin diseases from a variety of perspectives based on
the challenges at hand.
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Dermoscopy images provide a clear visualization of the skin’s
surface and are used to analyze the color and microstructure of
the epidermis (43). For some skin diseases, there are already
numerous diagnostic guidelines based on dermoscopy images
(44), for example, the ABCD Rule Law (15), the CASH Rule Law
(45), and the Menzies Method (16). When using dermoscopy
images for skin cancer diagnosis, the range of structures that can
be observed is limited, and its diagnostic accuracy is occasionally
affected by the experience of dermatologists (46).

2.1.3 Histopathological Images
Histopathological images were obtained using microscopes to
scan tissue slides and then digitalize as images (28). They are
utilized to show the vertical structure and complete internal
characteristics of the diseased tissue. In the clinic, pathological
examinations serve as the “gold standard” for diagnosing almost
all types of cancers, as they are often used to distinguish between
types of cancers and guide appropriate treatment plans based on
pathological changes. However, different histopathological
images of skin cancer exhibit different morphologies, scales,
textures, and color distributions, which makes it difficult to
find a common pattern for diagnosis (12).

2.2 Datasets
To create a trustworthy and robust skin cancer classification
system, a variety of datasets with all kinds of dermatological
images are required. As the need for medical imaging resources
in academia grows, more and more datasets are becoming
publicly available. To provide readers with a reference, we
introduce several commonly used skin-disease datasets in the
next part, along with the works based on these datasets.

2.2.1 PH2 Dataset
The PH2 dataset is constructed by (47) to support the research of
classification and segmentation methods. It contains 200 color
dermoscopy images (768 × 560) of three types of skin diseases,
including common nevi, atypical nevi, and melanomas. Besides,
it contains complete medical annotations, such as lesion
segmentation results and pathological diagnosis.
1https://dermnetnz.org/topics/basal-cell-carcinoma.
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PH2 is frequently used as a dataset for testing the diagnostic
algorithms of skin disease. For example (48), used the SegNet
framework to automatically diagnose and segment the
dermoscopic images in PH2 and finally obtained the
classification accuracy of 94% (49). proposed a novel deep
convolutional network for feature extraction and classification
of skin lesions. The model was mainly divided into three stages.
The first stage was for data augmentation and image contrast
enhancement. The second stage used CNN to extract
information from the boundary of the lesion area. The third
stage used Hamming distance to fuse and select features obtained
with pretrained Inception v3. Finally, the model obtained a
classification accuracy of 98.4%, 95.1%, and 94.8% on the PH2,
ISIC-2016, and ISIC-2017 datasets, respectively (50). proposed a
Multi-Focus Segmentation Network for skin cancer disease
segmentation tasks based on the PH2 dataset by utilizing
feature maps of different scales. Two boundary attention
modules and two reverse attention modules were utilized to
generate skin lesion masks. Finally, the experimental results
revealed that the proposed method achieved a dice similarity
coefficient of 0.954 and an IoU index of 0.914 on the PH2 dataset.
In addition to the above works, the PH2 dataset is being utilized
by an increasing number of algorithms to validate their
effectiveness and accuracy.

2.2.2 MED-NODE Dataset
The MED-NODE Dataset3 is collected by the Department of
Dermatology of the University Medical Center Groningen
(UMCG), which contains 170 digital images of melanoma (51)
and nevi case (52). It is used to build and evaluate the MED-
NODE system for detecting skin cancer with macroscopic
images (53).

On the MED-NODE dataset, a variety of approaches
provided significant classification results. For example, in order
to improve the generalization ability of the model and alleviate
the problem of data imbalance (54), proposed a model for
melanoma classification based on transfer learning and
ensemble learning. Finally, the model achieved 93%
classification accuracy on the MED-NODE dataset, surpassing
other state-of-the-art methods (55). applied AlexNet for the skin
A B C

FIGURE 1 | Examples of three types of dermatological images of BCC to show their differences and relationships: (A) Clinical image. (B) Dermoscopy image.
(C) Histopathological image.1
3https://www.cs.rug.nl/~imaging/databases/melanoma_naevi/.
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cancer classification task by using three different transfer
learning methods, including fine-tuning the weight parameters
of the model, replacing the classification layer function, and
performing data augmentation on the original dataset. In the
end, they achieved an accuracy of 96.86% on the MED-NODE
dataset. Then (56), used two additional networks for the skin
cancer classification task, including ResNet-101 and GoogleNet.
Finally, experiment results revealed that GoogleNet achieved the
best classification accuracy of 99.29% on the MED-NODE
dataset. It can be seen that various convolutional neural
networks have obtained decent classification results on this
dataset; however, the number of skin disease images included
is relatively restricted.

2.2.3 HAM10000 Dataset
The HAM100004 dataset was collected by the International Skin
Imaging Collaboration (ISIC) to solve the problem of data
imbalance and data limitation in skin-disease datasets. It
contains 10,015 dermoscopic images with seven representative
diseases in pigmented skin lesions: nematode disease and
intraepithelial carcinoma, basal cell carcinoma, benign keratoid
lesions, cutaneous fibroma, melanoma, melanocyte nevi, and
vascular lesions (including hemangiomas, purulent granulomas,
and subcutaneous hemorrhage) (57, 58).

The HAM10000 dataset is widely used by many scholars due
to its diversity of skin lesions. For example (25), used four novel
deep CNN models, DenseNet-201, ResNet-152, Inception-v3,
and InceptionResNet-v2 to classify eight different types of skin
cancers on the HAM10000 and PH2 datasets. Finally,
experimental results indicated that the diagnostic level of these
CNN models exceeds the dermatologists in terms of ROC AUC
score (59). trained 30 different models on the HAM10000 dataset
to explore the classification performance of different models. At
the same time, they also used two locally interpretable methods
GradCAM and Kernel SHAP techniques to observe the
mechanism of the classification model. Finally, the model
achieved an average AUC of 0.85 (60). designed a method for
classifying seven skin diseases that used ensemble learning and
the one-versus-all (OVA) strategy. Finally, they achieved a
classification accuracy of 0.9209 on the HAM10000 dataset
(61). obtained the best classification result by combining
Inception ResNet-v2 with Soft-Attention mechanism on the
HAM10000 dataset, with an accuracy of 0.934, an AUC of
0.984, and an average precision of 0.937. With the in-depth
study of skin cancer classification tasks by scholars, more and
more novel classification methods are being tested on the
HAM10000 dataset for a better comparison, where the
adoption of the Soft-Attention module yields the best
classification results.

2.2.4 Derm7pt Dataset
The Derm7pt dataset contains approximately 2,000 clinical and
dermoscopy color images of skin disease, as well as structured
information for training and assessing CAD systems. It serves as
4https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/
DBW86T.
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a database for analyzing the prediction results of the seven-point
malignancy checklist of skin lesion (62).

Due to the multimodal information contained in the
Derm7pt dataset, it has gradually been widely used to test
various multitask networks. When releasing the dataset (62),
also proposed a multitask network for predicting melanoma with
seven-point checklist criteria and diagnostic results. The model
used different loss functions to handle different input modalities,
while being able to make predictions on missing data at the
output. Finally, the model achieved a classification accuracy of
73.7% on the Derm7pt dataset, also benchmarking the approach.
To increase its interpretability (63), created a multitask model
based on the Derm7pt dataset to illustrate the mechanism
between different tasks. Learnable gates were used in the model
to show how the method used or combined features from various
tasks. This strategy may be used to investigate how CNN models
behave, potentially enhancing their clinical utility (64). proposed
a deep convolutional network for skin lesion classification on the
Derm7pt dataset. Meanwhile, they implemented regularized
DropOut and DropBlock to increase the model’s generalization
capabilities and reduce overfitting. In addition, to address the
dataset’s imbalance and limitation, they devised a novel loss
function that assigns different weights to various samples, as well
as an end-to-end cumulative learning technique. Finally, the
method achieved excellent classification performance on
the Derm7pt dataset and ISIC dataset while with low
computational resources. The release of the Derm7pt dataset
has a great boost in promoting the use of multimodal data in skin
cancer classification tasks, as well as new ideas and solutions.

2.2.5 BCN20000 Dataset
The BCN200005 dataset comprises 5,583 skin lesions and 19,424
dermoscopic images taken using high-resolution dermoscopy.
They were all gathered between 2010 and 2016. At the same time,
the collector employed a variety of computer vision techniques to
remove noise, background, and other interference from the
images. Finally, they were carefully reviewed by numerous
experts to ensure the diagnosis’ validity (65).

BCN20000 is commonly utilized in skin cancer classification
and segmentation tasks as part of the dataset for the ISIC-2019
competition. For example, in order to protect the data privacy
and avoid data abuse (66), proposed a Distributed Analytics
method for distributed training of skin disease images, which
ensures that the training data remains in the original institution.
Finally, after training on the BCN20000 dataset, the model
achieves classification accuracy comparable to the centralized
distribution. To evaluate the robustness of different CNNmodels
(67), generated a series of out-of-distribution (OOD) images by
using different data augmentation methods based on BCN20000,
HAM10000, and other skin-disease datasets. This method
establishes a benchmark for OOD testing and considerably
facilitates the clinical use of skin cancer classification methods.
Specially, by using different data augmentation methods with an
ensemble learning strategy (including EfficientNets, SENet, and
ResNeXt101_wsl) (68), achieved the first-place classification
5https://www.isic-archive.com/, 2019.
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resul t wi th a balanced accuracy of 74 .2% on the
BCN20000 dataset.

2.2.6 ISIC Dataset
To reduce skin cancer mortality while promoting the development
and use of digital skin imaging (69), the International Skin Imaging
Collaboration (ISIC) has established a publicly available skin disease
dataset6 for the computer science community around the world.
Currently, ISIC Archive comprises over 13,000 representative
dermoscopic images from clinical facilities throughout the world,
all of which have been inspected and annotated by experts to ensure
image quality (70).

The majority of studies that utilized the ISIC dataset focused
on skin cancer classification and segmentation tasks, with the
binary classification task being the most popular. For example
(71), designed different modules based on VGGNet for skin
disease classification (melanoma or benign) and benchmarked
for the ISIC-2016 dataset. In the end, results showed that this
method obtained excellent performance with an accuracy of
0.8133 and a sensitivity of 0.7866 (51). achieved the best
classification results with an AUC of 0.911 and balanced
multiclass accuracy of 0.831 on three skin cancer classification
tasks of ISIC-2017 by using an ensemble of ResNet-50 networks
on normalized images (72). used ensemble learning with a
stacking scheme and obtained the classification results with an
accuracy of 0.885 and an AUC of 0.983 in the ISIC-2018
competition (73). employed two bias removal techniques,
“Learning Not to Learn” (LNTL) and “Turning a Blind Eye”
(TABE), to alleviate irregularities in model predictions and
spurious changes in melanoma images. Among them, the
LNTL method combined a new regularization loss with a
gradient inversion layer to enable the model to debias the
CNN’s features in backpropagation. The TABE method
reduced biases by using different auxiliary classifiers to identify
biases in features. Finally, the experimental results revealed that
TABE had a more effective denoising effect, with an
improvement of 11.6% in the AUC score benchmark on the
ISIC dataset. Since the ISIC dataset is widely used in
6https://www.isic-archive.com/.
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competitions and research, readers can find more methods for
comparison on the competition leaderboard or on the Internet.

Table 2 summarizes the above datasets to show the different
characteristics between them. What we summarized are the most
common datasets in the skin cancer classification task and may
not be the most exhaustive summary. Readers can find more
datasets from various sources online. At the same time, it can be
seen from the above summary that most of the images in the
skin-disease dataset are dermoscopic images, while clinical
images and histopathological images are still relatively rare.
Furthermore, most skin-disease datasets have a relatively small
number of images compared with datasets of natural images, which
poses certain challenges for skin cancer classification tasks.
3 METHODS FOR TYPICAL AND
FRONTIER PROBLEMS IN SKIN
CANCER CLASSIFICATION

In the past few years, many scholars have been working on
developing computer-aided diagnostic (CAD) systems for skin
cancer classification. Before the emergence of deep learning, the
CAD systems were primarily designed by machine learning (ML)
algorithms (74). However, due to the complexity of feature
engineering and limitations of handcrafted features, these ML-
based methods can only diagnose a subset of skin diseases. Deep
learning algorithms, on the other hand, can automatically learn
semantic features from large-scale datasets with higher accuracy
and efficiency. As a result, deep learning-based methods such as
Convolutional Neural Network (CNN) have been used to solve
the great majority of skin cancer classification problems in recent
years and obtained satisfactory results.

However, as we dig deeper into the challenges of skin cancer
classification, it appears that they are not as straightforward as
the challenges in the non-medical domain (e.g., ImageNet,
PASCAL-VOC, MS-COCO) (75) (12). Firstly, many datasets of
skin images are imbalanced due to the disproportions among
different skin cancer classes, which increases the risk of
misdiagnosis by the diagnostic system. Also, since correct
annotation needs a great amount of expertise knowledge and is
time-consuming and labor-intensive, many datasets only provide
TABLE 2 | Characteristics of different skin-disease datasets.

Dataset No. of
images

Modality of
images

No. of lesion
types

Image
format

Published
year

Goal of publication

PH2 200 Dermoscopic 3 .bmp 2013 To facilitate the development of computer-aided diagnosis systems in the
segmentation and classification of melanoma.

MED-
NODE

170 Macroscopic 2 .jpg 2015 To build and evaluate the MED-NODE system for detecting skin cancer with
dermoscopic images.

HAM10000 10,015 Dermoscopic 8 .jpg 2018 To address the small size and insufficient diversity of images in the skin-disease
dataset.

Derm7pt 2,000 Dermoscopic
Structured
data

15 .jpg 2018 As a database for the analysis of a seven-point malignant checklist for skin lesions.

BCN20000 19,424 Dermoscopic 9 .jpg 2019 Used to analyze skin cancer lesions in hard-to-diagnose locations such as nails
and mucous membranes.

ISIC
Archive

>13,000 Dermoscopic 9 .jpg,
DICOM

2016–2020 To reduce skin cancer mortality while promoting the development and use of digital
skin imaging.
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a limited number of images (e.g., the ISIC dataset is the largest
publicly available skin disease dataset until now, which contains
about 13,000 skin images). As a result, more labeled data is
required to design a more accurate system. Besides, when the
amount of training data is insufficient, the model’s generalization
performance degrades. In addition, different noises generated by
different devices or different shooting conditions also bring
biases to the model, resulting in a reduction in diagnosis.
Furthermore, the operational efficiency and resource consumption
of the model also limit its clinical implementation on various
medical devices.

As a result, in the following part, we present a complete
overview of the use of deep learning methods in skin cancer
classification. We begin by introducing the use of typical CNN
frameworks in skin cancer classification, then review the frontier
challenges in skin cancer classification and provide related
solutions. We summarize these methods in Tables 3–6.
Frontiers in Oncology | www.frontiersin.org 7
Among them, Table 3 summarizes the use of typical
frameworks in skin cancer classification, as well as their
highlights and limitations. Tables 4–6 summarize the
approaches to address the frontier issues of data imbalance and
limitation, model generalization ability and robustness, and
model computational efficiency in skin cancer classification. At
the same time, we list publications based on the same or similar
dataset together to make it easier for readers to compare
different approaches.

3.1 Typical CNN Frameworks for Skin
Cancer Classification
During the early stages of the development of CNN, people
usually used self-building networks for a specific task. For
example (76), presented a self-supervised model for melanoma
detection. Firstly, a deep belief network and self-advised SVM
were used to train the labeled and unlabeled images. After that, a
TABLE 3 | References of skin cancer classification with typical CNN frameworks.

Ref. Dataset CNN Architecture Highlights Limitations Performance

(76) Self-collected
dataset

Deep Belief Network,
SVM

By combining deep belief networks and SVM classifiers to
handle skin cancer diagnosis tasks with limited datasets, as
well as outliers and erroneous data.

The generalization ability of the model
is limited.

Accuracy:
0.89

(77) Self-collected
dataset

Resnet-34, ResNet-50
ResNet-101 and
ResNet-152

Proposed how to improve deep learning-based dermoscopy
classification and dataset creation.

Data from more modalities, such as
the patient’s medical history,
information on other symptoms, are
not considered.

Accuracy:
0.85

(78) Online
repositories
and the
Stanford
University
Medical Center

Inception-v3 Used a CNN framework to train a large-scale skin disease
dataset and achieve superior results on par with
dermatologists. The method was also developed for mobile
devices.

More research is required to assess
its performance in clinical practice. At
the same time, this method is limited
to some extent by the amount of
data.

Accuracy:
0.6375 (avg.)

(79) MED-NODE Deep CNN Compared with previous methods, it directly used CNN to
automatically extract features for skin disease images, also had
a higher classification accuracy.

Due to the large noise interference of
clinical images, there are still some
misclassifications.

Accuracy:
0.81
PPV: 0.75,
NPV: 0.86

(71) ISIC-2016 VGG-16 It reduces the training time of the model by using the transfer
learning strategy while obtaining higher sensitivity and
precision.

It is prone to overfitting due to the
limited amount of training images.

Accuracy:
0.813
Sensitivity:
0.787

(80) ISIC-2017, IAD Inception-v2 Introducing sonification into the diagnosis of skin cancer
lesions to improve the sensitivity of the model.

Differences in the diagnosis of
pathologists can affect the prediction
results of the model.

AUC: 0.976
Sensitivity:
0.86
Specificity:
0.91

(27) ISIC-2017 DenseNet, Dual Path
Nets Inception-v4,
Inception-ResNet-
v2MobileNetV2,
PNASNet, ResNet
SENet, Xception

By analyzing 13 factors from 9 different models, they
systematically evaluated the factors influencing the choice of
CNN structure.

The dataset used in this article is too
limited, and it only focuses on the
melanoma classification task.

Top accuracy:
0.827

(81) IAD VGG-19 Adopted VGG-19 network to evaluate the thickness of
melanoma for the first time.

There are no more pre-training
methods utilized for comparison, and
precisely predicting melanoma
thickness would be more clinically
significant.

Accuracy:
0.872
Specificity:
0.840

(82) Derm7pt Inception-v3 A multi-task network was designed to classify the seven-point
checklist and skin disease diagnosis. Different loss functions
were also designed to handle different input modalities, such
as clinical and dermoscopic images, and patient diagnostic
results.

Some criteria of the 7-point checklist
are unable to be distinguished.

Accuracy:
0.737

(60) HAM10000 Deep CNN models Proposed a method combining CNN with one-versus-all (OVA)
for skin disease classification.

The model has not been tested on
datasets from various domains and
may have a large variance.

Accuracy:
0.929

(83) HAM10000
ISIC-2019

ResNeXt, SeResNeXt,
DenseNet
Xception, and ResNet

Adopted a grid search strategy to find the best ensemble
learning methods for skin cancer classification.

The amount of training data is still
insufficient, and most of models
employed in ensemble learning are
from the same network architecture.

Accuracy:
0.88
F1 score:
0.89
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bootstrap approach was used to randomly choose the training
images for the network to improve the generalization ability and
decrease the redundancy of the model. Experiments showed that
the proposed method outperformed other methods like KNN
and SVM. Then (79), designed a simple CNN network work for
detecting melanoma. Firstly, all input images were preprocessed
to eliminate the effects of noise and artifacts. The processed
images were then fed into a pretrained CNN to detect if they
were melanoma or benign. Finally, experiment results showed
that CNN outperformed other classification methods.

With the development of deep learning, various well-known
networks, such as VGGNet (117), GoogleNet (118), and ResNet
(119), have been applied to skin cancer classification with
favorable results. The most landmark work was (78). It was the
Frontiers in Oncology | www.frontiersin.org 8
first time that a CNN has been utilized to train large-scale clinical
images for skin cancer classification. They designed an end-to-
end network for automated skin cancer classification using
Inception v3. A total of 129,450 clinical images with 2,032
distinct skin diseases were utilized for training the model.
Meanwhile, to make use of the fine-grained information in
taxonomy structure, they proposed a disease partitioning
algorithm to divide skin cancers into fine-grained classes (e.g.,
melanoma was subdivided into amelanotic melanoma and
acrolentiginous melanoma). In the end, the results of the
experiments indicated that the skin cancer classification system
could attain diagnostic levels equivalent to dermatologists. In the
same year (71), successfully implemented VGGNet for skin
lesion classification (melanoma or benign) and benchmarked
TABLE 4 | Different methods for solving data imbalance and data limitation.

Ref. Dataset Highlights Limitations Performance

(84) ISIC-2017 By coupling seven GANs to generate seven skin-disease images. At the
same time, they improved the efficiency of the model by making the initial
layers of GANs share the same parameters.

The model was unable to distinguish the lesion area
well when it was mixed with the skin surface, and
artifacts such as human hair can also affect the
generation of new images.

Accuracy:
0.816
AUC: 0.88

(85) ISIC-2018 Proposed a GAN architecture that was customized to the style of skin
lesions. At the same time, it can generate higher resolution and more
diverse skin disease images by adjusting the progressive growth structure
of the generator and discriminator in the GAN network.

The content of the GAN-generated synthetic dataset
was not complicated enough when compared with the
original dataset, and it was also not diverse enough.

Accuracy:
0.952
Sensitivity:
0.832
Specificity:
0.743

(86) ISIC-2018 Utilized conditional generative adversarial networks (CGAN) to extract key
information from all layers to generate skin lesion images with different
textures and shapes while ensuring the stability of training.

The amount of data used for training was relatively
limited.

Accuracy:
0.941
Precision:
0.915
Recall: 0.799

(87) ISIC
Archive

Explored four types of data augmentation methods and a multiple layers
augmentation method in melanoma classification.

The data augmentation methods evaluated in this
paper were limited and not validated on a large
amount of datasets.

Accuracy:
0.829

(88) HAM10000 They adopted a variational autoencoder network to get domain-dependent
noise vectors. Also, a student-like distribution was employed to increase
image diversity, and an auxiliary classifier was used to create images of
certain classes.

Due to the specificity of medical images, different
image generation models may generate skin disease
images that did not belong to the same class.

Accuracy:
0.925

(89) HAM10000 It combined the attention mechanism with PGGAN to obtain global
features of skin lesions images, also introduced the Two-Timescale Update
Rule to generate features with high fine-grainedness, while increasing the
stability of GAN.

Due to the limitation of hardware conditions, this data
augmentation method was only evaluated on the
resolution of 256 × 256, rather than the original
resolution of 600 × 450 in HAM10000 dataset.

AUC: 0.793

(90) HAM10000 Proposed a class-weighted loss function and a focal loss to overcome the
problem of data imbalance.

There is no artifact removal for the images in the
training dataset, which leads the model to be biased.
Also, it has a relatively high computational complexity.

Accuracy:
0.93
Recall: 0.86

(91) HAM10000 A novel loss function was combined with the balanced mini-batch logic of
the data level to alleviate the imbalance problem of the dermatology
dataset.

The classification accuracy for rare skin diseases with
limited data needs to be improved further.

Accuracy:
0.8997
Recall:
0.8613

ISIC-2019

(92) HAM10000 Proposed a two-stage technique for determining the appropriate
augmentation procedure for mobile devices.

Given the particularity of lightweight CNN, more data
augmentation methods and data need to be
considered to alleviate the problem of overfitting.

Accuracy:
0.853

(93) PAD-UFES Designed two algorithms based on evolutionary algorithm and also applied
weighted loss function and oversampling to alleviate the problem of data
imbalance.

A larger dataset was necessary to improve the
performance further.

Accuracy:
0.92
Recall: 0.94

(94) PH2 Proposed novel a data augmentation method based on a oversampling
technique (SMOTE).

The proposed data augmentation method was not
validated in the deep learning architectures, and
experiments on larger datasets were also required.

Accuracy:
0.922
Sensitivity:
0.808
Specificity:
0.951
July 2022 | Volume 12 |
 Article 893972

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wu et al. Review of Skin Cancer Classification
for ISIC datasets by using dermoscopic images. In this study,
they designed three different modules based on VGG-16 as
comparison. The first module trained the network from initial
weights. The second module used pretrained VGG-16 for
training and then used the current dataset to train the fully
connected classifier. The third module also used transfer learning
to train the network, but weights in the high-level part of the
convolutional layers were initialized from the first module. In the
end, results showed that the third module obtained excellent
performance in skin cancer classification. Different from
previous classification tasks (81), utilized a CNN framework
(VGG-19) for the first time to evaluate the thickness of
melanoma. They began by locating the lesion and cropping the
region of interest (ROI). To solve the problem of data limitation
and data imbalance; they then employed the Synthetic Minority
Over-sampling technique to generate synthetic samples. After
Frontiers in Oncology | www.frontiersin.org 9
that, the pretrained VGG-19 was used for the thickness
prediction. Finally, the results demonstrated that the algorithm
can estimate the thickness of melanoma with an accuracy of
87.5%. For the first time, a multitask network was proposed by
(82) based on Inception v3 by utilizing three different modalities
of data to predict seven-point criteria. In addition, they designed
a multimodal–multitask loss function to tackle the combinations
of input modalities, which was also able to make predictions with
incomplete information. Finally, results showed the superior
performance in classifying skin lesions and the seven-point
criteria. Besides, the proposed method had the ability to
identify discriminating information and generate feature
vectors for image retrieval (80). built two systems for skin
disease classification based on the novel deep learning
algorithms. Additionally, they added a sonification-derived
layer to increase the sensitivity of the model. In the first
TABLE 5 | Different methods for improving model generalization ability and robustness.

Ref. Dataset Highlights Limitations Performance

(95) DermIS
DermQuest

Investigated the advantages of large-scale supervised pre-training for
medical imaging applications.

In addition to the analysis of the weights and features of
the model, it is necessary to conduct a comprehensive
analysis of other features such as network structure to
explore the importance of pre-training.

Accuracy:
0.871
(DermIS)
Accuracy:
0.974
(DermQuest)

(96) HAM10000
MoleMap

Proposed transfer learning and adversarial learning in skin disease
classification to improve the generalization ability of models to new
samples and reduce cross-domain shift.

When the data domain and target domain are significantly
different, the method’s overall accuracy suffers.

Accuracy:
0.909
AUC: 0.967

(97) HAM10000 Performed adversarial training on MobileNet and VGG-16 using the
innovative attacking models FGSM and PGD for skin cancer
classification.

The number of datasets tested for this experiment is very
limited, and there may be local optimizations.

Accuracy:
0.7614

(98) ISIC-2016 Proposed a comprehensive deep learning framework combining
adversarial training and transfer learning for melanoma classification.
At the same time, focal loss was introduced to iteratively optimize the
network to better learn hard samples.

This method does not consider more types of skin
diseases, and it had a high computational cost.

Accuracy:
0.812
Sensitivity:
0.918

(99) ISIC2017
HAM10000

Presented a Multi-view Filtered Transfer Learning approach to extract
useful information from the original samples for domain adaption,
thereby improving representation ability for skin disease image.

The effectiveness of this domain adaptation method should
be validated on more dermatology datasets.

Accuracy:
0.918
AUC: 0.879

(100) ISBI-2017,
PH2

Proposed an adversarial training method combined with attention
module to enhance the robustness of the model in skin-disease
classification and segmentation.

Due to the limited amount of training data and the unclear
boundaries of skin disease images, the model still suffers
from under-segmentation and over-segmentation.

Accuracy:
0.968
Sensitivity:
0.962
Specificity:
0.941

(101) ISIC-2018 Using seven universal adversarial perturbations to investigate the
vulnerability of the classification model.

This method does not perform adversarial training on more
skin disease datasets, so the robustness of its model
needs to be further improved.

Accuracy:
0.873

(102) ISIC-2019 Proposed Monte Carlo dropout, Ensemble MC dropout, and Deep
Ensemble for uncertainty quantification.

Further optimization of the robustness of the model is
required, and the model should also be tested for noise
detection to provide a confidence score.

Accuracy:
0.90
AUC: 0.945

(103) ISIC Archive
MED-NODE
Dermofit

Proposed a transfer learning method to address the shortage of data
in skin lesion images. Also, they utilized a hybrid deep CNN model to
accurately extract features and ensure training stability while avoiding
overfitting.

The model requires a considerable amount of
computational resources while also lacking the diversity of
domains.

Accuracy:
0.853
F1 score:
0.891

(104) HAM10000,
Dermofit,
Derm7pt,
MSK
PH2,
SONIC,
UDA

Proposed to improve the generalization performance of the model by
combining data augmentation and domain alignment.
Designed a Bayesian generative model for continual learning based
on a fixed pretrained feature extractor.

Due to the privacy of medical images, this trained model
may underperform on ethnic groups with a small
proportion of the population.

Accuracy:
0.670

(105) Skin7,
Skin40

To increase the method’s overall performance, better pre-
training of the extractor can be investigated.

Mean class
recall: 0.65
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system, a CNN architecture was proposed based on Inception v2
to identify skin diseases (benign or malignant) with dermoscopic
images. The second system transformed the feature
representation generated in the preceding system into sound
data. Then, this sound information was then put into a machine
learning classifier or translated to spectrograms for further
analysis. In the end, both systems performed exceptionally well
in terms of classification and sonification. After the deep learning
methods achieved excellent results in the skin cancer
classification task (77), proposed how to improve deep
learning-based dermoscopy classification and dataset creation.
They analyzed four ResNet architectures in dermoscopic
classification, namely, ResNet-34, ResNet-50, ResNet-101, and
ResNet-152, to apprehend the mechanisms and certain error
Frontiers in Oncology | www.frontiersin.org 10
causes. First, four ResNet networks were trained at their best fits
to see if the structural differences between the models would
result in different classification results. After testing with several
epochs, they found that the accuracy of different models tended
to be consistent and varied with different hyperparameter
settings. Meanwhile, they had a high level of stability during
training. Therefore, the training errors of the classification
models were attributed to incorrect annotations and the
complexity of medical images.

Gradually, people discovered that applying a single CNN to a
CAD system typically did not produce the desired results due to
the large variances in deep neural networks. After that, ensemble
learning was proposed as a way to limit the error generated by a
single model by training multiple models and then combining
TABLE 6 | Different methods for improving model efficiency.

Ref. Dataset Highlights Limitations Performance

(106) Self-collected Proposed a knowledge distillation method to transfer knowledge between
various models simultaneously.

The proposed method sacrifices local
accuracy for higher global accuracy, with some
additional classification errors on local objects.

Accuracy:
0.75

(107) Public
repositories

Proposed a MobileNet-based classification method and successfully
deployed it on an Android application.

To improve the model’s classification
accuracy, more sophisticated sampling
strategies and data preprocessing can be
adopted.

Accuracy:
0.944

(108) HAM10000 Presented an assessment of the effectiveness for the attention module and
self-attention module in skin cancer classification based on ResNet
architecture.

Only limited number of attention mechanisms
are used for comparison.

Accuracy:
0.622
(attention)
Accuracy:
0.737 (self-
attention)

(109) HAM10000 Proposed a weight pruning strategy for lightweight neural networks to make
up for the accuracy loss and improve model performance and reliability in the
skin cancer classification.

The proposed pruning method is only
validated on the skin disease dataset, and
more kinds of medical images are needed to
validate its effectiveness.

Accuracy:
0.975

SH-11 AUC: 0.931

(110) HAM10000,
PH2,
Dermofit

Designed a new pruning method “MergePrune” to reduce the computational
cost of retraining the network by combining pruning and training into a single
stage.

To assess this strategy, more domain data is
needed, such as clinical images, patient meta-
data.

Accuracy:
0.776 (avg.)

Derm7pt,
MSK, UDA

(111) ISIC-2017 Proposed a classification method that incorporated the attention residual
learning (ARL) mechanism to EfficientNet for skin cancer diagnoses.

The interpretability of the model needs to be
further strengthened.

Accuracy:
0.873
AUC: 0.867

(112) ISIC-2017 Three different lightweight networks MobileNet, MobileNetV2, and
NASNetMobile were were evaluated for skin cancer classification.

The number of lightweight networks and
hyperparameters used for testing are relatively
restricted.

Accuracy:
0.82
Precision:
0.812

(113) ISIC-2017,
PH2

Proposed an MT-TransUNet network to segment and classify skin lesions
simultaneously.

The model finds it difficult with low-contrast
skin disease images, and its segmentation
performance is vulnerable to occlusions in the
skin image.

Accuracy:
0.912

(114) PH2,
DermQuest

Built a pruning framework to simplify the complicated architectures by
choosing the most informative color channels in skin lesion detection. Also, it
carried out a hardware-level analysis of the complexity of different skin cancer
classification networks.

The proposed method works well for simple
networks, but it may not perform as well for
more complicated networks.

Accuracy:
0.9811 (PH2)
Accuracy:
0.9892
(DermQuest)

(115) SD-198, SD-
260

Proposed a knowledge distillation method based on curriculum training to
distinguish herpes zoster from other skin diseases.

It requires manual tuning of hyperparameters
according to different models and datasets.

Accuracy:
0.935

(116) DermIS,
DermQuest,
DermNZ,
“11K Hands”

Proposed an expert system “i-Rash” based on SqueezeNet to classify four
skin diseases.

More clinical data and skin-disease images are
needed to further improve the generalization of
the model.

Accuracy:
0.972
Sensitivity:
0.944
Specificity:
0.981
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their results to get the final classification results (27). compared
the performance between ensemble models and a single model
by utilizing nine different CNN architectures in skin cancer
classification. After different comparative experiments, they
found the significance of ensemble learning for obtaining
optimal classification models. In addition, they investigated the
effectiveness between two different selection strategies in
ensemble learning: random selection and utilizing a validation
set. For the smaller ensemble models, they found that the second
method had more advantages, but the first was also effective. For
the larger ensemble models, it was possible to get away with
merely picking models arbitrarily. Based on the same method
(60), proposed two different methods for skin cancer
classification while reducing the complexity of the model by
using an OVA strategy: i) alone CNN model and ii) the
incorporation of seven CNN models. In the first method,
images from the dataset were directly put into the single CNN
model for the final prediction. In the second method, a one-
versus-all (OVA) strategy was used to combine seven separate
models with two classes to obtain the final prediction. Each class
in this method was classified according to true and false labels,
thus increasing the efficiency of the model. The results revealed
that the second method outperformed the first in terms of
classification accuracy (83). adopted a grid search strategy to
find the best ensemble learning methods for the classification of
seven skin lesions. During the training, five CNN networks,
ResNeXt, SeResNeXt, ResNet, Xception, and DenseNet, were
used as baseline. After that, two ensemble learning strategies,
namely, average ensemble and weighted ensemble, were
conducted to find the optimal model. In the end, results
showed that the weighted ensemble model had more
advantages than the average ensemble model.

3.2 Data Imbalance and Data Limitation in
Skin Disease Datasets
Data imbalance and data limitation in skin disease datasets are
common problems in the skin cancer classification tasks. In fact,
benign lesions account for the majority of data in many skin
disease datasets. Meanwhile, many skin disease datasets have
large inequities in the number of samples among different skin
disease classes. Only the common skin diseases, such as BCC,
SCC, and melanoma, are included in the majority of skin disease
datasets. Other skin cancer diseases (such as appendiceal
carcinomas and cutaneous lymphoma) are relatively rare in
these datasets, making it difficult for algorithms to classify
them correctly (28). Besides, the skin lesions in most of the
current datasets are from fair-skinned people, with only a few
from dark-skinned people (12). It has been demonstrated that
deep learning frameworks that have been validated for skin
cancer diagnosis in fair-skinned people are more likely to
misdiagnose those with different races or ethnicity (120). At
the same time, the quantity of skin disease images is also
relatively restricted. For example, ISIC-2020 (121) is the
dataset with the largest number images so far, with about
30,000 skin disease images. Although large amounts of skin
disease images can be obtained from websites or medical
Frontiers in Oncology | www.frontiersin.org 11
institutions without any diagnosis information, labeling them
takes professional knowledge and can be extremely challenging
and time-consuming. What is more, sufficient labeled data are a
requirement for training a reliable model. When only a limited
number of images are provided, overfitting is more likely to
occur. As a result, for the skin cancer classification task, a
considerable amount of labeled data is required.

Generative adversarial networks (GAN) are widely thought to
be a preferable alternative, as they can generate artificial data to
compensate for data imbalance in terms of positive and negative
proportions, rare cases, and different people (84). designed a data
augmentation method based on generative adversarial networks
to address the shortcomings of skin lesion images in melanoma
detection. Firstly, they utilized several data processing methods
to locate and eliminate hairs and other artifacts of the input
images. Then they used two convolutional GANs, namely,
DCGANs, to generate 350 images of melanoma and 750
images of seborrheic keratosis . Finally, the results
demonstrated that combining the processing module and
generative adversarial networks resulted in superior
performance when compared with other baselines. Although
GAN is extensively employed for data augmentation, the images
it generated are typically low-resolution. To overcome this issue
(85), proposed a style-based GAN to generate more high-quality
images in skin lesion classification. Then these synthetic images
were added to the training set to the pretrained ResNet-50
model. The experiment showed that the proposed style-based
GANmethod outperformed other GAN-based methods in terms
of Inception Score (IS), Fréchet Inception Distance (FID),
precision, and recall. What is more, the accuracy, sensitivity,
specificity, and other indicators of the classification model also
improved. In (88), the author proposed a GAN-based framework
“TED-GAN” to generate skin lesion images artificially in skin
cancer classification. Instead of using random Gaussian
distribution to sample the noise vector in GAN, they used
informative noise that was obtained from a separate network
for the first time to generate the medical images. TED-GAN had
four parts: one variational auto-encoder, two GANs, and one
auxiliary classifier. Firstly, an auto-encoder network was trained
to get the vector containing the image manifold’s information.
Then one of the GANs sampled output of the auto-encoder to
ensure the stability of training and make it more convenient to
use the domain information. After that, the other GAN obtained
more training data from the prior GAN. In addition, an auxiliary
classifier was added to this GAN network, then the two were
trained together to generate images of various skin diseases. In
the end, experiment results showed that TED-GAN had a
positive effect on skin cancer classification as it provided more
images for training. Although data augmentation methods such
as GAN may successfully increase the number of skin cancer
images and alleviate the problem of data imbalance, the
generated data usually have identical distributions, limiting the
improvement in model performance. To solve this issue (89),
proposed a data augmentation method based on PGGAN,
namely, SPGGAN, to generate skin lesion images with different
types and data distributions. Firstly, an attention module was
July 2022 | Volume 12 | Article 893972

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wu et al. Review of Skin Cancer Classification
added into SPGGANs to obtain the global and local information
from skin lesion images, also enabling PGGAN to generate more
diverse high-quality samples. Then, the Two-Timescale Update
Rule (TTUR) was added to SPGGANs to reduce the signal
magnitude increase and hence enhance the stability of the
model. Finally, experiments showed that the GAN-based data
augmentation approach can lead to an improvement in the
classification in terms of accuracy, sensitivity, F1 score, and
other metrics. Since skin lesions often contain irregular
boundaries, varied textures, and shapes, it makes the training
of the GAN framework sometimes unstable. To address this issue
(86), utilized conditional generative adversarial networks
(CGANs) to extract key information from all layers and
generate skin lesion images. The proposed CGAN has two
modules: a generator module and a discriminator module. The
generator module was to extract useful features from high-level
and low-level layers and generate synthetic images. The
discriminator module was to accurately map latent feature
components by combining auxiliary information with training
images. After that, augmented images with original datasets were
put into the pretrained ResNet-18 network for the classification
task. Experiments showed that this model achieved superior
results compared with other datasets.

Another popular method for resolving data imbalance is to
apply weights to various samples in the loss function. The goal is
to calculate the losses differently depending on whether the
samples are in the majority or minority. For example (90),
proposed an end-to-end framework for classifying seven skin
lesions in the HAM10000 dataset. Especially, a class-weighted
learning strategy was utilized to overcome the problem of data
imbalance in the dataset by assigning different weights to
different lesion classes in computing the loss function.
Meanwhile, focus loss was used to further increase the model’s
classification performance. It concentrated training on tough
examples, preventing the classifier from being overwhelmed by
easy samples. Experiment results revealed that the model
obtained an average accuracy of 93%, outperforming
dermatologists’ 84% accuracy. Although the problem of data
imbalance can be alleviated through the design of the loss
function, there exists a problem of slow learning of the
minority classes. To solve the issue (91), proposed a hybrid
strategy for skin cancer classification. It combined a loss function
method at the algorithm level with a balanced mini-batch logic
method for real-time image augmentation at the data level. By
applying the balanced mini-batch and real-time image
augmentation method, the new loss function can improve its
learning ability in minority samples, thereby improving training
efficiency. When compared with the previous strategy, this
method improved the learning effectiveness of minority classes
on an imbalanced dataset by increasing m-Recall by 4.65% and
decreasing the standard deviation of recalls by 4.24%. In addition
to designing a new loss function (93), also designed two new
algorithms based on evolutionary algorithms, the Mixup
Extrapolation Balancing (MUPEB) and the Differential
Evolution (DE), to solve the problem of data imbalance in
melanoma classification. The MUPEB method included a set of
Frontiers in Oncology | www.frontiersin.org 12
operations to mix and interpolate the dataset until it was
balanced. The DE method mixed and combined three random
images with varied clinical information to achieve data balance.
Apart from that, weighted loss function and oversampling were
also used to alleviate data imbalance. In the end, this algorithm
increased the model’s classification precision and recall by 1%
and 11%, respectively.

Data augmentation is an ideal solution to artificially increase
the amount of data by generating new data points from existing
data. It scales the number of images by random rotating,
padding, rescaling, flipping, translation, etc. At the same, with
the development of technology, various novel approaches for
data augmentation have been presented in skin cancer
classification (58, 122). released the HAM10000 dataset by
natural data augmentation; the images of skin lesions were
captured at various magnifications or angles, or with multiple
cameras. To evaluate the effectiveness of data augmentation
methods while determining the most effective method (87),
explored four types of data augmentation methods (geometric
transformation, adding noise, color transformation, and image
mix) and a multiple-layer augmentation method (augmented
images by more than one operation) in melanoma classification.
The first step was to preprocess the images to remove artifacts
such as body hair on the images. Then each augmentation
method was assessed to decide the optimal augmentation
method. In the end, they found that single-layer augmentation
outperformed multiple-layer augmentation methods. Besides,
the region of interest (ROI)-mix method achieved the best
performance compared with other approaches (92). proposed a
two-stage strategy data augmentation method on mobile devices
successfully with limited computing resources. The first stage
was to search the optimal augmentation method in the Low-
Cost-Augment (LCA) space. The second stage was to fine-tune
the deep CNNs with augmented images and choose the model
with the highest accuracy. Finally, the augmented images were
trained with EfficientNets, which resulted in better accuracy and
computational efficiency. Different from previous data
augmentation methods (94), proposed a novel Synthetic
Minority Oversampling Technique (SMOTE) to solve the
problem of image scarcity and imbalance in the skin lesion
dataset. Firstly, all images in the PH2 dataset were preprocessed
for ensuring cleaning. Then in the data augmentation stage, the
covariance matrix (CM) was exploited by SMOTE to find
dependent connections between attributes. Then they built
surrogate instances based on the estimated CM to balance the
number of minority class and majority class. Finally, all
augmented images were utilized to train the SqueezeNet and it
resulted in a significant improvement in terms of accuracy,
sensitivity, specificity, and F1 score.

3.3 Poor Generalization Ability Across
Different Domains
In the skin cancer classification task, the generalization ability of
the model is often inferior to that of an experienced
dermatologist. Firstly, owing to the small scale of skin image
datasets, even if a large amount of similar data is artificially
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generated, the overfitting problem still exists. Secondly, the
majority of research exclusively focuses on dermatological
images taken using standardized medical equipment, such as
dermoscopic and histological images (78). Little research has
been conducted on dermatological images captured by other
devices. When a trained model is applied to a new dataset with a
different domain, its performance suffers significantly.

Transfer learning (TL) is commonly utilized for improving
the generalization ability of computer-aided diagnostic systems
in test data. The fundamental idea of TL is to preserve
information gained while addressing a problem and implement
it to a new but relevant problem (52). It can not only drastically
reduce the time overhead and labor cost associated with partial
repetitive labor but also compensate for the flaw in the skin
disease datasets (96). presented two methods to improve the
generalization ability of models to new samples and reduce cross-
domain shift. The first method used a transfer learning strategy
with two steps to acquire new knowledge from diverse domains.
It began with pretraining on ImageNet and fine-tuned the model
with a single skin dataset. In the end, they used the target set to
fine-tune the model to get the prior information. The second
method used a pixel-wise image synthesizing adaptation method
to transfer the features between the source domain and target
domain. In comparison to the previous transfer learning
approach, this method was semi-supervised and did not need
any labels for domain adaptation. Finally, cross-domain
experiments showed that in order to improve classification
performance, the proposed methods had the ability to
transform images between different modalities. In order
to solve the problem of class imbalance in skin lesion datasets,
To address the problem of poor generalization performance due
to low interclass variance and class imbalance in skin disease
images (98), proposed a two-stage framework with adversarial
training and transfer learning in melanoma detection. The first
stage was to solve the data scarcity and class imbalance problem
by generating underrepresented class samples. The second stage
was to train deep neural networks for melanoma classification,
by using newly synthesized images and original datasets. A focal
loss was proposed to assist the model in learning from hard
examples. In the end, results showed the significant
improvement of the classification performance and superiority
of the proposed method. With the application of transfer
learning in skin cancer diagnosis, it has been discovered that
most existing transfer learning methods only extract knowledge
from the source data to learn, but many inaccurate samples that
are very different from the target data are incorporated into the
process. Meanwhile, most skin cancer classification methods
simply learn from raw skin disease images, which makes
information from different aspects (such as texture, shape, etc.)
interfered by noise during the learning process. Therefore (99),
proposed a multi-view-filtered transfer learning (MFTL) method
to solve the poor scalability problem of skin cancer classification
models. MFTL consisted primarily of two modules: a multi-view-
weighing representation module and a filtered domain adaption
module. The first module put the view weights obtained from
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the feature representation procedure to the final prediction. The
second module selected key source information to transfer the
knowledge between the source domain and target domain.
Finally, the result showed a significantly improved
performance in classifying melanoma and seborrheic keratosis.
In (103), the author proposed a transfer learning approach to
address the issue of insufficient data in the medical image
datasets, as well as to improve the performance of other related
medical image classification tasks. The proposed approach first
trained deep learning models on a great amount of unlabeled
images for a specific task, as the volume of unlabeled medical
images has increased significantly. Then the models were fine-
tuned on a relatively small-labeled dataset to perform the same
task. Besides, they utilized a hybrid deep CNN model to
accurately extract features and ensure training stability while
avoiding overfitting. Experiments showed the effectiveness in the
skin cancer and breast cancer classification in terms of
classification accuracy, recall, precision, and F1 score. With the
growing use of transfer learning in the field of computer vision,
an increasing number of studies have proved that large-scale
pretraining on natural images can be beneficial in a variety of
tasks. However, research on medical images is still limited. With
this purpose (95), investigated the advantages of large-scale
supervised pretraining with three medical images: chest
radiography, mammography, and dermatological images. Five
tasks including in-domain performance, generalization under
distribution shift, data efficiency, subgroup fairness, and
uncertainty estimation were conducted to test if large-scale
pretraining aided in the modeling of medical images. Finally,
experiment results indicated that, despite significant differences
from the pretraining data, employing larger pretraining datasets
can achieve significant improvements across a wide range of
medical disciplines. Besides, they discovered that pretraining at
scale may allow downstream tasks to more effectively reuse
deeper features.

In addition to TL, many novel methods such as adding
innovative regularization terms, estimating model uncertainty,
and lifelong learning models are beginning to be introduced into
the skin cancer classification task to improve the generalization
ability of the model across different domains (104). proposed a
method that can improve the generalization ability of a model
under limited samples by combining data augmentation and
domain alignment. They observed in medical images that
domain changes were compact and related to a certain extent.
To be able to model such dependencies, the author introduced a
dependency regularization term to learn a representative feature
space that captured sharable information across different medical
image domains. At the same time, a variational encoder was used
to ensure that the latent features followed a predetermined
distribution. Finally, through theoretical derivation, the author
obtained the upper bound of empirical risk for any relevant
target domain under this method, which alleviated the problem
of overfitting. Finally, the generalization ability of the model was
well confirmed on seven skin-disease datasets. In order to obtain
the uncertainty quantification (UQ) of the deep learning model
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to prevent overfitting (102), proposed three indicators Monte
Carlo (MC) dropout, Ensemble MC (EMC) dropout, and Deep
Ensemble (DE) to solve this problem. They next presented a
novel hybrid Bayesian deep learning model based on the three-
way decision (TWD) theory to obtain the residual uncertainty
after using the three methods of MC, EMC, and DE. It also
enabled different UQ methods to be used in different neural
networks or different classification stages. Finally, the
experimental findings demonstrated that the proposed model
can be employed efficiently in analyzing different stages of
medical images, and the model’s uncertainty was accurately
quantified. Since the deep learning model might forget much
of the previous information while learning new data, updating
the system with more new data would reduce the performance of
the previous learning, which poses a greater challenge to the
medical autonomous diagnosis system. To this end (105),
designed a Bayesian generative model for continual learning
based on a fixed pretrained feature extractor. Different from the
previous continual learning method, which stored a small
number of images for each old class, the proposed method
stored the statistical information of each class based on the
previous feature extractor, which can make the model naturally
keep the knowledge of each old class from being used. Therefore,
there was no need to store or regenerate old images. Finally, the
model performed well on both the Skin7 and Skin40 datasets,
and it was able to retain some images from previous classes
during continual learning. The model’s scalability and
generalization have been greatly enhanced.

3.4 Noises From Heterogeneous Devices
and Images
Various noises obtained from heterogeneous sources and skin
disease images pose challenges to the robustness of models in the
task of skin cancer classification. When trained on high-quality
skin lesion datasets, the deep learning model can reach the same
diagnostic level as dermatologists, even surpassing them.
However, since the skin cancer classification model is sensitive
to images captured with different devices, lighting settings, and
backgrounds, it frequently fails to obtain satisfactory
classification results when tested with different images.
Furthermore, photographic images (such as smartphone
images) vary greatly in terms of zoom, perspective, and
lighting, making classification much more difficult.

Therefore, many scholars have worked to integrate
adversarial training into the field of skin cancer classification
to enhance the robustness of the classification models. In (100),
the author introduced a novel Attention-based DenseUnet (Att-
DenseUnet) network combined with adversarial training for skin
lesion segmentation and classification. With the addition of the
attention module, the model can pay more attention to
discriminative features while also successfully suppressing
irrelevant features in the DenseBlocks output. In this way, the
interference of artifacts on skin disease images is reduced. Att-
DenseUnet had two main modules: Segmentor module and
Discriminator module. The segmentor module was a U-Net
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shape structure, which contained a down-sampling path, up-
sampling path, and related attention module to ensure the
information transfer between different layers. Additionally, it
adopted an attention module to focus on the essential features
and speed up the training process. The discriminator module
employed the adversarial training to impose the segmentor
module to obtain diverse features with different sizes and
shapes and direct the attention module to concentrate on the
multiscale lesions. Besides, they used the adversarial loss to
prevent overfitting by providing the regularization term for the
networks. Finally, the results showed that this network achieved
excellent performance and was robust enough for different skin
image datasets. In clinical applications, it has been discovered
that noises that are difficult for humans to detect frequently cause
significant interference to the diagnostic model, limiting the
utility of deep learning in the actual world. To improve the
model’s robustness (97), performed adversarial training on
MobileNet and VGG-16 using the innovative attacking models
FGSM and PGD for skin cancer classification. Firstly, two white-
box attacks based on Projected Gradient Descent (PGD) and Fast
Gradient Sign Method (FGSM) were used to test the robustness
of these models. Then, to increase the robustness of these models,
the author did the adversarial training based on PGD against
white-box attacks. In the end, the results showed that the
robustness of these models significantly improved. To further
increase the difficulty of adversarial attacks instead of simple
adversarial attacks (101), used the more realistic and riskier
Universal Adversarial Perturbation (UAP) to adversarially train
seven classification models (VGG-16, VGG-19, ResNet-50,
Inception ResNet-V2, DenseNet-21, and DenseNet-169).
During the adversarial attack phase, the author used an
iterative algorithm to generate perturbations for non-targeted
and targeted attacks and the Fast Gradient Sign Method (FGSM)
was used to generate perturbations for input images. After that,
they conducted adversarial retraining to improve the robustness
of these seven models. The results showed that these models were
easily deceived when applied to adversarial attacks. In addition,
they found the limited effect of adversarial retraining on non-
targeted perturbations. Although adversarial retraining
considerably lowered the vulnerability to adversarial
perturbations in targeted attacks, it did not totally avoid it.

3.5 Toward Faster and More Efficient
Classification Models
Although an increasing number of deep learning algorithms have
been successfully applied to skin cancer classification with
excellent classification results, the computational complexity of
the model still needs to be considered. Firstly, due to
improvements in imaging technology, many skin disease
images with high resolution have large pixels. For example,
histological scans are made up of millions of pixels, and their
resolution is often larger than 50,000 × 50,000 (123). As a result,
training them takes longer time and additional computing
resources. Secondly, the computational complexity in the deep
learning model is increasing as its accuracy improves, which
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demands their implementation to various medical equipment or
mobile devices at a higher cost. Here we introduce three latest
methods when designing an effective network for skin
cancer classification.

Over the past few years, many Lightweight Convolutional
Neural Networks have been designed and successfully applied in
skin cancer classification to meet the demands of practical
applications. Subsequently, many scholars used lightweight
CNN for the task of skin cancer classification and successfully
employed it to various mobile devices. For example (107),
proposed an automated classification method based on
MobileNet and successfully deployed it on an Android
application or a website for public use. With the vigorous
development of mobile health (mHealth), more and more
mobile applications are designed for cancer classification and
prediction. However, the application of automatic classification
of skin cancer is still limited. To solve this problem (116),
proposed an innovative expert system based on SqueezeNet,
namely, “i-Rash,” to classify four classes of skin diseases in real
time. Due to the limited size of “i-Rash” (i.e., 3 MB), identifying
an unknown image for the system only took 0.09 s. Inspired by
predecessors (111), proposed a novel method that incorporated
attention residual learning (ARL) mechanism to EfficientNet
with fewer parameters. Besides, they also investigated how the
mechanism related to the existing attention mechanisms:
Squeeze and Excitation (SE). Through the comparison of
experimental results between models with and without SE,
they speculated that the attention module accounts for a large
portion of EfficientNet’s outstanding performance. What is
more, the addition of ARL increased the accuracy of the
EfficientNet and its variance. In (112), three different
lightweight models (including MobileNet, MobileNetV2,
NASNetMobile) were adopted for skin cancer classification.
To find the model with the best performance, they tested a
total of nine models with three different batch sizes. In the end,
they found that the NASNetMobile model showed the best
performance with a batch size of 16. Meanwhile, they
benchmarked the lightweight models with fewer parameters
and less computational time.

Pruning is an effective way to remove parameters from an
existing network to maintain the accuracy of the network while
increasing its efficiency (124). To enable CNN to be used in
medical devices with limited power and resources (114), built a
pruning framework to simplify the complicated architectures by
choosing the most informative color channels in skin lesion
detection. The proposed method is to achieve two purposes:
removing redundant color channels and simplifying the whole
network. Firstly, all color channels were put into the network.
Then the weights that associated with the non-essential color
channels were deleted to select the most informative color
channel. After that, to generate a simplified network, they
utilized CNN models as the target network and trained them
on the chosen color channels. Besides, the requirements of these
models were calculated from hardware perspectives to analyze
the complexity of various networks. Finally, results showed that
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this color channel pruning strategy improved segmentation
accuracy while also simplifying the network. Designing an
efficient and generalizable deployment strategy is an extremely
challenging problem for lightweight networks. To this end (109),
proposed a weight pruning strategy for lightweight neural
networks to make up for the accuracy loss and improve model
performance and reliability in the skin cancer classification. Five
l ightweight CNNs, namely , SqueezeNet , MnasNet ,
MobileNetV2, ShuffleNetV2, and Xception, were investigated
in this task. Firstly, a dense–sparse–dense (DSD) training
strategy was used to avoid the underfitting and high bias of the
networks. Then, a detailed analysis was used for building a
pruning method including not just pruning connections with
various relations but also reviewing a novel pruning mechanism
that can remove the weights according to the distribution in each
layer adaptively. In the end, the pruning strategy achieved higher
accuracy and less computation compared with unpruned
networks (110) . des igned a new pruning method
“MergePrune” to reduce the computational cost of retraining
the network by combining pruning and training into a single
stage. Firstly, different units were assigned to learn each domain
independently as they contribute differently to the classification
result. Then, for one domain, determined culprit network units
with high “culpability” scores were pruned and then reset and
assigned to learn new domains. At the same time, non-culprit
units were preserved. MergePrune was implemented to reduce
the amount of computation and improve the efficiency of the
classification model. Finally, the results showed that the network
can perform accurately and effectively on real-world clinical
imaging data with various domains, even with high
pruning ratios.

Knowledge distillation is the process of distilling information
from a huge model or group of models to a smaller model that
could be successfully implemented with real-world restrictions
(106, 125). proposed a knowledge distillation-based method that
enabled to transfer knowledge between models simultaneously in
skin cancer classification and brain tumor detection. Firstly, a
pretrained ResNet-50 was chosen as a base model as its excellent
performance out of the box. Then, with the significant degree of
resemblance across the images in the medical image dataset, they
let the knowledge transfer only between the two bottom-most
layers. As a result, high-level visual comprehension was
preserved, and information was added to the granular
distinction in this way. The findings of the experiments were
revealed in order to gather remote knowledge and enhance global
accuracy; some local accuracy was lost. To improve the
robustness and reduce the computational cost of the model
(115), proposed a knowledge distillation method based on
curriculum training in distinguishing herpes zoster from other
skin diseases. Firstly, three kinds of model, namely, basic models,
mobile models, and ensemble models, were chosen for
benchmark. Then, to improve the performance of a single
network, an ensemble knowledge distillation was utilized. This
allowed the student network to learn more robust and
representative features from the network while keeping a low
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computational cost. After that, they proposed curriculum
training for ensemble knowledge distillation in order to distill
ensemble teachers more efficiently with an adaptive learning
technique. In the end, the results showed that the proposed
method achieved improved performance while obtaining
higher efficiency.

Transformer (126) is a deep learning model designed by the
Google team in 2017 that was originally utilized in Natural
Language Processing (NLP) and is now frequently employed in
medical image processing, such as skin lesion images. It uses the
self-attention mechanism to weigh the relevance of different
parts of the input data series, resulting in shorter training
periods and improved accuracy (126, 127). The introduction of
the attention mechanism has generated great interest in the
research community, but there is still a lack of systematic ways
to select hyperparameters that guarantee model improvement.
To this end (108), presented an assessment of the effectiveness
for the attention module and self-attention module in skin
cancer classifications based on ResNet architecture. Among the
two modules, the attention module was used to recompute the
features of the input tensor in each layer. The self-attention
module was used to connect multiple positions of input images
to obtain different representations of the input. In the experiment
stage, the author investigated and compared a variety of
alternative attention mechanisms with images from the
HAM10000 dataset. In the end, the results showed that many
of the self-attention structures outperformed the ResNet-based
architectures, while containing fewer parameters. At the same
time, applying the attention mechanism reduced the image noise;
however, it did not behave consistently across different structural
parameters. In solving the skin cancer classification problem,
people often treat it as a simple classification task, ignoring the
potential benefits of lesion segmentation. To this end (113),
proposed an approach that combined the attention module with
the CNNmodule for skin cancer classification. The CNNmodule
was in charge of getting lesion texture information, while the
attention module was responsible for obtaining context
information such as the shape and size of the lesion. In
addition, dual-task and attended region consistency losses were
adopted to mediate the classification and segmentation heads
without pixel-level annotation, which increased the robustness of
the model when it trained with various augmented images.
Finally, MT-TransUNet achieved excellent performance in the
skin lesion segmentation and classification. At the same time, it
preserved compelling computational efficiency and speed.
4 CONCLUSION

With the development of science and technology, the diagnosis
accuracy and efficiency for skin cancer classification are
constantly improving. In the previous clinical diagnosis
scenarios of skin cancer, the final diagnosis often depends on
the imaging quality and the experience of dermatological experts,
which is highly subjective and has a high rate of misdiagnosis.
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With the advent of machine learning, various CAD systems have
been designed to aid the dermatologists to diagnose skin cancer
diseases. In some skin cancer classification tasks, these CAD
systems achieved excellent performance by utilizing handcrafted
features. Recently, with the success of deep learning in medical
image analysis, several researchers have applied deep learning
methods for skin cancer classification in an end-to-end manner
and achieved satisfactory results. It is expected that in the future,
artificial intelligence and the diagnosis of skin cancer diseases
would become closely associated.

In this study, we present a comprehensive overview of the
most recent breakthroughs in deep learning algorithms for skin
cancer classification. Firstly, we introduced three different types
of dermatological images used in diagnosis and some commonly
used datasets. Next, we present the applications of typical CNN-
based methods in skin cancer classification. After that, we
introduce several frontier problems in the skin cancer
classification task, such as data imbalance and limitation,
cross-domain adaptability, model robustness, and model
efficiency, along with relevant deep learning-based approaches.
Finally, we provide a summary of the entire review. We draw the
key information as follows:

• Skin cancer develops as a result of uncontrolled cell
proliferation in the skin. It frequently appears on sun-
exposed skin. The three major types of skin cancers are
basal cell carcinoma (BCC), squamous cell carcinoma
(SCC), and melanoma. Early skin cancer classification
increases the chances of a successful treatment (refer to
Section 1 for more information).

• Clinical images, dermoscopic images, and histopathological
images are three common types of images used for skin
disease diagnosis. Among them, the most common forms of
images are dermoscopy images. With the growing need for
medical imaging resources in academia, more and more
datasets are becoming publicly available. We list several
popular datasets for skin-disease images along with works
based on these datasets. However, compared with natural
image datasets, the diversity and quantity of skin-disease
datasets are still very limited, which also brings great
challenges to the automatic diagnosis of skin cancer (refer
to Section 2 for more information).

• When using CNN-based methods for skin cancer
classification, VGGNet, GoogleNet, ResNet, and their
variants are the most often used deep learning models.
Also, ensemble learning was proposed to limit the error
generated by only a single model and achieved satisfactory
results. Although various deep learning models have
performed admirably on skin cancer classification tasks,
several challenges still exist and need to be resolved, such as
imbalanced datasets, a lack of labeled data, cross-domain
generalization ability, noisy data from heterogeneous
devices and images, and how to design effective models for
complicated classification tasks. To address the challenges,
methods include generative adversarial networks, data
augmentation, designing new loss functions, transfer
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learning, continual learning, adversarial training, lightweight
CNN, pruning strategy, knowledge distillation, and
transformer. It can be expected that AI has the potential to
play an active role in a paradigm shift in skin cancer diagnosis
in the near future (refer to Section 3 for more information).

In comparison to other comparable reviews, this paper
presents a comprehensive review in the topic of skin cancer
classification with a focus on contemporary deep learning
applications. It can be seen that the general evolutionary trend
of these frameworks is structured, lightweight, and multimodal.
With the help of this essay, one can gain an intuitive
understanding of the core principles and issues in this field.
Furthermore, anyone eager to engage in this field in the future
should explore a number of different approaches to dealing with
these issues. It is believed that the problems described above will
become the research hotspots of scholars for a long time to come.
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