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Abstract

Multi drug treatments are increasingly used in the clinic to combat complex and co-

occurring diseases. However, most drug combination discovery efforts today are mainly

focused on anticancer therapy and rarely examine the potential of using more than two

drugs simultaneously. Moreover, there is currently no reported methodology for perform-

ing second- and higher-order drug combination analysis of secretomic patterns, meaning

protein concentration profiles released by the cells. Here, we introduce COMBSecre-

tomics (https://github.com/EffieChantzi/COMBSecretomics.git), the first pragmatic meth-

odological framework designed to search exhaustively for second- and higher-order

mixtures of candidate treatments that can modify, or even reverse malfunctioning secre-

tomic patterns of human cells. This framework comes with two novel model-free combina-

tion analysis methods; a tailor-made generalization of the highest single agent principle

and a data mining approach based on top-down hierarchical clustering. Quality control

procedures to eliminate outliers and non-parametric statistics to quantify uncertainty in the

results obtained are also included. COMBSecretomics is based on a standardized repro-

ducible format and could be employed with any experimental platform that provides the

required protein release data. Its practical use and functionality are demonstrated by

means of a proof-of-principle pharmacological study related to cartilage degradation.

COMBSecretomics is the first methodological framework reported to enable secretome-

related second- and higher-order drug combination analysis. It could be used in drug

discovery and development projects, clinical practice, as well as basic biological under-

standing of the largely unexplored changes in cell-cell communication that occurs due to

disease and/or associated pharmacological treatment conditions.
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Introduction

Living human cells are constantly responding to internal and external stimuli. Every cell in

multicellular organisms exchanges messages with itself (autocrine signaling), nearby cells

(paracrine signaling), distant cells located in other tissues (endocrine signaling) and the envi-

ronment in general [1]. For example, when a healthy human cell is stimulated externally by a

protein mixture released from other cells, it detects the provocation via an array of surface

receptors. Then, after some internal processing, it usually secretes its own protein mixture as a

response back. Although such multi-input multi-output (MIMO) chemical communication

protocols are of outstanding biomedical relevance and have attracted substantial attention

under the name secretomics [2–6], there is still very limited knowledge about their modifica-

tion under different disease and associated treatment conditions. Characterization of distur-

bances in the MIMO chemical protocols of human cells and infectious agents [7] has therefore

the potential to provide fundamental diagnostic and pharmacological insights of key impor-

tance for clinical practice, as well as general biological understanding. One inspiring example

of what can be achieved in the clinic using this approach can be found in a recent case report;

in vitro secretomics was employed to find a highly successful personalized drug treatment for a

young woman suffering from an unknown form of autoimmune arthritis [8]. As also offered

by the novel framework presented in this work, central to this finding was the analysis of secre-

tomic profiles of stimulated (rather than unstimulated) cells, in this case peripheral blood leu-

kocytes obtained from the patient.

Lately, higher-order drug cocktails (i.e., more than two drugs) are increasingly used in the

clinic to combat complex and/or co-occurring diseases due to key advantages, such as better

efficacy, decreased toxicity and reduced risk of developing resistance [9–17]. Despite the

major clinical need for novel and more effective higher-order therapies, the vast majority of

drug discovery and development efforts are still limited to either pairwise combination or

single-drug treatments. There are outstandingly few reports related to higher-order combi-

nation analysis methods and they still come with important shortcomings. Most of them rely

on simplistic one-dimensional end point readouts and employ mathematical models that

require specific toxicology-rooted mechanistic assumptions about the drug interactions [12–

15, 17]. Similarly, COMBImage2 [16], a recently developed live-cell imaging-based computa-

tional framework, provides purely phenotypic evaluation of higher-order drug combination

effects.

Motivated by this background, we developed COMBSecretomics; a pragmatic methodolog-

ical framework designed to search exhaustively for second- and higher-order combination

treatments that are able to modify, or even reverse malfunctioning secretomic patterns of

human cells, when being subject to external naturally occurring and/or disease relevant stimuli

(Fig 1). It is based on a standardized reproducible format that could greatly accelerate all stud-

ies in this field and also make results obtained by different laboratories directly comparable.

This methodological framework could be used together with any experimental platform (typi-

cally anti-body based multiplex assays or mass spectrometry) that can provide the required

raw data.

We demonstrate the practical use and functionality of COMBSecretomics in terms of an

illustrative pharmacological case study focused on cartilage degradation, which is a key feature

of osteoarthritis (OA), a highly prevalent chronic disorder and leading cause of disability

worldwide [18]. A recently introduced ex vivo tissue model of cartilage degradation [19] was

employed. 23-dimensional protein release patterns were collected, analyzed and compared

after performing an exhaustive combination experiment based on 3 candidate drugs and sub-

sequently stimulating all samples with 3 different naturally occurring protein mixtures.
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Materials and methods

Ex vivo tissue model

The employed ex vivo tissue model aims at providing an experimental platform for OA related

cartilage degradation [19]. Cartilage tissue samples were obtained from the femoral heads of a

patient (female, 84) undergoing total hip replacement due to fracture with patient’s informed

consent and all experimental protocols approved by the ethics committee of the KAT General

Hospital, Athens, Greece. The femur head was rinsed with PBS, cartilage without subchondral

bone was removed and placed into high glucose DMEM (Dulbecco’s Modified Eagle Medium)

supplemented with 10% FBS, 1% Penicillin/Streptomycin and 1% fungizone (BioCell Technol-

ogy LLC, Irvine, CA), denoted DMEM�. Cartilage disc samples of 3 mm diameter were created

Fig 1. COMBsecretomics conceptual workflow. Disease associated (D) and healthy (H) cells are kept on the same

experimental plate to avoid inter-plate variability. D cells are exposed to each and every treatment T from an

exhaustive combination panel; here a panel of all 7 possible treatments using 3 pre-selected drugs T1, T2 and T3 (at

fixed concentrations) is shown as an example. D-treated and H cells are subsequently stimulated with each and every

protein mixture S from a stimulation panel. Finally, release measurements for a protein panel of interest are collected

for both cell types (fD,T, S and fH,S) using any technology that gives values proportional to the corresponding protein

concentrations. The subsequent computational workflow include quality control procedures, normalization of the

protein release differences (fD,T, S − fH,S), model-free higher-order combination analysis and non-parametric

resampling statistics. The goal of all these methodological principles is to come up with an optimal (combination)

treatment T� that reverses malfunctioning protein release patterns, meaning fD,T� , S� fH,S.

https://doi.org/10.1371/journal.pone.0232989.g001
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with a biopsy punch and let to equilibrate in DMEM� for 24h. In order to obtain healthy (H)

and disease associated (D) samples, the cartilage discs were placed in either fresh DMEM� or

in DMEM� with collagenase type II, activity 125 units/mg, (MP Biomedicals, Santa Ana, CA)

of 2 mg/ml for 24h, respectively. Finally, prior to drug addition, a washing step of 24h in fresh

DMEM� was included. All experiments were conducted in a humidified incubator at 37 ˚C

and 5% CO2. In total, 10 H and 73 D samples were created and used (see section “Experimental

design” below).

Stimulations, treatments and multiplex ELISA

In this study, 3 single candidate drug treatments denoted T1, T2, and T3 were used (Table 1), in

order to design and perform an exhaustive combination experiment, as defined by Eq (1)

below. The treatments were added to the wells (200 μl DMEM�) and after 24h the supernatant

was aspired. Then, fresh DMEM� (200 μl) was added to all wells. For a selected subset of wells,

stimulations were also added, taken from a set of three alternative protein mixtures, here

denoted S1, S2 and S3 (Tables 2 and 3). The individual 7 proteins used in the 3 stimulations

were acquired from PeproTech EC Ltd, London. These proteins were selected as they are

reported to play driving roles in joint physiology and being involved in OA [19]. The 3 individ-

ual drugs and the corresponding concentrations were selected based on a small initial in-

house dose response experiment.

24h after stimulation, 80 μl of the supernatant was retrieved and protein releases were mea-

sured with the Luminex xMAP technology offered by FlexMap 3D platform (Luminex Corp.

USA). This platform uses an antibody-based suspension array technology to measure the

abundance of a predetermined set of proteins [20]. A library of 23 protein releases (PEDF,

CXCL11, IL13, ZG16, IL4, GROA, IFNG, CYTC, IL17F, IL12A, TFF3, IL6, ICAM1, IL10, FST,

S100A6, CXCL10, PROK1, CCL5, IL20, TNFSF12, MMP9, VEGFA) was measured in the

retrieved supernatant.

Experimental design

In the COMBSecretomics framework, an exhaustive combination experiment covers all plausi-

ble subsets among a panel of pre-selected single drug candidate treatments at one fixed con-

centration each. Following this definition and given Nt single drug candidate treatments, the

required number of wells for an exhaustive experiment is expressed as:

NwðNtÞ ¼
XNt

i¼1

Nt

i

� �

¼ 2Nt � 1 ð1Þ

Thus, if Nt = 3 drug treatments are chosen to interfere with 3 different targets related to the

disease of interest (like here), an exhaustive experiment exploring all possible ways of modulat-

ing these targets requires Nw(3) = 7 wells. The experimental design of the pharmacological

case study, including 7 different treatments {T1, T2, T3, T12, T13, T23, T123} and 3 stimulations

{S1, S2, S3} (Table 2), is described in Table 3.

Table 1. Single drugs used as candidate treatments in the pharmacological case study.

Annotation Drug name Concentration

T1 Sorafenib 10 μM
T2 PD169316 1 μM
T3 Rapamycin 1 μM

https://doi.org/10.1371/journal.pone.0232989.t001
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Results

The COMBSecretomics methodology

General experimental principle. COMBSecretomics requires the collected protein release

measurements to be obtained as a set of intra-plate replicate experiments performed in any

microtiter plate format that allows both healthy (H) and disease associated (D) cells to be culti-

vated, treated (T) and stimulated (S) in parallel to avoid batch variability (Fig 1). Each experi-

mental well results in a d-dimensional row vector f of raw measurement values, each

proportional to the abundance (concentration) of d different proteins (Fig 1). The measure-

ments from a whole plate consisting of N wells should be stored as a N × d matrix. In our case

study, a 87 × 23 matrix was used (S1 Fig in S1 File).

Quality control. The collected protein release measurements f are pre-processed by

COMBSecretomics through a series of tailor made quality control (QC) procedures (see sec-

tion “Quality Control Explained” in S1 File), in order to eliminate noise and exclude outliers

that may trigger misinterpretations. In our case study, the QC procedures resulted in a reduced

76 × 8 data matrix (S1–S3 Figs in S1 File). After QC, the median across the intra-plate replicate

measurement values f is calculated and used to visualize the data (S4 Fig in S1 File).

Normalization of protein release differences. COMBSecretomics evaluates systemati-

cally secreted protein profiles collected simultaneously for different cell states; disease associ-

ated, healthy, treated, untreated, with and without stimulations (Fig 1). The evaluation is based

on providing quantitative answers to three pragmatic questions at the level of individual pro-

teins. These three questions, which are thoroughly described in the next section, are designed

to determine whether the secretion of a particular protein is affected by the disease (therapeu-

tic need), whether it can be modulated by a treatment (modulation capacity) and whether a

treatment can reverse a malfunctioning protein secretion back to the normal/healthy level (res-

toration capacity).

More specifically, this is done by quantifying differences between the measured sets of pro-

tein releases fα and fβ of two cell states of interest α and β, respectively. However, when data is

Table 2. Protein mixtures used as stimulations in the pharmacological case study.

Stimulation Protein mixture

S1 IL1a (50 ng/ml) + TNFa (100 ng/ml)
S2 IL1b (50 ng/ml) + IL8 (100 ng/ml)
S3 BMP2 (100 ng/ml) + TGFb1 (10 ng/ml) + FGF2 (50 ng/ml)

https://doi.org/10.1371/journal.pone.0232989.t002

Table 3. Exhaustive experimental design.

Tissue Treatment Stimulation # Wells # Replicates

D {T1, T2, T3, T12, T13, T23, T123} {S1, S2, S3} 21 2

D {T1, T2, T3, T12, T13, T23, T123} − 7 3

D − {S1, S2, S3} 3 2

D − − 4 −
H − {S1, S2, S3} 3 2

H − − 1 4

Blank − − 1 4

Total number of experimental wells used: 21 × 2 + 7 × 3 + 3 × 2 + 4 + 3 × 2 + 1 × 4 + 1 × 4 = 87.

https://doi.org/10.1371/journal.pone.0232989.t003
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collected in inter-plate replicates, the protein release differences fα − fβ are not directly compa-

rable. Therefore, the collected protein release data should first be normalized per plate. In this

way, the results obtained can then be averaged among all plates/batches to reduce experimental

variability. The difference in release of protein k between the two cell states α and β on plate p
is normalized by COMBSecretomics in the following way:

rðk; pÞ ¼
faðk; pÞ � fbðk; pÞ
faðk; pÞ þ fbðk; pÞ

ð2Þ

Here fα(k, p) and fβ(k, p) denote the measurement values for cell states α and β, respectively.

The ratio r(k, p) is restricted to the interval [−1, 1]. The value + 1 is obtained when fα(k, p)>>

fβ(k, p), the value 0 when fα(k, p) = fβ(k, p) and the value −1 when fα(k, p)� fβ(k, p).

Therapeutic need, modulation capacity and restoration capacity. As mentioned above,

the COMBSecretomics framework is designed to provide quantitative answers to three prag-

matic questions related to therapeutic need (Q1), modulation capacity (Q2) and restoration

capacity (Q3), at the level of individual secreted proteins. In the following description of the

three questions Q1, Q2 and Q3, where Eq (2) is employed, To denotes no treatment addition

(untreated cell state), while Tx denotes addition of type x treatment (Tx-treated cell state). Sim-

ilarly, So denotes the absence of stimulation (unstimulated cell state), while Sy denotes the pres-

ence of type Sy stimulation (Sy-stimulated cell state).

Q1) Therapeutic need: is there any difference in the release of protein k between untreated

(T = To) D and H cells?

To quantify the therapeutic need with respect to protein k, the ratio in Eq (2) should be

employed with:

a. α� D, To, So and β�H, To, So, when cells are unstimulated (S = So).

b. α� D, To, Sy and β�H, To, Sy, when cells are stimulated (S = Sy).
This ratio determines the release difference of protein k between D and H cells, which

essentially defines the therapeutic need with respect to k. The bigger this ratio, the bigger

the underlying therapeutic need (Fig 2, S5 and S8 Figs in S1 File).

Q2) Modulation capacity: is there any treatment (T = Tx 6¼ To) that modulates the release of

protein k in D cells?

To quantify the modulation capacity of treatment Tx, the ratio in Eq (2) should be employed

with:

a. α� D, Tx, So and β� D, To, So, when cells are unstimulated (S = So).

b. α� D, Tx, Sy and β� D, To, Sy, when cells are stimulated (S = Sy).
A non-zero ratio (either smaller or greater than zero) indicates that treatment Tx seems

to modulate the release of protein k in D cells (S6, S9–S11 Figs in S1 File). However,

this is not enough in order to understand if the induced modulation by Tx is pointing

towards the right direction, meaning to restore the normal release level of protein k.

This is addressed by quantifying the restoration capacity of treatment Tx defined in ques-

tion Q3 below.

Q3) Restoration capacity: is there any treatment (T = Tx 6¼ To) that restores the normal

release level of protein k in D cells?

To quantify the restoration capacity of treatment Tx, the ratio in Eq (2) should be employed

with:
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a. α� D, Tx, So and β�H, To, So, when cells are unstimulated (S = So).

b. α� D, Tx, Sy and β�H, To, Sy, when cells are stimulated (S = Sy).
A zero ratio indicates maximal restoration capacity meaning that treatment Tx is able to

restore the normal release level of protein k in D cells, while a non-zero ratio suggests

the opposite. In particular, a negative ratio indicates that the release of protein k is higher

in H than D cells, while a positive ratio indicates that the release of k is higher in D than

H cells (S7, S12–S14 Figs in S1 File).

Model-free drug combination analysis. COMBSecretomics offers model-free second-

and higher-order combination analysis based on the drug induced restoration capacity of mal-

functioning protein secreted profiles (Q3) for exhaustive combination experiments, as defined

by Eq (1). Although such brute force experiments may be expensive, they are attractive, as they

search exhaustively the combinatorial space. When coupled with proper and robust multivari-

ate data analytics, they can help discriminating higher- from lower-order effects. A higher-

order combination treatment should be prioritized when none of its lower-order subsets is

able to induce equivalent effects.

Generalization of the highest single agent principle. COMBSecretomics performs syn-

ergy/antagonism analysis by means of a novel generalized version of the highest single agent

(HSA) principle, introduced here for the first time. In general, the HSA concept, known also

as Gaddum additivity [21], is well established and mainly used in the context of conventional

but relatively simplistic end point cytotoxicity assays. Compared to other widely used neutral-

ity models for synergy/antagonism quantification, such as Bliss independence [22] and Loewe

additivity [23], HSA does not require any specific assumption about the drug interactions. On

Fig 2. Therapeutic need quantification. Example showing the quantitative answers provided to question Q1b, using data from the OA case study

presented later in this work. The external stimulations used, denoted S1; S2; S3, are shown in the y-axis, while the proteins measured are shown in the x-

axis. The value in each patch is quantified by employing Eq (2) in the context of answering question Q1b.

https://doi.org/10.1371/journal.pone.0232989.g002
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the contrary, it offers a model-free and straightforward way of identifying useful (i.e., non-

antagonistic) combination treatments [24, 25]. This is simply done by checking if the effect

induced by the combination is higher than any of the constituent single-drug effects.

In this work, we introduce a generalized version by taking into account not only the single

constituents but also all lower-order subsets of a higher-order combination treatment. Let

E(Tx) denote the effect of a particular treatment Tx. Then, the generalized HSA (GHSA) index,

denoted IGHSA, for a combination treatment consisting of Nt drugs is defined as:

IGHSAðT1���Nt
Þ ¼ minfEðT1Þ; EðT2Þ; � � � ;EðTNt

Þ;EðT12Þ; � � � ;

EðTðNt � 1ÞNt
Þ; � � � ;EðT2���Nt

Þg � EðT1���Nt
Þ

ð3Þ

Here IGHSAðT1...Nt
Þ gives the incremental effect of the combination treatment T1...Nt

com-

pared to all single-drug treatments T1;T2; . . . ;TNt
and all lower-order combination treatments

T12; . . . ;TðNt � 1ÞNt
; . . . ;T2...Nt

.

COMBSecretomics determines the total induced effect E of a particular treatment Tx across

a panel of d proteins, by means of the restoration capacities obtained from the ratios calculated

in question Q3 and collected in the row vector rQ3
ðTxÞ. For the needs of the generalized GHSA

principle, the d-dimensional effect of treatment Tx is converted into a scalar in the range [0, 1],

by calculating the corresponding normalized L1-norm of the aforementioned rQ3
vectors as:

EðTxÞ ¼ jjrQ3
ðTxÞjj1 ¼

1

d

Xd

k¼1

jrQ3
ðk;TxÞj ð4Þ

IGHSA is restricted to the interval [−1, 1]. The extreme value −1 suggests maximal emergent

antagonism, meaning that the higher-order has led to maximally divergent protein release pat-

terns, while one of the lower-order has been able to restore the healthy protein release patterns.

The other extreme value + 1 suggests maximal emergent synergy, meaning that the higher-

order treatment has been able to restore the healthy protein release patterns, while all of the

lower-order treatments result in maximally divergent protein release patterns. The intermedi-

ate value 0 indicates that there is no gain by using a higher-order treatment, since the same

effect can be achieved by at least one of the lower-order treatments.

Top-down hierarchical clustering. COMBSecretomics also employs a data-driven

approach to discover prototypical protein release behaviors based on top-down hierarchical

clustering using the K-means algorithm at each level [16]. Currently, two hierarchical levels

are supported. In this way, the multi dimensional protein release profiles are fully exploited

without being compressed into a scalar, like with the GHSA approach described above. The

general idea is to split the drug induced protein release patterns into groups with distinct pro-

totypical behaviors, which can be characterized by the user as (un)interesting without any spe-

cific assumption about the drug interactions. To render this characterization easier by

discerning higher- from lower-order effects (especially for big exhaustive combination panels),

a subset search [16] can also be performed upon user request. The goal of this subset search is

to narrow down the unique single and/or combination treatments that induce the prototypical

protein release profiles for each (sub)group identified. For instance, if one group contains the

treatments {T1, T23, T13}, then the exhaustive subset search will result only in {T1, T23}. Nota-

bly, in this case, T1 and T23 are ranked equally as they are part of the same group.

The effect of a particular treatment Tx on the release of a specific protein k is determined

by its restoration capacity expressed by the ratio calculated in question Q3, here denoted

rQ3
ðk;TxÞ. This ratio measures the difference in release of protein k between Tx-treated D and
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untreated (T = To) H cells. Thus, the total induced effect of Tx across the whole panel of all d
proteins is given by the row vector rQ3

ðTxÞ, which is used for the top-down hierarchical cluster-

ing. To ensure that the treatment-induced release patterns are pointing towards the desirable

direction, they are jointly visualized with the total therapeutic need, calculated in question Q1

and collected in the row vector rQ1
ðTxÞ.

Resampling statistics. To avoid misinterpretations due to high technical and biological

variability, COMBSecretomics employs a non-parametric resampling based validation

approach to quantify uncertainty in the combination analysis results obtained. In other words,

this statistical procedure adopted by COMBSecretomics helps the user to determine if the

combination effects observed could have been obtained without any biological effects. Despite

being very valuable, this kind of information is rarely computed and considered. COMBSecre-

tomics provides a simple but powerful validation method, which requires at least two intra-

plate replicate experiments per cell state. More specifically, Nv (user-defined) validation data-

sets are automatically created by randomly leaving out one of the replicate measurements

per cell state (Fig 3). Then, the two aforementioned drug combination analysis methods are

employed Nv times in total and the different results obtained are compared and used to quan-

tify associated uncertainty measures, described in detail below.

When the GHSA analysis is employed for all different Nv validation datasets (Fig 3), the

user gets access to box plots that describe the sampling distribution of the corresponding

Fig 3. Miniaturization of the resampling based leave-one-out validation approach per plate. Left: original collected

protein release d-dimensional vectors f for the six different cell states supported by COMBSecretomics

(H;To; So; H;To; Sy; D;To; So; D;To; Sy; D;Tx; So; D;Tx; Sy). For each cell state, four intra-plate replicate

measurements are shown as rows along with the corresponding replicate number. D cells are either untreated (To) or

treated (Tx) while H cells are untreated (To). Both D and H cells are either stimulated (Sy) or not (So). Experimental

wells of different cell states are colored differently. Right: Nv user-defined validation datasets are automatically created

by employing a leave-one-out procedure among the four intra-plate replicate measurements for each cell state.

https://doi.org/10.1371/journal.pone.0232989.g003
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combination treatments by means of five summary numbers (Fig 5). In particular, each combi-

nation treatment is described by the minimum value, 25th, 50th, 75th percentiles and maximum

value of all different Nv GHSA indices obtained during validation. The closer and more tightly

grouped all five aforementioned numbers are, the more certain one should be that the corre-

sponding combination treatment is either synergistic, antagonistic or neutral.

Similarly, when the top-down hierarchical clustering is completed for all different Nv vali-

dation datasets (Fig 3), the user gets access to a normalized histogram showing the frequency

(%) of all unique clusters/partitions formed at the first hierarchical level (Fig 6a). The fewer dif-

ferent unique partitions with one clearly dominating in frequency over the others, the more

certain one should be about the hierarchical partitions obtained. After retrieving the names of

drugs/drug combinations of the most dominant clusters/partitions at both hierarchical levels,

the corresponding centroids are calculated using all replicates (Fig 6b).

The COMBSecretomics framework

COMBSecretomics is the result of integrating the aforementioned non-trivial methodologies

into a modular framework (Fig 4) that can be systematically employed for secretome-related

Fig 4. COMBSecretomics flowchart. Experimental flow: disease associated (D) and healthy (H) cells are treated and stimulated in parallel on the same

experimental plate pi. An exhaustive combination panel is used for treating D cells, while a stimuli panel is employed for both D and H cells. An end

point protein release assay of any sort can be used provided that it gives values proportional to the corresponding protein concentrations.

Computational flow: a series of subsequent computational steps are employed for processing the protein release measurement values. Firstly, quality

control procedures are employed. Secondly, protein release differences for stimulated and unstimulated cells are normalized per plate pi. Then two

model-free combination analysis methods are employed using the normalized protein release differences. Finally, non-parametric resampling statistics

are used to quantify uncertainty for the obtained combination analysis results. Graphic and text files with all results are created and saved automatically.

https://doi.org/10.1371/journal.pone.0232989.g004
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second- and higher-order drug combination studies. It is based on a standardized reproducible

format, in order to accelerate all studies in this field and facilitate the comparison of results

among different laboratories. This methodological framework could be used together with any

experimental platform, such as antibody-based multiplex assays or mass spectrometry, which

can provide the required raw protein release measurements. Users are only asked to provide

the raw data file in CSV file format and a sequence of inputs mainly needed for QC (sections

“Example raw data file” and “User-defined inputs” in S1 File).

COMBSecretomics is developed in MATLAB (The MathWorks, Inc., Natick, Massachusetts,

United States). It is currently distributed as a MATLAB package and can be deployed with ver-

sion R2018a or later together with the Statistics and Machine Learning and Bioinformatics tool-

boxes on Windows, Mac OS X and Linux machines. All modules are well-documented so that

future improvements and extensions can be achieved by developers with minimal efforts. For

users without access to MATLAB, COMBSecretomics is also provided as a command line tool

that can be deployed as a standalone executable on Windows machines. COMBSecretomics is

freely available at https://github.com/EffieChantzi/COMBSecretomics.git.

Pharmacological case study

The practical use and functionality of COMBSecretomics is demonstrated by means of a small

pharmacological case study focused on cartilage degradation, a key feature of OA. As described

above, 23-dimensional protein release measurements of a recently introduced ex vivo tissue

model of cartilage degradation [19] were collected and analyzed after performing an

Fig 5. GHSA analysis for stimulation S1 and Nv = 103 validation datasets. All four combination treatments T12, T13,

T23, T123 are shown on the x-axis. Each combination treatment is represented by a box plot showing the minimum

value, 25th, 50th, 75th percentiles and maximum value of all Nv GHSA indices obtained during a resampling-based

leave-one-out validation approach.

https://doi.org/10.1371/journal.pone.0232989.g005
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exhaustive combination experiment based on 3 candidate drugs (Table 1) and subsequently

stimulating all samples with 3 different protein mixtures (Table 2). The QC allowed only 8 out

of the total 23 protein release measurements to be further used for the drug combination anal-

ysis (S1–S3 Figs in S1 File).

Fig 6. Top-down hierarchical K-Means clustering for stimulation S1 and Nv = 103 validation datasets. (a)

Frequency/occurrence (%) for all unique partitions/clusters at the first hierarchical level. Annotations are provided for

the three most frequent partitions. (b) Visualization of the clustering results after validation; the most dominant

partitions at the first and second hierarchical levels are used. Each line corresponds to the centroid of each (sub-)

cluster identified representing its restoration capacity defined by the normalized protein release differences between D,

treated, stimulated with S1 (D, T, S1) and H, untreated, stimulated with S1 (H, UT, S1) cells. Solid and dotted lines are

used for the first and second hierarchical level respectively. The gray solid line corresponds to the total therapeutic

need, meaning the normalized protein release differences between D, untreated, stimulated with S1 (D, UT, S1) and H,

untreated, stimulated with S1 (H, UT, S1) cells, which an ideal treatment should eradicate. The legend shows all

treatments per (sub-)cluster identified without employing exhaustive subset search since only 7 treatments were used

in total.

https://doi.org/10.1371/journal.pone.0232989.g006
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Fig 5 shows the combination analysis results with respect to the GHSA method, when both

D and H cells were stimulated using the protein mixture S1 (see also S19–S21 Figs in S1 File).

The combination treatment T23 shows antagonistic behavior, as all five summary values of the

corresponding sampling distribution (minimum, 25th, 50th, 75th percentiles and maximum),

obtained during validation, lie on the negative part of the axis. Values very close to zero are

mainly observed for the three remaining combination treatments {T12, T13, T123}, which could

be characterized as neutral, suggesting no extra gain by using them.

Fig 6 shows the combination analysis results from the top-down hierarchical clustering

approach when both D and H cells were stimulated using the protein mixture S1 (see also S15–

S17 Figs in S1 File). The gray line in Fig 6b represents the total therapeutic need, meaning the

differences in protein releases between D and H cells that an ideal treatment should eradicate

(by bringing them to zero). Two main clusters were identified at the first hierarchical level.

The one shown in cyan consists only of T23 and seems to induce substantial adverse effects by

driving the protein release differences between D and H cells far from zero and specifically, in

the opposite direction of the existing total therapeutic need (gray line). Notably, T23 appeared

to be antagonistic according to the GHSA analysis as well (Fig 5). The second main cluster

shown in purple seems promising; its sub-cluster, consisting of treatments {T1, T2, T12} (lighter

purple dotted line), shows great restoration capacity for most of the protein releases. From a

combination analysis perspective, the subgroup {T1, T2, T12} indicates that T12 appears to be

neutral with respect to the individual treatments T1 and T2 (S18 Fig in S1 File). As shown in

Fig 6a, the aforementioned hierarchical partitions were obtained in approximately 55% of all

Nv = 103 validation datasets.

To sum up, both methods indicate that none of the combination treatments T12, T13, T123

seems to offer any substantial benefit compared to the individual treatments T1, T2 (Fig 6b).

Discussion

COMBSecretomics is the first freely available methodological tool designed to search exhaus-

tively for second- and higher-order combination treatments that can reverse malfunctioning

protein release patterns of passive (unstimulated) and active (stimulated) in vitro model sys-

tems. Its coupling with exhaustive drug combination panels and standardized data analysis

methods opens for systematic and reproducible secretome-related drug combination studies.

Lately, in silico methods gain momentum in drug combination discovery as they are cost effi-

cient and not labor intensive [26, 27]. These methods exploit publicly available omics data,

including mainly transcriptomics. Although proteomic datasets are also generated and used in

this context, there are currently no publicly available secretomic datasets, where external stim-

ulations have been additionally used to provoke the cells after pharmacological treatment. In

this context, COMBSecretomics is unique as it enables the generation and analysis of such

complex secretomic datasets, which could in the long term be used by appropriate in silico
tools. Moreover, the experimental-computational set up of COMBSecretomics could also be

employed to confirm in silico predictions of promising drug combinations. An approach more

similar to COMBSecretomics is adopted by BioMAP; an in vitro drug profiling platform based

on protein datasets generated from complex (stimulated) primary human cell-based assay sys-

tems [28–30]. Although well-established and powerful, BioMAP is commercial and does not

provide any methodological and standardized framework for drug combination analyses.

Things to consider

The composite experimental setup of COMBSecretomics should always be carefully consid-

ered. In the particular pharmacological case study presented here, the use of additional/other
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stimulations and the use of more/less protein release measurements might have changed the

results obtained. Ideally, all secreted proteins should be measured, in order to get a compre-

hensive picture of what changes the tested drugs and drug combinations are able to achieve.

Furthermore, a larger panel of drugs would also have resulted in different/extended results,

covering much more drug combinations than tested and reported in this work. However, the

actual raw protein release profiles obtained for the current single drugs and drug combina-

tions would not have changed (except for experimental variability). In other words, repeating

the same experiment and analyzing the corresponding generated data should give very simi-

lar results as the ones presented here. Moreover, the current findings cannot be used to dis-

entangle if the observed effects are exclusively due to modulations induced by the single

drugs/drug combinations or they also involve interactions between the stimulating proteins

and the added drugs. The complexity of the tissue/cell model system employed is also

expected to affect the results obtained. Moreover, there is no information provided about

potential drug-drug interactions, since the COMBSecretomics framework is employed

in the context of in vitro experiments based on a carefully selected set of drug candidates.

Thus, such issues are beyond the scope of the novel framework COMBSecretomics intro-

duced here.

Facts and limitations

Based on a highly standardized experimental-computational procedure, COMBSecretomics

helps to simultaneously pinpoint important causal biological and pharmacological combina-

tion effects at the level of individual proteins and protein profiles secreted. Notably, thanks to a

resampling based statistical procedure, the risk of interpreting ordinary technical and biologi-

cal variability as a real biological effect is reduced. The framework is not designed to provide

explicit information or hypotheses regarding causality and mechanistic effects. It is rather

designed to systematically evaluate secreted protein profiles collected simultaneously for dif-

ferent cell states; disease associated, healthy, treated, untreated, with and without stimulations.

This evaluation is based on providing quantitative answers to three pragmatic questions at the

level of individuals secreted proteins.

In particular, these questions are designed to determine whether the secretion of a particu-

lar protein is affected by the disease (therapeutic need), whether it can be modulated by a treat-

ment (modulation capacity) and whether a treatment can reverse a malfunctioning protein

secretion back to the normal/healthy level (restoration capacity). Then, COMBSecretomics

performs model-free second- and higher-order combination analysis based on the drug

induced restoration capacity. This is firstly achieved by introducing a tailor made generaliza-

tion of the HSA principle, which quantifies the additional biological/pharmacological effect

achieved at the global protein secretion level, when a set of drugs is used in combination. Sec-

ondly, this systemic analysis is also complemented with a data mining approach based on top-

down hierarchical clustering, as a means to identify prototypical drug induced protein secre-

tion patterns and discern higher- from lower- and single-drug effects.

COMBSecretomics quantifies how much the measured protein release responses to stimu-

lations are changing between before and after drug exposure, thereby offering causal informa-

tion of a kind that almost never is neither obtained nor reported. Thus, the causal information

provided is reflecting to which extent a drug combination can transform the disease model,

so that it responds differently to the same stimulations after the pharmacological treatment.

Ideally, the pharmacologically induced responses should be similar to the healthy cellular

responses. These results provide concrete valuable information. For example, high restoration

capacity indicates a promising treatment, whereas low restoration capacity demonstrates a
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treatment that should be avoided in the clinic (as it drives the protein release to diverge even

more from the normal levels). Mechanistic interpretations of the results in the context of asso-

ciated drug targets and involved biochemical pathways/processes is beyond what COMBSecre-

tomics is designed to address. Therefore, for more detailed biological, pharmacological and

mechanistic effects, a post-analysis including additional wet lab experiments focused on the

most outstanding results, is required.

Conclusion

In brief, COMBSecretomics

• fills in an important lack by enabling systematic test tube analysis of how second- and

higher-order drug combinations can affect secretomic patterns of human cells (meaning

protein concentration profiles secreted by primary patient cells as well as patient derived cell

lines), when being subject to natural and/or disease relevant protein stimulations. In contrast

to state-of-the-art analysis methods, which are limited to drug pairs and/or unstimulated

cells, this framework for the first time enable extensions along both these fronts.

• is the first methodological framework developed to search exhaustively for second- and

higher-order drug combination treatments that can modify, or even reverse malfunctioning

secretomic patterns of human cells. In particular, this generic framework could be used for

individualized drug combination therapy selection in the clinic, drug discovery and develop-

ment projects, as well as understanding the largely unexplored changes in cell-cell communi-

cation that occur due to disease and/or pharmacological treatments.

• reflects the need and feasibility for standardization of the necessary but non-trivial integrated

mix of experiments and analysis required in the context of secretomics and higher-order

drug combination analysis. Only through this kind of frameworks, proper comparisons of

results across different laboratories will be possible.

• comes with two novel model-free methods for drug combination analysis of the secretomic

patterns collected. The first is a generalization of the highest single agent method, which is

designed for drug pairs and cytotoxicity, to higher-order combinations and multi dimen-

sional readouts. The second model-free method is based on top-down hierarchical clustering

of the secretomic profiles collected, which returns a hierarchy of prototypical secretion pat-

terns and the corresponding most similar real patterns collected.

• provides systematic quality controls at multiple levels to eliminate outliers and non-paramet-

ric resampling statistics to quantify uncertainty in the results obtained.

Taken together, COMBSecretomics consists, to the best of our knowledge, the first prag-

matic framework that enables secretome-related second- and higher-order drug combination

analyses. To maximize the potential of COMBSecretomics for basic biological understanding

and guide systematic combination studies for disease areas where there are still unmet diag-

nostic and therapeutic needs, we envision further development and refinements. These may

include support for stimuli-related exhaustive experimental designs, replacement of the cur-

rently employed steady cell states (24h of stimulation) with time series measurements and

development of a laboratory information management system. As a natural extension, this

generic and modularized tool could also easily be adjusted for chemical biology and toxicol-

ogy research, where characterization of chemical mixtures is a highly important but largely

neglected area.
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