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Abstract

Gut microbiota and human relationships are strictly connected to each other. What we eat

reflects our body-mind connection and synchronizes with people around us. However, how

this impacts on gut microbiota and, conversely, how gut bacteria influence our dietary

behaviors has not been explored yet. To quantify the complex dynamics of this interplay

between gut and human behaviors we explore the “gut-human behavior axis” and its evolu-

tionary dynamics in a real-world scenario represented by the social multiplex network. We

consider a dual type of similarity, homophily and gut similarity, other than psychological and

unconscious biases. We analyze the dynamics of social and gut microbial communities,

quantifying the impact of human behaviors on diets and gut microbial composition and,

backwards, through a control mechanism. Meal timing mechanisms and “chrono-nutrition”

play a crucial role in feeding behaviors, along with the quality and quantity of food intake.

Considering a population of shift workers, we explore the dynamic interplay between their

eating behaviors and gut microbiota, modeling the social dynamics of chrono-nutrition in a

multiplex network. Our findings allow us to quantify the relation between human behaviors

and gut microbiota through the methodological introduction of gut metabolic modeling and

statistical estimators, able to capture their dynamic interplay. Moreover, we find that the tim-

ing of gut microbial communities is slower than social interactions and shift-working, and the

impact of shift-working on the dynamics of chrono-nutrition is a fluctuation of strategies with

a major propensity for defection (e.g. high-fat meals). A deeper understanding of the relation

between gut microbiota and the dietary behavioral patterns, by embedding also the related

social aspects, allows improving the overall knowledge about metabolic models and their

implications for human health, opening the possibility to design promising social therapeutic

dietary interventions.

Author summary

Human gut microbiota is able to influence different aspects of physiology, such as human

behaviors. Our close social connections, in turn, impact on eating behaviors and diets,

which play a key role in driving the gut microbial composition and its metabolic
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processes. To quantify the dynamic interplay between gut microbiota and human behav-

iors in a social multiplex network, we investigate the “gut-human behavior axis”. We pro-

pose statistical estimators able to quantify the relation between human behaviors and gut

microbiota in a social multiplex network. Furthermore, considering a population of shift

workers, we explore the dynamic interplay between their eating behaviors and their gut

microbiota, quantifying the social dynamics of chrono-nutrition in a multiplex network.

Our findings, coherently with what one can expect in the case of shift-working, demon-

strate how the timing of gut microbial communities is slower than social interactions and

shift-working. Thus, the impact of shift-working on chrono-nutrition is a fluctuation of

behaviors, with a major propensity for poor food choices or high-fat meals. Acquiring a

deeper knowledge about the metabolic models of gut microbiota and quantifying the

complex interplay of social and gut microbial communities pave the way to targeted social

therapeutic interventions.

Introduction

Recently, the human gut microbiota has emerged as a major research topic in many fields,

from biology to neuroscience and medicine [1–5]. One of the main targets is to find out and

explain how it may influence different aspects of physiology, such as gut-brain communication

and human behaviors [1, 6–8]. Recent research has highlighted the role of the commensal gut

microbiota in brain function and behavior, revealing a bidirectional communication between

gut and brain, known as gut-brain axis [2, 8]. Some further works have shed light on the piv-

otal role of diet and other environmental factors in driving the composition of the human gut

microbiota and its metabolic processes that, in turn, can affect human health [9, 10]. Many

studies have also stressed the importance of gut microbiota and its alterations in the emergence

of various diseases, including metabolic disorders, low-grade inflammations, type 2 diabetes,

neurodegenerative diseases and obesity [2, 11–17].

Diet is considered one of the most important factors impacting on the human gut micro-

biota [9, 10]. As a result, many research efforts have been focusing on applying dietary inter-

ventions to better understand mechanisms linking diet, gut microbiota, diet-induced

behaviors and mental health [11, 15]. Moreover, the importance of evaluating the diet-induced

dynamics of the human gut microbiota has been underlined, both in terms of individuals and

groups or clusters of people [10], including their heterogeneous and individual nature [18].

Gut microbes compete for nutrients and this in turn will affect metabolism, making the gut

microbiota an extremely dynamic metabolic organ associated with host health and disease

phenotypes [19]. The long-term stability of gut microbial communities, along with the respon-

siveness to physiological change, confirms the potential of the gut microbiota as a diagnostic

tool and therapeutic target [20].

Dietary behaviors and patterns depend on a wide variety of aspects, such as educational and

familiar habits, geographical location, psychological factors, including mood, impulsiveness

and physiological conditions [6, 21]. Nutritional factors act in concert with inherited factors—

through epigenetic mechanisms—to increase an individual’s risk for developing impulsive,

compulsive and conduct disorders which are present in general population to various degrees

[22]. The influence of gut microbiota on behavior is becoming increasingly evident [1]. There-

fore, the evidence that nutritional habits modulate gut microbiota composition and function

offers new opportunities for the prevention and treatment of behavioral disorders [23].
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Reasoning in terms of social networks, the influence of social interactions on our dietary

choices can result in a convergence of behaviors and a diet synchronization with those of our

close social connections [24]. This creates ‘rewarding clusters’ that may act as resonant cavities

amplifying and reinforcing some behaviors. These clusters are a clue of how social context is

crucial to understand how and why people with whom we share meals can influence what we

eat. To model this behavior in our work, the formation of clusters is obtained according to a

metabolic measure based on gut bacteria similarity (see Materials and methods), which also

reflects the affinity and homogeneity of bacteria [25, 26]. The involvement in one or more clus-

ters and the interactions through social ties within groups can produce either positive (e.g.

happiness) or negative feelings (e.g. stress) [27]. These conditions are often the result of uncon-

scious biases [28], reflecting an attitude or a bias triggered by our brain, which is out of our

awareness and control, influencing our choices. In our work, we include the two concepts of

micro-inequities and micro-affirmations acting in opposite directions, representing two mani-

festations of this bias [28]. Since chronic stress facilitates the inflammatory action of bacteria

[29], this suggests the importance of these psychological biases in influencing nodes’ or clus-

ters’ behaviors. As well as considering the gut similarity, we also include the concept of homo-

phily, namely the principle for which similarity breeds connection [30–32], as a similarity

measure depending on interactions between nodes. Then, in order to model and quantify the

mutual influences between gut microbiota and the social multiplexity of networked individuals

in the “gut-human behavior axis”, we introduce a feedback mechanism, acting from dietary

behaviors influenced by social interactions to gut microbiota and, backwards, from gut to

social behaviors.

Given the evidence that food intake and dietary behaviors are partially influenced by the

social relationships and contexts, multiplex networks constitute the most suitable and natural

description for analyzing these dietary behaviors in a real-world scenario such as social net-

works. Multiplexity allows capturing the role of different types of relationships among the

same set of nodes, including several layers, or networks, and characterizing the complex nature

of interactions [18, 30, 31, 33, 34]. Additionally, multiplex networks can be used to simulate

adaptation to environmental conditions (such as changes in diet or differential gene expres-

sion) by integrating multiple data types (‘omic’ layers) using network aggregation [35]. Here,

in order to obtain a quantitative measure of the change in metabolic flux in response to various

dietary regimes, a bidirectional interaction is recorded between a multiplex network of social

ties and a genome-scale metabolic model (GSMM), which provides a reconstruction of all bio-

chemical reactions taking place within a multi-species microbial community of the human

gut. This presents the opportunity to monitor the impact of macronutrient intake on an indi-

vidual’s health and to evaluate the possibilities for improving their health through dietary

intervention. In the context of the gut microbiome [5], metabolic modeling holds the potential

to capture the complex interplay between social relationships and metabolic profiles, as the

flux distribution predicted under each condition is subject to the feedback from the social net-

work as well as the dietary composition of each individual.

Along with the quality and the quantity of food intake, feeding time becomes crucial in eat-

ing habits and impacts on metabolic and physiological parameters, with possible dramatic

effects on health outcomes [36–40]. Recent research efforts have highlighted how the rotation

between day and night leads to a high-calorie diet, an excessive energy intake (sugars, glucose,

etc.) and dysregulated dietary habits (e.g. consumption of snacks or junk food) [36, 38, 41].

This contributes to the desynchronization of the circadian system and the subsequent develop-

ment of diseases, such as metabolic syndrome, cardiovascular diseases, obesity and depression

[40, 42–48]. This is a condition typically experimented by shift workers [36, 40, 41, 43, 49],
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with recent studies highlighting their impaired glucose regulation and changes in metabolism

[50, 51]. These changes may produce several consequences, such as increase the risk of type 2

diabetes and obesity in the long-term [36, 37, 42–44, 46, 52]. Shift workers tend to eat foods

with a high energy intake to stay awake during the shifts, e.g. caffeine and high sugar foods;

these become part of their diets as they provide quick boosts of energy in order to improve

alertness during their shifts [36, 43, 53, 54].

Meal timing and patterns are linked to the concept of “chrono-nutrition”, which refers to

food intake in coordination with the body’s daily rhythms, shedding light on the importance

of temporal eating patterns on the well-being of an organism [37, 38, 40, 55, 56]. Thus,

chrono-nutrition focuses on how our dietary habits influence our biological clock and

circadian rhythm [42, 55, 56]. Circadian rhythms allow us to exploit the energy intake

from foods, but shift-working may alter these rhythms in a 24-hour period. Likewise,

diet dynamics change the gut microbiota nearly in the same period [9]. Some other works

have also underlined the critical role played by the gut microbiota in the clock-nutrition

interplay [37, 57], so that the disruption of the circadian physiology, due to sleep distur-

bances or shift-working, may result in gastrointestinal diseases, such as Irritable Bowel Syn-

drome (IBS), an increased risk of obesity, diabetes, cardiovascular disease, and cancer [36,

38, 40, 43, 44, 50]. In fact, chrono-disruption influences circadian rhythms and hence the

gut-brain axis [58], contributing to the pathogenesis of several diseases of the digestive sys-

tem [40].

In our model, we therefore include shift-working in order to quantify the impact of

chrono-nutrition. This choice is further justified by the definition of “health” provided by the

World Health Organization (WHO), where “shift work” is a risky condition at various levels,

since it is not only a risk factor for many health disorders (e.g. gastrointestinal, psychoneurotic,

cardiovascular, reproductive functions, and probably cancer), but it also perturbs psycho-

physical homeostasis (e.g. sleep/wake cycle and circadian rhythms) and hinders family and

social life [45, 46, 49]. In order to understand the complex dynamics of dietary behaviors of

shift workers, we need to quantify the dynamic interplay between human behavior and gut

microbiota by exploiting the introduced social and psychological statistical estimators. Only

by reasoning in terms of social multiplex network, we are able to evaluate the multiple impact

of different domains or channels of interactions between individuals, including the social envi-

ronment (e.g. workplace and friends), where shift workers are included, which may be able to

influence and modify their feeding habits acting on focus groups (e.g. by introducing a food-

sharing scheme in the workplace) [49].

Our work aims at quantifying the bidirectional interplay between dietary behaviors

emerging from the social evolutionary dynamics of feeding habits and the gut microbial

composition. To explore and quantify this interplay on a social multiplex network, we exploit

the framework of Evolutionary Game Theory (EGT) [30, 31], which is used to simulate the

effect of dietary perturbations on each node of the multiplex network. We quantify the evolu-

tionary social dynamics of chrono-nutrition by considering the interplay between human

behavior and gut microbiota. Analyzing the formation of social and microbial communities

based on gut-similarity, as well as homophily and psychological biases, may suggest how to

implement methods and strategies able to reduce metabolic disorders. To the best of our

knowledge, this work represents the first attempt to join social and metabolic issues in

modeling the social dynamics of chrono-nutrition, exploring the “gut-human behavior axis”

in a multiplex network and quantifying their dynamic interplay through the introduction of

statistical estimators (see Fig 1). In Table 1 we briefly describe each step of our modeling

procedure.
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Fig 1. Modeling approach. Bio-molecular step (top panel); associations between humans and gut bacterial species, clustering based on gut

similarity (middle panel); dynamic interplay between human behavior and gut microbiota (bottom panel).

https://doi.org/10.1371/journal.pcbi.1006714.g001
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Materials and methods

Evolutionary dynamics on a social multiplex network

Let us consider a multiplex network of M layers, α = {1, . . ., M}, and N nodes, i = {1, . . ., N},

which is a set of M networks Gα = (V, Eα). The set of nodes V is the same for each layer,

whereas the set of links E changes according to the layer.

Each layer corresponds to a different kind of social interaction between nodes of the multi-

plex network and it may exhibit a different topology of connections. Modeling a social network

as a multiplex network represents a more realistic approach, since in most real-world social

networks, different and not mutually exclusive relationships can be considered between the

same individuals (e.g. friends, relatives, colleagues, etc). Thus, the framework of social multi-

plex network allows us to analyse the complex dynamic patterns involving these individuals,

shedding light on how the different types of interactions at various layers impact on the realis-

tic dynamics of human behaviors.

We start from the key assumption that each entity or node in the multiplex network is an

individual with a different gut metabolic profile, which in turn reflects its specific diet (see

Metabolic model). Each network Gα is described by its adjacency matrix Aa 2 RN�N
, where

each element is given by: aaij ¼ 1, if nodes i and j are connected at layer α, or aaij ¼ 0 otherwise.

The idea is to define clusters of individuals based on the concept of “gut similarity”, a meta-

bolic similarity measure related to their metabolic profiles and indicated by θij, calculated as an

Euclidean distance between metabolic profiles. Since the metabolic profile is linked to diet,

nodes with similar dietary habits will belong to the same cluster. Nodes are the same in every

layer of the multiplex network, so they will belong to the same cluster in all the layers of the

multiplex network. In terms of homophily, we consider an overall measure that includes both

the concepts of centrality and homophily in the multiplex structure [30]. Moreover, we weigh

the coupling between layers in the multiplex exploiting the communicability function defined

in [30], which quantifies the number of possible routes that two nodes have to communicate

with each other. In order to analyze the emergent behaviors in the clusters and in the whole

multiplex, we consider the mathematical framework of EGT on multiplex networks [30, 31].

In particular, we choose the Snowdrift Game (SG), a pairwise social dilemma [59, 60] where

nodes can select one of the two strategies, cooperation or defection. The symmetric game can

be described with the payoff matrix in Table 2.

In this model of conflict, a task has to be done and defectors benefit (b) from cooperators

without paying a cost (c) for doing the task, but without cooperators the task would not be

Table 1. Steps of the proposed modeling procedure. We list and briefly describe the various steps of our modeling

procedure, indicating the references to the figures and subsections of the section Materials and methods.

Step and Description

1. Initialization of the multiplex network (N = 100 nodes, M = 2 layers), diets and gut profiles, and “happiness

index” (γi = 0) (see Evolutionary dynamics on a social multiplex network and Feedback mechanism)

2. Evaluation of “gut similarity” (θij) and initial hierarchical clustering (see Figs 2 and 3a)

3. ISG is played and strategies are updated at each round of the game following Eq 1) (see Evolutionary dynamics on

a social multiplex network and Micro-affirmations and micro-inequities)

4. Diets and gut profiles are updated based on the feedback mechanism (see Feedback mechanism and Metabolic

model)

5. Simulation of the metabolic gut model (FBA) with new constraints derived from step 4 (see Metabolic model)

6. Re-clustering based on the updated value of “gut similarity” (see Metabolic model and Fig 3b–3d)

7. Steps 3-6 are repeated

https://doi.org/10.1371/journal.pcbi.1006714.t001
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accomplished. Thus, despite mutual cooperation yields both an individual and total benefit

higher than that of mutual defection, pure defection is the favored strategy when the other

player cooperates, which occurs at the cost of the overall group payoff. It is clear how both

strategies are best replies to each other, which leads to a “coexistence game” [61]. In our

model, the choice of cooperating, namely following a healthy lifestyle and diet and sharing die-

tary habits with neighborhood, can derive from the direct and indirect reciprocity mechanisms

[62]. Indeed, good eating habits may positively influence the overall behavior of the group a

node interacts with, by stimulating the other nodes to be more proactive and producing, as a

consequence, an amplifying effect. Instead, the selfish choice of defecting, leveraging the coop-

erativeness of the other neighboring nodes, without paying any cost of cooperating, can pro-

duce a major payoff in the short time, but it constitutes a major risk if also the other players

will decide to defect.

One of the main reasons behind the choice of an Iterated Snowdrift Game (ISG) in this sce-

nario is linked with its more realistic nature compared to other social dilemmas [59]. Indeed,

it corresponds to more frequently observed natural situations where cooperators contribute to

a public good or common task, represented in our model by good dietary habits, that is

exploitable by cheaters but also provides immediate direct benefit to the cooperator [59]. In

evolutionary games, payoffs determine reproductive fitness, and the target is to detect the Evo-

lutionarily Stable Strategy (ESS). This can be formalized using replicator dynamics [30, 31]

which, in the case of SG, admits a mixed stable equilibrium, where both cooperation and

defection coexist. The pairwise nature of the game is translated to a population scale by making

the nodes play with each other, and accumulating payoffs obtained from each interaction, over

the rounds of the game. Thus, we consider an ISG where, after each round of the game, the

strategies of the nodes are updated so that those nodes with less payoff are inclined to imitate

the strategy of the fittest individuals. We focus on memory-1 game [63], so that choices at each

round depend only on the previous round. In [63] the authors have proved that, giving only a

finite memory of previous play, the payoff obtained is exactly the same as if we would consider

a player with a longer memory.

We simulate the evolutionary microscopic dynamics using the standard Monte Carlo simu-

lation procedure, composed of elementary steps, where each step gives a chance for every

player to change its strategy once on average. The first step includes the distribution of com-

peting strategies, which is an elementary step entails randomly selecting a player and one of its

neighbors, calculating the payoffs of both players, and finally attempting a strategy adoption.

First, a randomly selected player i acquires its payoff Pi by playing the game with all its neigh-

bors on the layer α. Next, player i randomly chooses one neighbor j on the layer β, who then

also acquires its payoff Pj on the layer β in the same way as previously did player i. Thus, a

player j imposes its strategy Sj onto player i with a probability determined by the Fermi func-

tion, defined as follows [30]:

WðSj ! SiÞ ¼ ðZiÞ � ðciÞ �
1

1þ exp½ðPi � PjÞ=ðyij � dij � KÞ�
: ð1Þ

Table 2. Payoff matrix of the Snowdrift Game. In this social dilemma, a task has to be done and b is the benefit of

accomplishing the task, while c is the cost for doing the task (where b; c 2 Rþ and b> c). We can observe that if neither

of the two players puts an effort to cooperate, the task would not be accomplished with a negative effect for both

players.

Cooperate Defect

Payoff to Cooperation b − c/2 b − c
Payoff to Defection b 0

https://doi.org/10.1371/journal.pcbi.1006714.t002
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Therefore, a player i adopts the strategy Sj of another player j in function of the payoff differ-

ence Pi − Pj, the two similarity measures (δij and θij) and the factors ηi and ψi, related to multi-

plexity and unconscious bias, respectively. In particular, we consider the homophily measure,

δij, related to social interactions, and the gut similarity measure, θij, related to gut metabolic

profiles. Moreover, we include two statistical estimators ηi and ψi in the multiplex network,

where ηi is a factor related to communicability measure in the multiplex network [30], while ψi
represents the balance of micro-affirmations (MA) and micro-inequities (MI) of each node in

the multiplex (see Micro-affirmations and micro-inequities). The selection intensity K quanti-

fies the uncertainty in the strategy adoption process [30]. The homophily measure δij repre-

sents the homophily difference between two players, so that if this values is high, a player i is

more likely to imitate the strategy of j at each round.

The scaling factor ηi allows including the dependency of the strategy adopted by the player i
on the strategies of related players from the other layers [30], so it depends on the communica-

bility function between layers [30, 64]:

Zi ¼ 1 � ðZimax
� Zimin

Þ

P
j2b;Sj¼Si

½Gab�ij
P

j2b½Gab�ij
; ð2Þ

where the numerator is the sum of the communicability functions calculated between the node

i on the layer α and all the neighboring nodes j on the layer β, adopting the same strategy as

player i. The denominator represents the sum of the communicability functions calculated

between the node i on the layer α and all the neighboring nodes j belonging to the layer β.

Therefore, the ratio quantifies the influence, in terms of communicability, on the strategy adop-

tion of the player i on the layer α, due to the strategies adopted by the counterpart node and its

neighbors on the layer β. In particular, the more are players on the layer β with a high commu-

nicability with the node i and adopting the same strategy as player i, the more likely i will adopt

the same strategy in the next round. On the other hand, if there are nodes on the layer β with a

high communicability, but adopting a different strategy, the player i will most likely tend to

change its strategy. Thus, this ratio depends on the communicability function and it may result

in a bias regarding the strategy adoption of the player i in the next round of the game.

The communicability function has been introduced in order to shed light on the importance

of the coupling between layers in exploring the evolution of behaviors in the multiplex structure.

To this aim we have exploited the communicability function defined in [64], which quantifies

the number of possible routes that two nodes have to communicate with each other. Starting

from the definition of the communicability function between two nodes i and j in the multiplex

provided in [64], we consider the communicability matrix G, where each element Gab 2 R
N�N

is the matrix representing the communicability between every pair of nodes belonging to two

different layers α and β, of the multiplex network. It is defined as in [30] and [Gαβ]ij represents

the communicability between the node i in the layer α and the node j in the layer β.

Micro-affirmations and micro-inequities

In order to deal with unconscious bias, in our model we introduce a statistical estimator ψi,
impacting on Eq 1. This bias, which is the result of quick judgments or evaluations of people

and situations, is influenced by our individual experiences or environment in which we are

merged, occurs automatically and may impact on our choices [28]. “Micro-inequities” (MI)
are one of the manifestations of this bias, and they are defined as “apparently small events

which are often ephemeral and hard-to-prove, events which are covert, often unintentional,

frequently unrecognized by the perpetrator, which occur wherever people are perceived to be

different” [28]. In order to address it, Rowe defined the concept of micro-affirmations (MA) as
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“apparently small acts, which are often ephemeral and hard-to-see, events that are public and

private, often unconscious but very effective, which occur wherever people wish to help others

to succeed” [28]. Micro-affirmations therefore act as a countermeasure to micro-inequities, so

that if individuals are constantly proactive about rewarding and professing the achievements

of others, people will be less inclined to micro-inequities and it will trigger a reciprocity effect,

producing a psychological reward.

It is important to observe how the unconscious bias, expressed in terms of MI and MA and

quantified by the factor ψi (see Eq 3), is linked with several environmental (cultural, geographi-

cal, social, etc.) factors, metabolic needs and emotional states [21], influencing our food

choices and the resulting gut microbial composition [65, 66]. ψi is defined as follows:

ci ¼ 1 � ðcimax
� cimin

Þ 1 �
X

j

MIji
MAji þMIji

" #

; ð3Þ

where MAji and MIji are respectively the micro-affirmations and micro-inequities obtained at

each round of the game by the node i from all the interactions with its neighboring nodes j. At

each round, the factor ψi is calculated in game-theoretical terms, by taking into account all the

payoffs obtained by the node i in the previous round of the game. In particular, if a node gets a

“positive” payoff (see the first column of the payoff matrix, Table 2), then it will get a MA, oth-

erwise a MI. Thus, ψi produces a bias in the choices and, in particular if MIji�MAji, then a

player will have a higher tendency to change its strategy in the next round. It may reflect a sort

of ‘delusion’ or ‘sadness’ of the node i, related to the payoff obtained in the previous round

after having played with its neighboring nodes j. Otherwise, if MIji�MAji, it means that node

i has experienced positive affirmations in its interactions (“positive” payoff) and it will likely

tend to keep the same choice adopted in the previous round. Analogously to ηi [30], the two

limit values, cimax
¼ 1 and cimin

¼ 0:1, are chosen in order to avoid the “frozen states”. ψi acts

as a key bias towards a change in strategy when MIji�MAji, which means a strong imbalance

of MI over MA, while if MAji�MIji, a node tends to keep the same strategy of the previous

round. At the beginning we assume that MIji and MAji are initialized with a value equal to

zero, which creates an initial condition where nodes are on average satisfied of their neighbor-

hood and diet, given that there have not been interactions and hence they have not yet experi-

enced any MA or MI in the network.

Feedback mechanism

Our work is aimed at modeling and quantifying the mutual influences between gut microbiota

and the social multiplexity of networked individuals in the “gut-human behavior axis”. To this

end, we introduce a control mechanism, acting from dietary behaviors influenced by social

interactions to gut microbiota and, backwards, from gut to social behaviors. Although the

diet-induced dynamics of the gut microbial communities has a relatively high responsiveness

within 24 hours [9], diets and bacterial composition of gut microbiota are determined by long-

term dietary habits [10]. Thus, we evaluate the evolutionary dynamics in a relatively long time-

span, including a certain amount of rounds of the game (see Results).

To measure the impact of these long-term dietary behaviors on diets and human gut micro-

biota, we introduce a statistical estimator γi, defined as follows:

gi ¼
X

i

ðNCÞijt� 1
=Nr; ð4Þ

where NC is the number of cooperations in the previous t − 1 rounds before feedback, while

Nr is the number of rounds before feedback, which happens at time step t. γi, called “happiness

Social dynamics modeling of chrono-nutrition

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006714 January 30, 2019 9 / 25

https://doi.org/10.1371/journal.pcbi.1006714


index”, reflects the attitude of each individual in the network, that is how much a node has

been “happy” (or cooperative) in the previous rounds. Therefore, γi will act as a modulator,

influencing gut metabolic profiles and modifying a fraction of diet components (nutrients,

etc.), and ultimately producing a different gut profile. γi ranges in [0, 1], where γi = 0 reflects a

lack of cooperativeness while γi = 1 means that a node has been fully cooperative with a proac-

tive attitude towards its community. γi quantifies the impact on gut bacteria deriving from

human behaviors. The updated gut metabolic model for each individual will then be used to

update the distance among individuals for the next round, therefore driving the re-clustering

of the multiplex network based on the gut similarity of the updated gut profiles (see Metabolic

model for details on how a different diet composition is achieved and used to run te gut

model, finally updating the gut flux profile of each individual).

As well as producing a re-clustering of the nodes in the multiplex network, γi can produce a

remarkable MA or MI, that is respectively a positive or negative bias from gut. This bias,

weighted by another statistical estimator �i, called “gut bias”, is defined as the ratio between the

number of MA or MI obtained in all the rounds before the feedback mechanism and the num-

ber of rounds in the same temporal window. We have a dual definition of �i, depending on the

sign of the bias from gut, so that in the case of a positive bias, it is defined as:

�i ¼
X

i

MAijt� 1=Nr; ð5Þ

whereas in the case of a negative bias it is defined as:

�i ¼
X

i

MIijt� 1=Nr: ð6Þ

In terms of evolutionary dynamics, the “gut bias” amplifies the number of MA or MI,
impacting on ψi and, in turn, on the strategy adoption process (see Eq 1). In particular, we

define a threshold γth so that, if γi� γth, it means that the node has experienced a positive feed-

back, resulting in: MA = MA + �i �MA, while if γi< γth, the node has experienced a negative

feedback and there is an amplifying effect of MI as follows: MI = MI + �i �MI. The re-clustering

of the network, obtained at each control mechanism, modifies the spatial distribution of the

network. It is interesting to observe the patterns of clustering depending on the evolutionary

dynamics of nodes behaviors, due to the described feedback mechanism.

Metabolic model

The happiness index γi is used to update the diet of each individual during each feedback

round. The impact of the new diet on the gut microbiota is assessed using a GSMM. GSMMs

can be used for generating context-specific or personalized gut microbiota models through

nutrient composition or data integration at various omic levels, and have recently been aug-

mented with three-dimensional metabolite and protein structure data [67–70]. The model

used to represent the gut consists of a human GSMM (Recon 2) and reconstructions for eleven

bacterial species representing commensal, probiotic and pathogenic associations which can

occur between the human host and gut microbiome [71]. Flux balance analysis (FBA) is then

used to run the updated model. FBA is characterized by the definition of precise linear con-

straints used to cumulatively reduce the solution space of the computed states of a metabolic

model. After selecting a cellular objective, the model is finally simulated through linear pro-

gramming [72].

For a genome-scale metabolic model representing a single organism or community, bio-

mass production is the most commonly considered objective for optimization as it can serve as
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a proxy for growth rate. To improve this estimation, in recent years procedures have been

developed for checking biomass weight, generating accurate stoichiometric coefficients for the

biomass objective function and enforcing time-averaged equality of growth rates in microbial

communities [73–75]. For this combination of models we use the COBRA Toolbox in

MATLAB [76] to perform FBA whilst optimizing a linear combination of multiple biomass

objectives, which represents hierarchical maximization of biomass production by each mem-

ber of the microbial community (see Table 3).

In our modeling framework, a series of 100 diets with varying compositions of carbohy-

drate, fat and protein intake was created to simulate the effect of various diets on metabolic

flux through the optimized pathway(s) or reaction(s). With the exception of a few more

extreme diets, percentages of macro-nutrients within these diets were generated using a ran-

dom number generator. Subsequently, uptake rates were calculated by multiplying percentages

of each macro-nutrient by a basal uptake rate B, thus accounting for differences in molecular

size by scaling uptakes to the number of carbon atoms in each nutrient [71].

Following Heinken and Thiele [71], 53 metabolites belonging to three classes of macronu-

trients—carbohydrates, fats and proteins (C, F, and P) were associated with a basal uptake rate

B calculated from a data survey conducted by the USDA [77]. These basal uptake rates were

multiplied by the specific percentage of each macronutrient in an individual’s diet. With the

exception of the Western diet (94.36% sugars, 5.64% fiber), carbohydrate composition for all

diets was divided into 50% sugars and 50% fiber. Therefore, basal uptake rates for fats and pro-

teins were multiplied by 2 to re-scale them in accordance with the carbohydrate uptake. All of

the diets contain the same number of metabolites, but uptake rates were varied by adjusting

lower bounds for the exchange reactions of each metabolite with respect to the type of diet

simulated. For example, the calculation of metabolite uptake rates (Au) for a diet consisting of

34% carbohydrate, 44% fat and 22% protein would be calculated as follows:

Cu ¼ 0:34 � BC

Fu ¼ 0:44 � 2BF

Pu ¼ 0:22 � 2BP

Au ¼ ½Cu; Fu; Pu�:

ð7Þ

Series of uptake rates were calculated separately for each group of nutrients (i.e. Cu, Fu and

Pu) before being concatenated within a single vector of uptake rates (Au). Once uptake rates

Table 3. Ordered list of biomass reactions chosen as objectives for multi-level linear optimization in FBA for the different species considered in this study.

Species Abbreviation Biomass reaction name Objective

Bacteroides thetaiotaomicron BT BTBiomass_BT_v2 c1

Faecalibacterium prausnitzii FP FPBiomass_FP c2

Escherichia coli K-12 MG1655 EC ECEC_BIOMASS_IAF1260_WT_59P81M c3

Lactobacillus plantarum LP LPbiomass_LPL60 c4

Lactococcus lactis LL LLbiomass_LLA c5

Streptococcus thermophilus ST STbiomass_STR c6

Helicobacter pylori HP HPBiomassHP_published c7

Klebsiella pneumoniae KP KPBiomass c8

Salmonella typhimurium STy STybiomass_iRR1083 c9

Escherichia coli O157:H7 (Sakai) ECs ECsEC_BIOMASS_IAF1260_WT_59P81M c10

Escherichia coli O157:H7 (EDL933) ECe ECeEC_BIOMASS_IAF1260_WT_59P81M c11

Homo sapiens Recon 2 HS HSbiomass_reaction c12

https://doi.org/10.1371/journal.pcbi.1006714.t003
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for all metabolites were calculated, these values were set as lower bounds of exchange reactions

in the model using indexes corresponding to each reaction. In this way, FBA returns a com-

plete flux distribution for each diet, elucidating beneficial, detrimental or neutral effects of die-

tary changes on human health.

When this modeling approach is combined with social relationships using a hierarchical

clustering based on gut profiles, the complex interplay between dietary habits and social rela-

tionships can be analyzed by examining interactions between nodes representing metabolic

profiles and social ties. In modeling diets, we must take into account some perturbations of

diets as people do not adhere to dietary regimes, corresponding to the most typical diets (e.g.

Western diet, high-fat, high-carbohydrate, high-protein), but most often they change some

dietary components producing diet modifications or perturbations, that will result in a change

in the microbiota [10].

We jointly optimize the growth of all species (including the host) by setting biomass reac-

tions for each species as objectives using a multi-level linear optimization program based on

GEMsplice [78] which seeks trade-offs between multiple objectives. The order of the chosen

biomass objectives was defined as: BT, FP, EC, LP, LL, ST, HP, KP, STy, ECs, ECe and HS [79]

(see Table 3). The growth of commensal and probiotic species were considered to be more

important as they are thought to produce beneficial metabolites for the host as opposed to

toxic or harmful compounds produced by the pathogenic species. In accordance with [71], a

minimal growth rate was enforced to maintain growth of all species by constraining the lower

bounds for the chosen biomass objectives to 0.01. To set this, we define vbiomass as all of the

biomass reactions within the full flux vector v (i.e. those reactions identified by the objectives

c1, . . ., c12 and detailed in Table 3). For each diet, fluxes through the biomass and ATP synthase

reaction for each species were recorded. In each distribution, fluxes for the biomass and ATP

synthase reaction are used to calculate new values for γi, which are averaged over all previous

rounds of EGT. Formally, we defined the twelve-level linear program as follows:

max c12 � v

s: t: max c11 � v;

. . .

s: t: max c2 � v;

s: t: max c1 � v;

s: t: Lv ¼ _x

vmin � v � vmax

vmin
biomass ¼ 0:01

_xj ¼ 0; if Mj 2 internal metabolites

_xj 2 R; if Mj 2 external metabolites;

ð8Þ

where Λ is the stoichiometric matrix of the model, xj represents the concentration of each

metabolite Mj.

Upon obtaining the first set of γi values for every node (characterized by a specific diet) in

the network, the initial percentage of each macronutrient (carbohydrate, fat and protein)

±(1 − γi) � 10 is used to calculate lower and upper limits, between which the new fraction of

each dietary component is selected for that node using a random number generator for the
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next feedback, ensuring that the sum of all three percentages is equal to 100%. For example, if

a given node in the first feedback round has a carbohydrate percentage of 50 and the γi value

for this diet characterizing the node i is 0.0800586, we calculate: (1 − γ) � 10 = (1 − 0.0800586) �

10 = 9.19941. This means that in the next feedback round, the lower carbohydrate limit will be

equal to: 50 − 9.19941 = 40.80059, and the upper carbohydrate limit will be: 50 + 9.19941 =

59.19941. Therefore, for this particular node i, the carbohydrate percentage in next feedback

round is set to a randomly drawn integer between 40.80059 and 59.19941, e.g. 54%. The calcu-

lation is repeated using the same γi for adjusting fat and protein content in this node i, and

using a different γi value for each node i in all four feedback rounds.

The gut community model used for this study comprises multiple bacterial species within

the human host. There are also particular gut communities, that is those formed by patients

with celiac disease [80], autistic individuals [81] or people with irritable bowel syndrome [82].

In [83], an inter-organ communication during metabolic disorders was identified, and in fact

almost every sick organ guides the formation of a community. Although some studies consider

a larger number of bacterial species, in [14] the number of species considered is similar. Here

the cause of community formation is the disease, but it may also be the therapy administration

(e.g. metformin for type 2 diabetes). We can observe how specific diseases, geographical loca-

tions or even cultural choices (e.g. vegan diets) link the community and gut in a stronger way

than other situations.

Following [35, 84], the metabolic gut flux profiles of each individual are then used to define

distances among individuals. This metabolic similarity, represented by θij and calculated as an

Euclidean distance between metabolic profiles is then used to define clusters of individuals.

Results

In our model, we aim at evaluating the combined role of gut similarity, micro-affirmations,

micro-inequities and multiplexity in shaping the strategies of an individual within a commu-

nity. Simulations were conducted choosing a multiplex network with M = 2 layers, where each

layer is modeled as a scale-free network [85, 86] with N = 100 nodes. Each node corresponds

to an individual following a specific diet calculated by randomly perturbing the percentage

composition of macronutrients. Homophily values are randomly chosen following a normal

distribution around a mean value, with standard deviation σ [30]. Fig 2 shows the gut similar-

ity among nodes in the multiplex network, along with their structural measure of centrality

and homophily [30]. This picture of the multiplex network allows us to depict the heterogene-

ity in terms of diets and composition of gut. Each node reacts in a different way to social inter-

actions and feedback rounds from gut, producing a different behavior. Gut similarity rules the

formation of clusters and then impacts on the choices of nodes, together with the various feed-

back rounds from their own gut.

Fig 3 illustrates the hierarchical clustering of nodes in the multiplex network based on their

gut similarity in the different temporal windows before feedback and after each feedback

round from gut. We have used an agglomerative hierarchical clustering based on the Ward

method [87], where the dissimilarities are squared Euclidean distances between cluster means.

Ward method refers to the sum of the squared distance from each point to the mean of the

merged clusters, where the distance between two clusters is the sum of the squared deviations

from points to centroids. Thus, we use the Euclidean distance between metabolic profiles as a

distance metric. More specifically, the dissimilarity structure is in our case the Euclidean dis-

tance between metabolic compositions of gut microbiota, so that our clustering is then per-

formed based on this measure of distance. Then, the Ward clustering method based on

minimum variance allows us to perform agglomerative clustering. The measure of
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dissimilarity defines clusters that will be combined in the case of an agglomerative method,

where we use the Ward method as linkage method for calculating the inter-cluster distances.

Dendrograms progressively show how the number of small-sized low hierarchy clusters

increases over time due to the higher nodes switching in terms of strategies. This is due to

change in cooperativeness weighted by the happiness index, eventually impacting on diets and

gut bacterial composition. In other words, the increasing number of small groups reflects the

growing presence of newborn clusters composed by only a small number of nodes with a high

similarity in gut bacterial composition.

Fig 4 shows the evolution of cooperation, namely the density of cooperative nodes against

the rounds. We simulated the evolutionary dynamics before feedback from gut and after each

feedback round, for a number of rounds such that a dynamical steady-state was reached.

Before feedback we can observe the initial coexistence of both strategies with a presence of

more defectors than cooperators, as expected [60]. After the first feedback round, an overall

tendency to cooperate emerges, so that the density of cooperators reaches the maximum value.

This is the result of the immediate reaction of individuals driven by the feedback from their

Fig 2. Structural and metabolic heterogeneity of nodes—Gut similarity and structural properties of nodes in the multiplex network. We show the heterogeneity

of nodes in terms of diets and gut similarity (θij) among nodes in the different layers of the multiplex network (L1 and L2), along with their structural measure of

centrality and homophily [30]. The color, ranging from ‘light cyan’ to ‘violet’ passing through ‘white’, allows characterizing the distance among nodes in terms of gut

similarity, so that the more similar are diets and gut bacterial composition, the closer will be the colors in the plot. The node size is log-proportional to the overall

measure of centrality and homophily in the multiplex network [30]. For each column of the panel, we show the gut similarity before feedback (a), after the first

feedback round (b), after the second feedback round(c), and after the third feedback round (d).

https://doi.org/10.1371/journal.pcbi.1006714.g002
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Fig 3. Hierarchical clustering of nodes in the multiplex network based on gut similarity. We show the hierarchical clustering and re-clustering of

nodes based on their gut similarity in the multiplex network in the various temporal windows: before feedback (a), after the first feedback round (b),

after the second feedback round (c), after the third feedback round (d). Nodes change the clusters to which they belong according to their

modifications in dietary uptake rates.

https://doi.org/10.1371/journal.pcbi.1006714.g003
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gut microbiota. This first feedback round acts as an initial incentive to cooperate. The reci-

procity effect amplifies this incentive, therefore leading to an overall cooperativeness in the

multiplex network. Then, the second feedback round produces a fluctuation in strategies with

a coexistence of both defection and cooperation, with defectors outnumbering cooperators.

The third feedback round confirms what we observed in the second feedback round, with a

similar fluctuation in strategies. Overall, happiness index, gut bias and gut similarity play a

major role in shaping behaviors, since they lead to strong fluctuations over time and heteroge-

neous reactions of nodes, also due to the multiplex nature of interactions. The observed fluctu-

ations in strategies, with an overall prevalence of defectors, is what we expected from the case

of shift-working, and reflect the social dynamics of chrono-nutrition. In fact, shift-working,

the altered lifestyle and circadian rhythm and consequently the impact on their gut microbiota

(connected to the cellular metabolism) [57, 88], along with the interplay with human behavior,

mainly leads to dysregulated feeding habits. Lack of sleep and changes to the life cycle induce

shift workers to choose snacks or fast high-fat meals (i.e., defection), giving them a false sense

Fig 4. Evolutionary dynamics of the density of cooperative nodes over time. We show the fraction of cooperative nodes ρi against the rounds or time steps (t) before

feedback (a) and after the first feedback round (b), the second feedback round (c) and the third feedback round (d). ρ ranges in [0, 1], where 0 corresponds to the global

defection, while 1 means a global cooperation of population. We simulated the evolutionary dynamics of the ISG for a fixed number of simulations, and the color,

ranging from ‘blue’ to ‘red’, corresponds to the density ρi. We can observe a fluctuation in strategies determined by the feedback rounds from gut acting alternatively as

incentives towards cooperativeness (see (b)) and a coexistence of the two strategies, with more defectors than cooperators (see (a), (c) and (d)).

https://doi.org/10.1371/journal.pcbi.1006714.g004
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of energy and a sort of illusory satisfaction as a consequence [36, 38, 41, 54]. In this way, they

try to counterbalance their stress (micro-inequity) by choosing high-sugar foods and produc-

ing a sort of micro-affirmation, regardless of what the social and microbial communities may

try to induce.

Thus, psychological biases and the interplay with gut microbiota, statistically quantified by

happiness index and gut bias, shape the evolutionary outcomes. The forced oscillations or fluc-

tuations observed in the case of shift-working are due to the fact that the altered feeding habits,

owing to shifting, are quicker than gut microbial adaptation. This can be associated to a form

of hysteresis in the formation of adapted microbial communities, whose variability is slower

than shifting. In other words, this finding seems to confirm the crucial role of meal timing,

and how the dynamic interplay in the case of shift-working produces poor food choices and a

higher energy intake [41]. Furthermore, the feedback mechanisms from the gut, social and

microbial communities are not able to counterbalance this tendency to defect.

Although, in some temporal windows, multiplexity can drive nodes to replicate strategies

through layers by amplifying their effect, sometimes it acts in the opposite direction, averaging

its impact in the two layers of interaction. To unveil the role of homophily, in S1 Fig we show

the evolutionary dynamics considering the two cases of high (σ = 1) and low homophily values

(σ = 8). As expected from the findings of [30], the figure highlights how the higher is the

homophily value, the more nodes tend to cooperate.

Correlation analysis

To gain insight into how the “happiness index” is influenced by particular pathways, we here

investigate the correlation of γi with absolute average flux rates across subsystems in the

model. We observe correlations between average flux in each pathway and happiness index in

each node, or diet. Our table of results for the correlation analysis is provided in S1 Table.

Overall, the positive correlations which stand out as being significantly higher are folate

metabolism and purine/pyrimidine synthesis in the pathogen S. typhimurium, during the sec-

ond feedback round (> 0.5). These pathways are linked in several ways, e.g. the folate cofactor

tetrafolate is involved in the synthesis of purines [89].

Both these pathways are also responsible for producing fundamental biomass precursors,

which is significant as biomass is the objective maximized for all species in our model during

FBA. It is well established that purines and pyrimidines form the building blocks for the nucle-

otides which comprise DNA, but they are also vital for the synthesis of important coenzymes,

such as ATP and NAD. Folate is required for important cellular processes such as DNA repli-

cation, repair and methylation, as well as playing a vital role in the metabolism of many amino

acids. Maternal diet, such as periconceptional folic acid supplementation, has proven to impact

DNA methylation in offspring and can affect their neurodevelopment and health outcomes

[90]. In humans, folate cannot be synthesized de-novo and must therefore be obtained from

the diet or gut microbiota. In this regard, the increase in dietary folate intake and introduction

of folate-producing probiotic bacteria in the form of live microbial supplements was previously

discussed [91].

In accordance with protein-rich diets yielding a high γi value, it can be seen that the metab-

olism of various amino acids are among the top positively and negatively correlated subsys-

tems with γi in all four feedback rounds. In the first and second feedback rounds, the synthesis

and recycling of murein in E.coli has a significant role to play, as murein is a polysaccharide

which provides structural integrity to bacterial cell walls whilst allowing the exchange of

metabolites [92, 93].
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As a key intermediate in human cellular respiration, acetyl co-enzyme A is involved in

pyruvate oxidation, as well as cholesterol synthesis and fatty acid oxidation during lipid catab-

olism, where it acts as an acyl carrier [94]. Fatty acids are an essential component of both

human and bacterial cell membranes and can be synthesized via glycolysis or amino acid

deamination. Human cholesterol metabolism (in the third flux iteration) has a moderately

high negative correlation; this seems to support the idea that diets high in cholesterol are likely

to lead to poor health.

Discussion

Our work has investigated and modeled the “gut-human behavior axis” in order to quantify

the bidirectional interplay between social behaviors, dietary habits and the gut microbiota. To

this end, we have analyzed the evolutionary dynamics of dietary behaviors using a realistic

social dilemma (i.e., the snowdrift game), in a real-world scenario represented by the social

multiplex network. We have included a dual concept of similarity, namely homophily and gut

similarity. We have further considered psychological biases, unveiling how and to which extent

they are able to modulate human food choices and gut bacterial population. To quantify the

“gut-human behavior axis”, we have introduced a feedback mechanism, acting from dietary

behaviors in the social multiplex network to the gut microbiota, and vice-versa. In particular,

we have focused on the social dynamics modeling of chrono-nutrition in the case of shift-

working, in order to model and understand the impact of the interplay between human behav-

ior and gut microbiota on the feeding habits of shift workers and on their gut microbiota.

Our aim was to shed light on the role of timing in this interplay with their gut, along with

the impact of social multiplex environment and interactions on feeding habits. We have there-

fore introduced statistical estimators able to quantify the relation between human behaviors

and gut microbiota in a social multiplex network, exploring its role in influencing dietary

behaviors. Although the immediate reaction of individuals driven by the first feedback round

from gut is an overall emergence of cooperation, we subsequently observed a fluctuation in

strategies, with a coexistence of the two strategies and more defectors than cooperators. “Hap-

piness index”, “gut bias” and “gut similarity” control the gut microbial communities and social

associations, shaping human behaviors. This leads to strong fluctuations over time and hetero-

geneous reactions of nodes in the same temporal window, due to the multiplex nature of inter-

actions. The multiplexity of the networked nodes, sharing a similar diet and gut microbial

composition, leads to the formation of both cooperative and defective groups, evolving over

time according to the re-clustering due to the feedback rounds from gut.

Thus, the game-theoretic approach has allowed us to obtain a multi-scale integration of dif-

ferent aspects, ranging from complex networks to metabolic issues, other than including psy-

chological and cognitive biases, in the investigation and modeling of the social dynamics of

chrono-nutrition. We envisage the use of such network approaches coupled with GSMMs to

investigate the relationship among individuals (or dietary patterns) in a network layer, as well

as the relationship between the various omics, which can be modeled as individual layers of a

multi-layer network [35]. Additionally, by correlating diets with “happiness” there is a possibil-

ity to identify dietary behaviors which are beneficial or detrimental to human health. The pro-

posed model could represent a class of models that may be adapted and refined along with the

growing amount of information on the gut environment and the gut-brain axis. Moreover,

what further emerges is how the impact of both the “gut-human behavior axis” and the gut

microbiota-brain axis could be even more important to be studied in children with the poten-

tial to prevent the development of abnormal behaviors or disorders [95] and opening novel

paths for nutritional or therapeutic interventions in at-risk population.
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Our work opens the path for a deeper analysis on the impact of feeding behaviors, such as

in the case of shift workers, on the resulting metabolic issues and diseases. In fact, to deepen

our understanding on the dynamics of feeding habits, as well as taking into account a wide

variety of aspects, including educational and familiar habits, geographical location, psychologi-

cal factors (e.g. mood, stress, impulsiveness), physiological conditions [6, 21] and inherited

factors, we also need to consider social influences and similarities. To this end, we have intro-

duced gut similarity and homophily between individuals, and we have quantified the dynamic

interplay between human behavior and gut microbial population, considering the multiple

aspects of the social environment (workplace, friends, etc.) where shift workers are included

and interact with each other. Modeling and quantifying the social dynamics of chrono-nutri-

tion may allow the different actors (physicians, psychologists, educators, legislators, etc.) to

influence and modify shift workers’ eating habits with targeted intervention strategies acting

on focus groups (e.g. by introducing food-sharing in the workplace) [49], pushing individuals

towards cooperation, based on incentives and mechanisms of direct and indirect reciprocity

[62]. A further approach could be increasing their overall awareness on dietary behaviors, in

terms of quality, quantity and timing of meals, highlighting possible consequences on health.

Given the rise in nutritional studies that address the effect of timing in feeding behaviors on

obesity and metabolic syndrome [58], along with the increasing importance of gut microbiota

into the studies related to circadian rhythms [37, 57, 96, 97], this novel social multiplex per-

spective on the dynamics of chrono-nutrition enriched by psychological and social statistical

estimators may pave the way to gain a better understanding on the impact of social multiplex

dynamics on the interplay between human feeding behaviors and gut microbiota. This can

provide new insights on the clock-nutrition pathogenesis of several diseases of the digestive

system, and can suggest key strategies toward targeted therapeutic interventions for metabolic

diseases and other pathologies [98].

Code availability

The developed methodology in terms of metabolic modeling, that is the multi-objective opti-

mization of gut community metabolic model, is available to the scientific community at the

following repository: https://github.com/svijayakumar32/multi-objective-optimization-of-gut-

community-metabolic-model.
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