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Abstract

Recent development of spatial transcriptomics (ST) is capable of associating spatial information at different spots in the
tissue section with RNA abundance of cells within each spot, which is particularly important to understand tissue
cytoarchitectures and functions. However, for such ST data, since a spot is usually larger than an individual cell, gene
expressions measured at each spot are from a mixture of cells with heterogenous cell types. Therefore, ST data at each spot
needs to be disentangled so as to reveal the cell compositions at that spatial spot. In this study, we propose a novel method,
named deconvoluting spatial transcriptomics data through graph-based convolutional networks (DSTG), to accurately
deconvolute the observed gene expressions at each spot and recover its cell constitutions, thus achieving high-level
segmentation and revealing spatial architecture of cellular heterogeneity within tissues. DSTG not only demonstrates
superior performance on synthetic spatial data generated from different protocols, but also effectively identifies spatial
compositions of cells in mouse cortex layer, hippocampus slice and pancreatic tumor tissues. In conclusion, DSTG
accurately uncovers the cell states and subpopulations based on spatial localization. DSTG is available as a ready-to-use
open source software (https://github.com/Su-informatics-lab/DSTG) for precise interrogation of spatial organizations and
functions in tissues.
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Introduction
Cells of different types are spatially and structurally organized
within tissues to perform their functions. Uncovering the com-
plex spatial architecture of heterogenous tissue is significant
for understanding the cellular mechanisms and functions
in diseases. The fast advance of single-cell RNA sequencing
technologies (scRNA-seq) attracts the attention to elucidate
the heterogenous cell formation [1–4] and trace the lineage
relationship within tissue [5–7]. Unfortunately, due to the lack
of spatial information, scRNA-seq is incapable of identifying
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the structural organization of heterogeneous cells within a
complex tissue. Therefore, as the complementary to scRNA-
seq, spatially resolved transcriptomic profiling methods [8–10]
have been introduced. To reveal the spatial cytoarchitectures
within tissues, sequencing-based high-throughput spatial
transcriptomics (ST) technologies [11–14], such as 10X Genomics
Visium [8] and Slide-seq [15, 16], use spatially indexed barcodes
with RNA sequencing that allows quantitative analysis of
the transcriptome with spatial resolution in individual tissue
sections.
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Emerging ST technologies are able to spatially index tran-
scripts and measure expression profiles, advancing our under-
standing of precise tissue architectures. However, the resolution
of ST data is far lower than single-cell level. Transcripts captured
at a specific location by a ‘spot’ [8] or a ‘bead’ [15, 16] is usu-
ally composed of a mixture of heterogenous cells. For example,
Visium, one of the microarray-based ST techniques developed
by 10X Genomics, uses spots of 50 μm diameter, with each
spot covering 10–20 cells in average, which varies depending
on the tissue histology [17]. Even for the Slide-seq [15, 16] that
quantifies gene expression with high resolution (10 microns),
one pixel may still be overlapped with multiple cells. As a result,
the measured gene expressions at a ‘spot’ reflect a mixture of
cells. Therefore, uncovering the cell compositions within each
spot of the ST data is critical for investigating tissue’s molecular
and cellular architecture at high resolution.

To address this problem, very few tailored approaches have
been developed yet. SPOTlight [18] is a deconvolution algorithm
using nonnegative matrix factorization regression and nonneg-
ative least squares, which has been applied to ST data [16]
successfully. Specifically, SPOTlight incorporates the reference
scRNA-seq data to identify cell type-specific topic profiles, which
is further used to deconvolute spatial spots. This method lever-
ages scRNA-seq data for the identification of cell states and
subpopulations to deconvolute the ST data, showing that lever-
aging well-characterized scRNA-seq data will aid and facilitate
the exploration of spatial datasets. A major limit of this ST
deconvolution method is that the intrinsic topological infor-
mation of cell type constitutions within spots, which provides
crucial information about the relations between the observed
gene expression patterns and associated cell types at spots,
cannot be effectively learned and utilized.

In recent years, graph convolutional networks (GCN) [19] have
demonstrated promising capability in utilizing such intrinsic
topological information of data to improve model performance.
The topological relations inside the data, such as similarity
between samples, can be represented as graphs. Through
learning the shared kernel used in spectral graph convolution
across all nodes in a graph, a semi-supervised GCN model
captures local graph structures as well as node features and
incorporates both information as latent space representation.
GCN [19] and its variants [20, 21] have been applied to different
scenarios successfully, including cancer patient subtyping
using real-world evidence [22], protein prediction [23] and drug
design [24], as well as single cells and diseases [25–29]. These
works shows that, through effectively learning and leveraging
the latent representation and topological relations among
data, GCN models are able to significantly improve learning
performance.

In this work, we have developed a novel graph-based artificial
intelligence (AI) model, deconvoluting spatial transcriptomics
data through graph-based convolutional networks (DSTG), for
reliable and accurate decomposition of cell mixtures in the
spatially resolved transcriptomics data. Based on the well-
characterized scRNA-seq dataset, DSTG is able to learn the
precise composition of ST data using semi-supervised GCN.
The performance of DSTG has been validated on synthetic ST
data, as well as on different experimental ST datasets with well-
defined structures including mouse cortex layer, hippocampus
tissue and pancreatic tumor tissues. In addition, we provided
the implementation software of DSTG as a ready-to-use Python
package, which is compatible with current ST profiling datasets
for accurate cell type deconvolution.

Materials and methods
Variable gene selection

For the scRNA-seq data, we first identified genes that exhibited
the most variability across different cell types using the analysis
of variance. The top 2000 most variable gene features in the
scRNA-seq data are selected according to adjusted P-values with
Bonferroni correction. Then, we used the scRNA-seq data with
the top variable genes to generate the pseudo-ST data with
synthetic mixtures of cells with known cell compositions. For
simplicity and illustration, we consistently used the term ‘spot’
to represent the synthetic cell mixture of the pseudo-ST data as
well as a spot or a bead of real-ST data.

Pseudo-ST data

Real-ST generated by ST assay captures the gene expression
at each spot that covers a heterogeneous cell mixture. These
cell mixtures can be mimicked by and constructed from scRNA-
seq data from the same tissue. Specifically, to mimic the cell
mixture at a spot, we selected two to eight cells from the scRNA-
seq datasets and combined their transcriptomic profiles as the
pseudo-ST data. The number of selected cells is similar to the
spatial resolution of real-ST data. Herein, the exact proportions
of cell types at each pseudo-ST spot are available since the iden-
tities of the selected cells are known. In order to better mimic the
real-ST spot data, if the total Unique Molecular Identifier (UMI)
counts of the resulting pseudo-ST data exceed that of the real-
ST data, we downsampled it accordingly. Therefore, this pseudo-
ST data resembles the real-ST data that is obtained from the
same tissue. To further ensure that DSTG leverages the similarity
between pseudo- and real-ST data, we learned a link graph to
connect similar spots between pseudo-ST and real-ST, which is
used as the input graph of DSTG.

Link graph

For both pseudo-ST data and real-ST data, we first performed
the data normalization: the raw UMI counts of a gene in a cell
are first divided by the total counts for that cell (library size
normalization), then multiplied by a size factor of 10 000, and
finally log transformed with one added. The normalized data are
then subjected to standardized transformation, i.e.

xg,i = x0
g,i − x0

g

ρg
,

where x0
g,i is the normalized counts of gene g and spot i, x0

g is the
mean of x0

g,i over all spots and ρg is the SD of x0
g,i. Thus, xg,i is the

standardized gene expression.
After the data standardization, we then built a link graph

incorporating pseudo-ST and real-ST data for the DSTG method.
The built graph is G = (V, E), with N =| V | nodes denoting the
spatial spots and E representing the edges. A is the adjacent
matrix in terms of this graph. Here, we applied the dimension
reduction of the pseudo-ST and real-ST data by canonical cor-
relation analysis [30–33], and then identified the mutual near
neighbors [23] in the space of reduced dimension.

First, with the pseudo-ST data and the real-ST data repre-
sented as Xpseudo

m×np and Xreal
m×nr , where m is the number of

variable genes, and np and nr are the respective number of spots,
we projected these two data into a lower S dimension space by
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canonical correlation vectors μs of np dimension and νS of nr

dimension, where s = 1, · · · , S, to maximize

μs
T(

Xpseudo
m×np

)T
Xreal

m×nr νs,

subjecting to the constraints ‖μs‖2
2 ≤ 1 and ‖νs‖2

2 ≤ 1. To identify
the canonical correlation vector pairs, we used singular value
decomposition and got the S canonical correlation vector pairs
with the S largest eigenvalues. Each pair of μs and νs projects the
original data Xpseudo

m×np and Xreal
m×nr to the sth dimension of the

low-dimension space. For DSTG, we took S as 20 for the reduced
dimension space.

Second, in the low-dimension space, we identified the
mutual nearest neighbors among spots from pseudo-ST and
real-ST data. Specifically, if spot i is in one of nearest neighbor of
spot j by k-nearest neighbor (KNN, default k is 200), meanwhile
spot j is in one of nearest neighbor of spot i by KNN, then spot
i and spot j are mutual nearest neighbors. In this way, we built
the link graph between the pseudo-ST data and the real-ST data.
To further utilize the information of real-ST data in the DSTG
model, we also identified the mutual nearest neighbors within
the real-ST data itself. To this end, the final link graph is built
and represented by the adjacent matrix A. That is, if spot i and
the other spot j are mutual nearest neighbors, Aij = 1, otherwise
Aij = 0. This graph captures the intrinsic topological structure of
spot similarity between all spots.

DSTG method

We utilized the GCN on the link graph G = (V, E) for the identifi-
cation and prediction of the compositions of different cell types
in the ST data. Each spot is viewed as a node. The cell mixtures
in the pseudo-ST data are generated with known compositions.
The goal of DSTG is to predict the cell type compositions of the
real-ST data by using not only the features of each spot, but also
the graph information leveraging the pseudo-ST data and real-
ST data, which is characterized as the above adjacent matrix A.
Explicitly, the DSTG method takes two inputs. One input is the
spot similarity graph structure learned above (see the section
Link graph). The other is the data matrix of combined pseudo-ST
and real-ST data. As denoted above, with the pseudo-ST data and
the real-ST data represented as Xpseudo

m×np and Xreal
m×nr , where

m is the number of variable genes, whereas np and nr are the
corresponding number of spots, the input data matrix is shown
as

X = [
Xpseudo Xreal

] ∈ Rm×N,

where N = np + nr.
Herein, with these two inputs, i.e. X and A, the DSTG is con-

structed with multiple convolutional layers. For efficient training
of DSTG, the adjacent matrix A is modified and normalized as

∼
A = Ď−1/2ÂĎ−1/2,

where Â = A + I, I is the identity matrix and
ˇ
D is the diagonal

degree matrix of Â.
Specifically, each graph convolutional layer is defined as

H(l+1) = f
(

H(l),
∼
A

)
= σ

(∼
AH(l)W(l)

)
= ReLU

(∼
AH(l)W(l)

)
,

where H(l) is the input from the previous layer, W(l) is the weight
matrix of the lth layer, σ (·) = ReLU(·) is the nonlinear activation
function and the input layer H(0) = X. The composition of a
specific cell type f at a pseudo-spot i is represented as yi,f ∈ Yp,
where i ∈ {1, · · · , np} and cell type f ∈ {1, · · · , F}, F represents the
total number of different cell types and Yp ∈ Rnp×F represents the
known cell compositions at all spots from the pseudo-ST data.

Specifically, for a three-layer DSTG with F distinct cell types,
the forward propagation is realized as

Ŷ = f
(
X, AH) = softmax

(∼
A ReLU

(∼
AXTW(0))W(1)),

where W(0) ∈ Rm×h is the input-to-hidden weight matrix project-
ing the input data with m variable genes into an h dimension
hidden layer, ReLU stands for the rectified linear unit activation
function, W(1) ∈ Rh×F is a hidden-to-output weight matrix and

Ŷ = [ Ŷp

Ŷr

] ∈ RN×F is composed of two components: Ŷp ∈ Rnp×F

represents the predicted proportions of different cell types at
pseudo-ST spots and Ŷr ∈ Rnr×F represents the prediction of cell
compositions at real-ST spots. The softmax activation function
below is used as the activation function in the output layer that
learns the cell type proportions,

softmax (·) = exp (·)∑
exp (·) .

The evaluation function is defined as the cross-entropy at
pseudo-ST spots, i.e.

L = −
∑np

i=1

∑F

f=1
yi,f ln

(
ŷi,f

)
,

where yi,f ∈ Yp and ŷi,f ∈ Ŷp. The goal of this semi-supervised
learning is to minimize the cross-entropy L between the known
cell compositions Yp and the predicted cell proportions Ŷp. Dur-
ing the propagation of each layer, the model will reduce the
cross-entropy error on the training data. After training, we had

Ŷ = GCN (X, A) ∈ RN×F.

Note that Ŷ = [Ŷp

Ŷr

]
. Thus, cell compositions of real-ST spots

are predicted as Ŷr.
When applying the DSTG model, we randomly split the

pseudo-ST data as training (80%), test (10%) and validation
set (10%), whereas the real-ST data is unlabeled and will be
predicted. For the ST data in this study, we trained three-layer
DSTG models for a maximum of 200 epochs using the Adaptive
Moment Estimation (Adam) algorithm [34] with a learning rate
of 0.01 and early stopping with a window size of 10. For the
dimension of the latent layer, we screened options of 32, 64, 128,
256, 528 and 1024 dimensions and selected the optimal one.

For the evaluation metrics, we used the Jensen–Shannon
divergence (JSD) score, which is a symmetrized and smoothed
version of the Kullback–Leibler divergence. At a spot i, there
are discrete probability distribution of composition Pi =
(pi

1, pi
2, · · · , pi

C) as ground truth as well as predicted distribution of
composition Qi = (qi

1, qi
2, · · · , qi

C), where C indicates the number
of cell types. Here,

∑C
k=1 pi

k = 1 and
∑C

k=1 qj
k = 1. The JSD score at
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spot i is defined as

JSD
(
Pi‖Qi

)
= 1

2

∑
k∈{1,··· ,C}

pi
k log

(
pi

k(
pi

k + qi
k

)
/2

)

+ 1
2

∑
k∈{1,··· ,C}

qi
k log

(
qi

k(
pi

k + qi
k

)
/2

)
.

In this way, the JSD values can be calculated for all spots.
Then, the quantiles of JSD values across all spots are used as
our evaluation metrics.

Results
Overview of DSTG

Herein, we propose a novel, graph-based AI approach, namely
DSTG, to deconvolute ST data through graph-based convolu-
tional networks. The DSTG approach leverages scRNA-seq data
to unveil the cell mixtures in the ST data (Figure 1). Our hypoth-
esis is that the captured gene expression on a spot is con-
tributed by a mixture of cells located on that spot. Our strat-
egy is to use the scRNA-seq-derived synthetic ST data, called
‘pseudo-ST’, to predict cell compositions in real-ST data through
semi-supervised learning. First, DSTG constructs the synthetic
pseudo-ST data from scRNA-seq data as the learning basis of
our method. Then, DSTG learns a link graph of spot mapping
across the pseudo-ST data and real-ST data using shared near-
est neighbors. The link graph captures the intrinsic topological
similarity between spots and incorporates the pseudo-ST and
real-ST data into the same graph for learning. Then, based on
the link graph, semi-supervised GCN is used to learn a latent
representation of both local graph structure and gene expression
patterns that can explain the various cell compositions at spots.
The major advantages of such similarity-based semi-supervised
GCN model are as follows: (1) sensitive and efficient, since for
each spot, only the features of similar spots (i.e. neighbor nodes)
are used and (2) acquiring generalizable knowledge about the
association between gene expression patterns and cell composi-
tions across spots in both pseudo- and real-ST, since the weight
parameters in the convolution kernel are shared by all spots.
To test the performance of DSTG, we used synthetic pseudo-ST
data generated with cell mixtures of known cell type compo-
sitions from peripheral blood mononuclear cell (PBMC) scRNA-
seq datasets [35], in which DSTG presents superior performance
than the SPOTlight method. Furthermore, DSTG is validated and
applied to real tissue context from mouse cortex, hippocampus
and pancreatic tissues with well-defined structures.

Performance of DSTG on benchmarking data

To evaluate the performance of DSTG, we used the synthetic
ST data generated by scRNA-seq cell mixtures as ground truth.
Briefly, each spot of this synthetic ST data is constructed by
combining the randomly selected two to eight cells from scRNA-
seq data. Such synthetic ST data not only mimics real ST data,
but also provides ground truth that can be used to evaluate the
DSTG’s performance in identifying the proportions of different
cell types within each synthetic spot. As for the evaluation met-
rics, we used the JSD, which is a distance metric that measures
the similarity between two probability distributions. A smaller
value of JSD represents a higher similarity between two distri-
butions, thus signifies a higher accuracy of estimated cell type
compositions across spots.

Specifically, we used 13 PBMC scRNA-seq datasets [35] pro-
filed by different protocols, with well-characterized cell popu-
lations and discrete cell numbers, to generate benchmarking
synthetic spatial data. For each PBMC data, we generated 10
synthetic data and applied both DSTG and SPOTlight to those
10 synthetic data for comparison. Our results show that DSTG
achieves lower JSD values (mean JSD = 0.12, Figure 2A), which
is significantly lower (P-value <2.2e−16) than SPOTlight (mean
JSD = 0.24), indicating the higher accuracy of DSTG than SPOT-
light across datasets generated from different experiment proto-
cols. Notably, DSTG shows the most accuracy than SPOTlight in
the CEL-Seq2 synthetic datasets. Though SPOTlight performs the
best on Quartz-Seq2 datasets, DSTG still outperforms SPOTlight
with lower JSD value. In addition to PBMC, to examine the
performance of DSTG on other different tissues, we included
eight other scRNA-seq data from different tissues and proto-
cols to generate the benchmarking synthetic data (Figure 2B).
Then, we compared DSTG with SPOTlight based on the synthetic
data from these eight additional scRNA-seq data. As shown in
Figure 2B, the predicted results of DSTG still outperform SPOT-
light using the JSD evaluation metric. Notably, DSTG achieves
the mean JSD values of 0.016 and 0.087 for the Smart-Seq2 and
single nucleus RNA sequencing (snRNA-Seq) datasets, respec-
tively, which are better than the ones achieved by SPOTlight (0.19
and 0.24). These consistently superior performances of DSTG
demonstrate the accuracy and robustness of our method.

To investigate whether DSTG is sensitive to the design of
synthetic ST data, we generated discrete synthetic data with
different number of spots, library sizes and variable genes, which
covers the characteristics of the current and emerging ST data.
For the synthetic data with different spot numbers (500–4000)
(Figure 2C), we found that DSTG tends to perform better with
more spots in the synthetic data, suggesting that the more the
spots used, the better the model is trained. Meanwhile, the
result suggests that using 1500 spots is sufficient to reach high
performance in practice, as the marginal gain of performance
is neglectable when using more spots. For the synthetic data
with different downsampled library sizes (5000–50 000 reads per
cell) (Figure 2D), DSTG shows stable accuracy at lower or higher
library sizes. For the synthetic data with different number of
variable genes (500–5000) (Figure 2E), DSTG demonstrates stable
performance, with optimal performance reaches at 2000 variable
genes.

Evaluation of different parameters of DSTG

Regarding the DSTG method, we tested hyperparameters and
examined the model performance in ST data deconvolution.
First, we tested different number of hidden units and evaluated
their impact on DSTG’s results. With the synthetic ST data
generated from four single-cell protocols (Smart-Seq2, Quartz-
Seq2, Chromium and inDrop), we applied DSTG with hidden
units ranging from 16 to 2048 and assessed their respective
accuracy (Supplementary Figure S1). The results across all cases
show that DSTG consistently performs better with 32 units in
hidden layer. Interestingly, too, more or too less units show less
accuracy of composition prediction.

Second, we tested the impact of different number of layers
on the deconvolution performance of DSTG. Here, we still used
the synthetic ST data generated from the above four protocols
for evaluation. We applied DSTG with 2–10 layers and assessed
their respective accuracy. Supplementary Figure S2 shows the
performance of DSTG with different number of layers based
on the synthetic ST data. For all cases considered here, the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
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Figure 1. Schematic overview of DSTG for deconvoluting spatial transcriptomics data. Schematic representation of how DSTG deconvolutes spatial transcriptomics

(ST) data using scRNA-seq profiles. DSTG first generated the pseudo-ST data with cell mixtures from scRNA-seq data. Between this pseudo- and real-ST data, DSTG

identifies a link graph of spot mapping through the canonical correlation analysis. Based on the link graph, graph convolutional network is used to propagate both

pseudo-ST and real-ST data into the latent layer and identify the compositions of different cell types for each spot. In this way, cell compositions of real-ST data can

be predicted and learned by using pseudo-ST data.

best results are obtained with a three-layer model. Interestingly,
DSTG shows less accuracy with two, four and five layers. We also
found that for models deeper than six layers, the performance
remains at the same level, which is often observed for GCN-
based models [36, 37]. The reason is that a deep GCN model
causes excessive Laplacian smoothing [38] and a large number of
parameters, which lead to less distinguishable representations
[39] and overfitting [37].

In addition, we also tested the impact of data preprocessing
and normalization on DSTG’s performance. Here, we compared
ours with other normalization methods including sctransform
[40] using regularized negative binomial regression, scran
[41] using pooling-based normalization as well as Linnorm
[42] using linear model and normality-based normalization.
Specifically, synthetic ST data are preprocessed and normalized
by different normalization methods. The processed data are
then used as input of DSTG for comparison. In all cases
(Supplementary Figure S3), DSTG shows robust performance
regarding different normalization methods, with no detectible
difference in accuracy (JSD value). The comparison results
suggest that our preprocessing step is able to reach good
performance in practice.

Finally, we investigated the impact of different graph
construction approaches on the deconvolution performance of
DSTG. Here, we applied four kinds of graphs including DSTG’s
link graph, KNN-based graph, identity graph and random graph
to compare their respective accuracy on synthetic ST data.
With the results (Supplementary Figure S4), we found that DSTG
shows consistently higher accuracy across all synthetic ST data
when using the link graph. In contrast, DSTG shows much lower
accuracy as indicated by higher JSD values, when using the other
three kinds of graphs, especially the identity and random graphs.
These results suggest that the graph construction is critical for
DSTG’s performance, which also demonstrate that the DSTG’s
link graph is essential for accurate deconvolution.

Spatial decomposition of mouse cortex layer

To examine whether DSTG can reveal microanatomical struc-
tures in complex tissue, we used the 10X Visium ST data of
cerebral cortex layer in mouse brain. This cortex layer has
well-defined cytoarchitecture and thus is suitable to evaluate
DSTG’s performance. To deconvolute this ST data by DSTG,
we used the scRNA-seq dataset profiled by the Smart-Seq2

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
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Figure 2. Performance of DSTG on benchmarking datasets. (A) Performance of DSTG is assessed and compared with SPOTlight by synthetic spatial data generated

from 13 PBMC datasets of different scRNA-seq protocols. (B) Performance of DSTG is further benchmarked with SPOTlight by synthetic spatial transcriptomics data

generated from the other scRNA-seq datasets from different tissues and protocols. (C) DSTG’s performance on synthetic data with different number of spots. (D) DSTG’s

performance on synthetic data with different library depths. (E) DSTG’s performance on synthetic data with different number of variable genes. In (A–E), the y-axis

represents the JSD value.

protocol from the Allen Institute, which consists of ∼14 000
adult mouse cortical cell taxonomy and 22 cell types (Figure 3A).
With this scRNA-seq data, the spatial deconvolution of the
ST data by DSTG accurately reconstructs the architecture of
brain cortex layer (Figure 3B). The identified heterogenous cell
proportions of each localized spot are shown by the pie chart
at the respective spot, which are confirmed by their existence
in cortical areas, suggesting the high accuracy and sensitivity
of the DSTG’s predictions. In the spots visualized in Figure 3B,
about 46% are with mixed cell types. To clearly illustrate the cell
mixtures within each spot, we present two separated figures
of the same data in Supplementary Figure S5. Specifically,

Supplementary Figure S5A shows the identified spots with
unique cell types, whereas Supplementary Figure S5B shows
the identified spots with mixed cell types.

Moreover, our predicted compositions provide more detailed
information about the heterogeneity of this area. Specific
investigation shows the regional enrichment of each cell type
based on their identified proportions. Illustrative examples are
the differentially enriched neuronal subtypes including cortical
layer 2/3 (L2/3), cortical layer 6 (L6b) and oligodendrocytes (oligo)
(Figure 3C). The subpopulation of L2/3 is shown with high
compositions in the outside liner of spots within the cortex.
Spots with most L6b cells are shown with high proportions

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data


DSTG 7

Figure 3. Spot deconvolution of mouse cortex layer. (A) UMAP projections of single-cell RNA-seq data from mouse cortex tissue. Different cell types are labeled and

colored according to known cell annotations. (B) Spatial plot with pie chart shows the predicted cell compositions of each spot within the cortex layer. (C) Spatial

plot shows the proportions of specific neuron subtypes in the spots within the captured region. Red spot indicates high proportion of the respective cell type. (D)

Visualization of the spatial expressions of cell type specific markers in ST data. Red color indicates the high gene expression in that spot.

in the inner liner of the cortex. Towards the innermost layer,
oligodendrocytes cells are mainly abundant in these spots.
These data are consistent with the layered cytoarchitecture
of the cortex tissue. The ability to identify the distinct spatial
cellular compositions of each spot in the cortical neuronal layers
indicates the accuracy and sensitivity of DSTG.

To examine whether the cell type specific genes are enriched
in their corresponding spatial locations, we investigated the
distribution of marker genes known to be specific to the respec-
tive cell types (Figure 3D). For example, the top expressed gene
marker of L2/3 cells, Myh7, is detected with high expression in
the ST data of L2/3 dominated spots, which is in line with the
predicted proportions of this cell type. The top markers of L6b

and Oligo, Nxph4 and Gjc3, also show high expression in their
corresponding spots, respectively. Meanwhile, these genes are
undetectable or detected at very low levels at other spatial spots.
It is worth noting that the partial expression of cell type markers
in a specific ST spot may reflect the heterogeneous composition
of cell types in that spot. Interrogation of these differential genes
further confirms the accurate predicted cell proportions within
spots in the tissue section.

To investigate whether the pseudo-ST generated from
scRNA-seq data presents similar spatial patterns with the real-
ST data, we looked into the pseudo-spots from pseudo-ST
data that are linked with real-spots from real-ST data in our
link graph. After mapping these pseudo spots onto the spatial
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contexture, we found that the compositions within these
pseudo-spots show similar patterns (Supplementary Figure S5C)
with the real-ST structures (Supplementary Figure S5D). That
is, these pseudo-spots from pseudo-ST data recapitulate the
architecture of mouse brain cortex layer. The heterogenous
cell compositions within each pseudo-spot are shown as pie
chart at their respective spot. Specific investigation shows that
the Astro subtype mainly locates at the outside liner of the
cortex structure, whereas the L2/3 cells are enriched next to
the Astro cells, which is consistent with the spatial patterns
of real-ST data. Pseudo-spots containing L6b cells are shown
with high proportions in the inner liner of the cortex tissue.
Oligodendrocyte cells within pseudo-spots remain abundant
at the innermost layer. These data show that the pseudo-ST
data presents coherent spatial patterns with real-ST data as
illustrated in Figure 3B, which is consistent with the layered
cytoarchitecture of the cortex tissue. These results also verify
the accuracy and reliability of using pseudo-ST data in DSTG.

Mapping distinct cell populations of mouse
hippocampus

The fast advance of ST technologies raises new challenges in
deconvoluting the transcriptomics data at each spot: spots
become smaller; meanwhile the total number of spots grows
exponentially, but the sequencing depth at each spot becomes
much lower. We demonstrated the performance of DSTG on such
emerging ST data, using the recently available Slide-seq v2 [15]
of mouse hippocampus tissues as an example. Comparing with
the 10X Genomics’ Visium platform, the bead size of the Slide-
seq v2 platform is 5.5-fold smaller, thus the spatial resolution is
25–100-fold higher. Consequently, the typical median library size
per bead is 550 UMIs, 100-fold lower than 10X Genomics Visium.

To deconvolute this ST data, we used the existing scRNA-seq
dataset from mouse hippocampus [43], which consists of 52 846
cells with 19 cell types that are profiled by the Drop-seq protocol
(Figure 4A). Based on this scRNA-seq data, DSTG’s spatial decom-
position of the ST data accurately identifies different cell types
within the hippocampus slice (Figure 4B). The spatially localized
pie charts represent the identified different cell proportions in
the slice. Moreover, our predicted compositions provide more
detailed information about the heterogeneity of this area. Closer
investigation confirms the regional enrichment of specific cell
types with their identified composition (Figure 4C). For example,
oligodendrocyte cells are identified with high compositions in
the middle wide strips within the hippocampus slice. In the
Cornu Ammonis (CA) subfield, CA3 principal cells scatter within
the slice with low proportions, but are majorly abundant in the
half strip at the right of the slice. Ependymal cells present mainly
at an irregular circle and the other band at the top right of the
slice, of which data are consistent with the spatial structures
within the mouse hippocampus.

To further evaluate our method, we selected the cell type-
specific genes from scRNA-seq data and assessed their expres-
sion in the ST data. As expected, the top differentially expressed
gene marker in oligodendrocyte (Figure 4D), Proteolipid Protein
1 (PLP1), expresses strictly in line with the oligodendrocyte
region based on the ST data. Coiled-Coil Domain Containing 153
(CCDC153) is the top expressed gene marker in CA3 principal
cells that is also detected with high expression in the ST data
of CA3 principal cells. Another example is neuronal pentraxin
receptor (NPTXR), the marker of ependymal, is enriched at
regions with a high abundance of ependymal cells. These
cell-specific genes detected in their corresponding locations

further underlines the accuracy of DSTG. In summary, DSTG
demonstrates accurate and reliable deconvolution capabilities
on ST data generated from the latest ST platform such as the
Slide-seqV2, which has much smaller spot size, much larger
number of spots and much lower sequencing depth.

Deconvolution of pancreatic cancer tissue sections

Tissues in diseases such as tumors exhibit unique pathological
cytoarchitectures. To further demonstrate and test the DSTG’s
performance in such conditions, we applied it to two ST
data obtained from two tumor sections of pancreatic ductal
adenocarcinoma (PDAC), i.e. PDAC-A and PDAC-B. Sample-
matched scRNA-seq data (Supplementary Figure S6) gener-
ated by inDrop protocol is used to generate the pseudo-ST
data, which shares similar characteristics with real-ST data
(Supplementary Figure S7).

For the PDAC-A sample (Figure 5A), after DSTG’s deconvolu-
tion, we observed discrete regional enrichment of cancer clones
and noncancer cells. Specifically, cells of cancer clone S100
Calcium Binding Protein A4 (S100A4) and Transmembrane 4 L
Six Family Member 1 (TM4SF1) are mainly identified mixed in
the spots of cancerous region, which are excluded from the
spots of ductal cells including the centroacinar ductal cells and
the co-localized antigen-presenting ductal cells. Stroma cells
are involved between the ductal cells and cancer cells, which
are consistent with previous results annotated by hematoxylin
and eosin (H&E) staining and brightfield imaging [13]. We also
found a few proportions of hypoxic ductal cells in the spots
close to the cancerous region, indicating the low oxygen envi-
ronment in tumor. Further inspections of specific cell types
(Figure 5B), including cancer clone cells and ductal cells, confirm
their regional proportions on their identified structures. The
point size and related color indicate different compositions in
the spatial spots.

In the other PDAC-B sample, as shown in Figure 5C, cells of
cancer clone TM4SF1 rather than cancer clone S100A4 are identi-
fied. These cancer clone TM4SF1 cells are localized preferentially
in the spots of the bottom right region, distinguished from the
interstitium and ductal cells. We noticed that most interstitium
cells are adjacent to the cancer clone TM4SF1 cells, and some
interstitium cells co-localize with the cancer cells. Ductal cells
are mainly abundant in the spatial spots of the top region. These
findings highlight the precise consistency with previous H&E
staining results [13]. Further inspections of cancer clones and
ductal cells (Figure 5D) confirm their regional compositions on
their known locations. These results of DSTG are consistent
with independent histological annotations, supporting its ability
to identify accurate cellular compositions from the ST data of
tumor tissues.

In addition, we applied SPOTlight to the real-ST data of PDAC-
A and compared its results with DSTG. After deconvolution,
we observed similar spatial contexture as well as different
cell compositions between SPOTlight’s and DSTG’s results
(Supplementary Figure S8A). Specifically, SPOTlight and DSTG
identify different proportions of centroacinar ductal cells
(Supplementary Figure S8B). Both methods discern abundant
centroacinar ductal cells in the left region, which are distin-
guished from stroma and cancer cells. However, centroacinar
ductal cells identified by DSTG are more consistent with
the expression of its marker Claudin 2 (CLDN2), with higher
Pearson correlation (cor = 0.739) than DSTG (cor = 0.524). We
also looked into the proportions of stroma cells identified by
SPOTlight and DSTG, respectively (Supplementary Figure S8C).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
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Figure 4. Spatial chart of mouse hippocampus tissue using DSTG. (A) Uniform manifold approximation and projection (UMAP) projections of single-cell RNA-seq data

from mouse hippocampus tissue. Different cell types are labeled and colored based on known cell annotations. (B) Spatial plot with pie chart shows the predicted

cell compositions within the captured locations in the mouse hippocampus. (C) Spatial plot presents the proportions of specific neuron subtypes within the captured

location. Red color indicates high abundance of certain cell type in this region. (D) Spatial expression of cell type specific markers of the respective neuron subtypes in

the ST data.

The stroma cells revealed by SPOTlight localize more prevalently
within the tissue with less proportions. Moreover, the stroma
compositions identified by SPOTlight are less associated with
its maker Collagen alpha 1 chain type I (COL1A1) expression
(cor = 0.457), whereas DSTG identified stroma proportions are

far more correlated with COL1A1 expression (cor = 0.644). In
addition to the ductal and stroma cells, we also compared the
compositions of cancer clone S100A4 cells identified by two
methods (Supplementary Figure S8D), of which the expression
of Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) maker

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data


10 Song and Su

Figure 5. Mapping spatial spots across pancreatic cancer tissue. (A) Spatial plot shows the predicted compositions of different cell types within the captured spots

of PDAC-A tissue slice. (B) Predicted proportions of different cell types including antigen-presenting ductal cells, centroacinar ductal cells, cancer clone TMSF1 and

S100A4. (C) Spatial plot presents the predicted compositions of different cell types within captured spots of PDAC-B tissue slice. (D) Predicted proportions of different

cell types including ductal cells, cancer clone TMSF1 and interstitium. Red color indicates high proportion of certain cell type.

exhibits stronger association with DSTG’s prediction (cor = 0.783)
than that of SPOTlight (cor = 0.511). Thus, DSTG shows superior
performance than SPOTlight in accurately decomposing tissue
architectures.

In conclusion, DSTG is able to detect the unique cytoarchi-
tectures in disease tissues, distinguish the spatial distribution
of tumor cells evolved from different clones and characterize
cancer-specific cellular phenomena such as local hypoxia as well
as antigen presenting in the tumor cell dominating regions.

Discussion
ST provides unprecedented opportunities to study tissue hetero-
geneity and cell spatial organization [44–46]. However, the reso-
lution of ST is less than the single-cell level. As single spot in ST
data may cover heterogenous cell types, our DSTG method aims
to determine the proportions of different cell types and states

across spots where genes are reliably identified. In this study, we
present the DSTG method for performing cell type deconvolution
in ST data using the GCN. DSTG is evaluated by benchmarking
synthetic data generated from PBMC and other tissues, in which
DSTG demonstrates excellent accuracy between the predicted
cell mixtures and the actual cell composition. DSTG is also
shown to achieve high consistency with H&E staining observa-
tions on ST data from complex tissues including mouse cortex,
hippocampus and human pancreatic tumor slices.

For the pseudo-ST data used in DSTG, we tested that pseudo-
ST shares similar characteristics with real-ST data through
investigating their respective distributions of gene expression
using the PDAC tissue sample (Supplementary Figure S7A).
Through Kolmogorov–Smirnov test, we found that the distri-
bution of DSTG’s pseudo-ST data is not significantly differed
from the distribution of real-ST data (P-value = 0.419). In
contrast, the distribution of sample-matched scRNA-seq data is

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
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significantly differed from that of real-ST data (P-value = 4.89e−14,
Supplementary Figure S7B). This observation suggests that
pseudo-ST data shares similar characteristics with real-ST
data, even more than its matched scRNA-seq data. Moreover,
we looked into the Euclidian distance between the pseudo-ST
and real-ST data (Supplementary Figure S7C). Comparing with
the distances between scRNA-seq data and real-ST data (red
histogram), the distances between pseudo-ST and real-ST data
(blue histogram) are significantly closer with P-value <2.2e-
16, again showing that pseudo-ST is more similar with the
real-ST data than its matched scRNA-seq data. These results
confirm that the pseudo-ST data used in DSTG shares similar
characteristics with the real-ST data.

As SPOTlight is also used to deconvolute the ST data, we
compared DSTG with SPOTlight and found DSTG consistently
outperforms SPOTlight on benchmarking synthetic data. From
a technical perspective, DSTG provides some major advantages.
First, DSTG simultaneously utilizes variable genes and graphical
structures through a nonlinear propagation in each layer, which
is appropriate for learning the cellular composition due to the
heteroskedastic and discrete nature of ST data. Second, DSTG
identifies the respective weights of different cell types in the
pseudo-ST data generated from scRNA-seq data, which can be
effectively leveraged to learn the cell compositions in the real-ST
data. Third, as the sequencing depth of spatial data is expected to
increase, DSTG has been shown to perform better to interrogate
the cell distribution quantitatively in such ST data.

In addition to the successful results, there are several aspects
that DSTG can be improved. First, as an AI model, DSTG shows
not only the merits of its kind, but also some limitations includ-
ing the black-box nature of AI models [47–49], which can be
addressed through downstream analysis that can ameliorate
some of the problems and bring insights into the learned cellular
compositions. Second, as a graph model, improving the built
graph can further boost the model performance. Our link graph
based on mutual nearest neighbors best captures the spots’
similarity in spatial data, reflecting the effective graph repre-
sentation. As a fast-growing research field, new approaches of
building graph are emerging, of which we will test and adapt in
future versions of DSTG.

Our DSTG method paves the way for inferring functional
relationships between heterogenous cell subpopulations based
on their composition and co-localization in the tissue spots. This
includes intercellular communication across neighboring spots,
which opens up future possibilities of studying the complete
interactome in a spatially resolved manner. Moreover, as the pre-
cise composition of tissue may vary from one individual patient
to the other, the spatial composition of cellular subpopulations
can be of prognostic value for patients in the future. We antici-
pate that the spatial deconvolution using DSTG will contribute to
future patient prognosis and pathological assessments. Overall,
DSTG demonstrates as a robust and accurate tool to deter-
mine cell type locations and precise compositions of spatial
spots, which provides an unbiased perspective and investigation
into the spatial organization of distinct cellular populations in
tissue.

Data availability

All scRNA-seq datasets are downloaded from their public
accessions. The first benchmarking PBMC scRNA-seq datasets
[35] in Figure 2A are generated by 13 different protocols,
including C1HT-medium, ICELL8, MARS-Seq, Chromium (sn),
CEL-Seq2, gmcSCRB-Seq, C1HT-small, inDrop, Drop-Seq, ddSEQ,

Smart-Seq2, Chromium and Quartz-Seq2. These 13 PBMC
datasets are publicly available through the Gene Expression
Omnibus (GEO) (GSE133549). Cell types with too small sizes
are ignored to avoid misleading information. To evaluate the
impact of synthetic data (Figure 2C–E), we used the Smart-
Seq2 PBMC dataset to generate discrete synthetic data with
different number of spots and variable genes, as well as different
sequencing depths.

For the second benchmarking in Figure 2B, the Drop-Seq data
is downloaded from the Short Read Archive under accession
number SRP073767 [2]. The Microwell-Seq data is profiled using
the Microwell-Seq protocol [50] that can be downloaded from
the Mouse Cell Atlas. The snRNA-Seq data is profiled from the
entorhinal cortex from human brains of Alzheimer’s disease,
yielding a total of 13 214 high-quality nuclei [51] using the single-
nucleus RNA-seq protocol, which can be downloaded from GEO
(accession number: GSE138852). The Smart-Seq2 data is pro-
filed using the Smart-Seq2 platform [52], which is profiled from
melanoma tumor and downloaded from GEO (accession number:
GSE72056). The CEL-Seq2 data is obtained from human cadav-
eric pancreata using the CEL-Seq2 protocol (accession number:
GSE85241) that consists of 2122 cells and 18 915 genes [53]. The
SMART-Seq v4 data is downloaded from the database of Geno-
types and Phenotypes (dbGAP) (accession number: phs001790)
[54], which is generated using SMART-Seq v4 platform. This
dataset contains 16 024 genes and 14 055 cells, from 34 cell types
in the middle temporal gyrus of human cerebral cortex. The CEL-
Seq data is obtained from three human lung adenocarcinoma
cell lines using the CEL-Seq platform that consists of 570 cells
and 12 627 genes [55], which can be downloaded from GEO
(accession number: GSE117617). The Fluidigm data is profiled
using Fluidigm C1 platform with 11 778 cells and 3803 genes
[56]. We downloaded this data from GEO (accession number:
GSE81608).

For the applications of DSTG in real-ST data, we selected
the well-annotated scRNA-seq data of the same tissue type as
ground truth and generate synthetic pseudo-ST data to train
the model. We listed the cell types with sufficient cell numbers
of each scRNA-seq data in Supplementary tables. Specifically,
to deconvolute the mouse cortex ST, we used the scRNA-seq
dataset profiled by the Smart-Seq2 protocol from the Allen
Institute, which consists of ∼14 000 adult mouse cortical cell
taxonomy and 22 cell types to generate the pseudo-ST data as
training data (Supplementary Table S1). To deconvolute the ST
data of mouse hippocampus tissue, we used the existing scRNA-
seq dataset from mouse hippocampus [43], which consists of
52 846 cells with 19 cell types that are profiled by the Drop-
seq protocol (Supplementary Table S2). Regarding the deconvo-
lution of ST data in pancreatic tissues, we used their matched
scRNA-seq data with adequate cells profiled by inDrop protocol
(Supplementary Tables S3 and S4).

Code availability

All the functions mentioned above were implemented as a
Python software, which can be downloaded at https://github.
com/Su-informatics-lab/DSTG.

Key Points
• We have developed a novel semi-supervised GCN

model, named DSTG, to accurately deconvolute the
observed gene expressions at each spot of ST data and
recover its cell constitutions.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa414#supplementary-data
https://github.com/Su-informatics-lab/DSTG
https://github.com/Su-informatics-lab/DSTG
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• DSTG demonstrates high accuracy and robust perfor-
mance across experimental protocols, ST platforms
and tissues from different organs.

• DSTG is available as a ready-to-use open source soft-
ware for precise interrogation of spatial organizations
and functions in tissues.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.
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