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ABSTRACT Novel therapeutic and preventive strategies are needed to contain the
HIV-1 epidemic. Broadly neutralizing human antibodies (bNAbs) with exceptional ac-
tivity against HIV-1 are currently being tested in HIV-1 prevention trials. The selection
of anti-HIV-1 bNAbs for clinical development was primarily guided by their in vitro
neutralizing activity against HIV-1 Env-pseudotyped viruses. Here, we report on the
neutralizing activity of 9 anti-HIV-1 bNAbs now in clinical development against 126
clade A, C, and D peripheral blood mononuclear cell (PBMC)-derived primary African
isolates. The neutralizing potency and breadth of the bNAbs tested were significantly
reduced compared to those seen with pseudotyped-virus panels. The difference in
sensitivity between pseudotyped viruses and primary isolates varied from 3- to nearly
100-fold depending on the bNAb and the HIV-1 clade. Thus, the neutralizing activity
of bNAbs against primary African isolates differs from their activity against pseudovirus
panels. The data have significant implications for interpreting the results of ongoing
HIV-1 prevention trials.

IMPORTANCE HIV remains a major public health problem worldwide, and new thera-
pies and preventive strategies are necessary for controlling the epidemic. Broadly
neutralizing antibodies (bNAbs) have been developed in the past decade to fill this
gap. The neutralizing activity of these antibodies against diverse HIV strains has
mostly been measured using Env-pseudotyped viruses, which overestimate bNAb cov-
erage and potency. In this study, we measured the neutralizing activity of nine bNAbs
against clade A, C, and D HIV isolates derived from cells of African patients living with
HIV and produced in peripheral blood mononuclear cells. We found that the coverage
and potency of bNAbs were often significantly lower than what was predicted by Env-
pseudotyped viruses and that this decrease was related to the bNAb binding site class.
These data are important for the planning and analysis of clinical trials that seek to
evaluate bNAbs for the treatment and prevention of HIV infection in Africa.
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The development of broadly neutralizing antibodies (bNAbs) against HIV has
matured in the past few years as several bNAbs were evaluated in clinical trials.
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VRC01 (1), 3BNC117 (2) and 10-1074 (3) have been the most extensively evaluated
to date, in healthy volunteers (4, 5), in viremic people living with HIV (6–9), and
in the setting of analytical treatment interruption (10–13), with encouraging
results. These trials were restricted to patients living in the United States and
Europe, limiting the assessment of the global utility of these antibodies, since
the majority of the individuals in the regions in question were infected with clade
B HIV-1 (14).

One potential limitation in the development of bNAbs is that their activity has been
documented primarily using panels of Env-pseudotyped viruses. However, we (15) and
others (16–19) have shown that using Env-pseudotyped viruses often overestimates
both the breadth and potency of bNAbs compared to peripheral blood mononuclear
cell (PBMC)-derived HIV isolates.

Here, we report on the breadth and potency of nine bNAbs currently in clinical de-
velopment against primary PBMC-derived HIV-1 viruses isolated from individuals living
in South Africa, Uganda, and Kenya. We compared these results with data from Env-
pseudotyped virus panels as well as matched Env-pseudotyped viruses derived from
the African isolates.

RESULTS

To examine the coverage of bNAbs in clinical development against HIV-1 var-
iants circulating in Africa, we obtained 218 cryopreserved PBMC samples from peo-
ple living with HIV-1 who participated in one of three studies: the Partners in
Prevention HSV/HIV Transmission Study (20), the Couples Observational Study (21),
or the Partners PrEP Study (22). The samples were collected from participants
recruited at sites in South Africa (n = 84), Uganda (n = 68), and Kenya (n = 66). Bulk
CD41 T lymphocytes were cultured, yielding 126 (58%) HIV-1 isolates after 21 days
(Table 1).

To examine the genetic diversity of the HIV-1 viruses obtained from the cultures,
we performed single-genome amplification (SGA) on 53 viral supernatants and
obtained 172 independent sequences representing clades A, C, and D, with 2
sequences per supernatant on average. We observed that the viruses were phylo-
genetically grouped in large part by their geographic origins and clades (Fig. 1A
and B).

The following bNAbs were tested for neutralizing activity against the PBMC
isolates in TZM-bl assays: 3BNC117-LS, VRC01, VRC07-523LS, and 1-18, all of which
are CD4 binding site specific (CD4bs), (1, 2, 23, 24); 10-1074-LS, and BG18, which tar-
get the base of the V3 glycan and surrounding glycans (3, 25); and PGDM1400 and
CAP256-VRC25.26, which are specific for the V2 loop (26, 27). We also tested the
combination of 3BNC117-LS and 10-1074-LS, which is currently in clinical development

TABLE 1 Demographical characteristics of all tested individualsa

aF, female; M, male; Un, undetermined.
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FIG 1 (A) Maximum-likelihood phylogenetic tree of env sequences of viruses isolated from outgrowth
cultures by SGA. (B) The first bar to the right of the phylogenetic tree represents the country of origin
of the sample; the second bar represents the HIV-1 clade of every sample.
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(9, 12) (clinicaltrials.gov/ct2/show/NCT03254277, clinicaltrials.gov/ct2/show/NCT03554408,
clinicaltrials.gov/ct2/show/NCT04250636, and clinicaltrials.gov/ct2/show/NCT04173819).

The geometric mean 50% inhibitory concentration (IC50) for VRC01, which is now
being tested in two large efficacy prevention trials (clinicaltrials.gov/ct2/show/
NCT02568215 and clinicaltrials.gov/ct2/show/NCT02716675), was 7.01mg/ml for all
viral isolates (Fig. 2A; Table 2). Only 57% of the viruses tested were sensitive to VRC01 at
concentrations below 10mg/ml (Fig. 2A to D; Table 2; also, see Data Set S1 in the

FIG 2 (A) Dot plot showing IC50s of unique PBMC-derived viruses for each bNAb tested. (B) Dot plot showing
IC80s of unique PBMC-derived viruses for each bNAb tested. Each dot represents a single virus. Black bars
represent geometric mean IC50s and IC80s. (C and D) Coverage curves. For each antibody, the graph shows the
percentage of viruses neutralized in the TZM-bl assay at a given IC50 (C) or IC80 (D) for the PBMC-derived
primary isolates for HIV-1 clades A, C, and D. All bNAbs are represented with the same color scheme as in
panel A. The pink dotted line represents VRC01, and the olive green represents the combination of 3BNC117-
LS and 10-1074-LS.
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supplemental material). Other CD4bs antibodies were substantially more potent than
VRC01, including VRC07-523LS and 1-18, with geometric mean IC50s of 1.14mg/ml and
1.27mg/ml, respectively. These two antibodies alone covered 92% and 87% of the
viruses tested at concentrations below 10mg/ml (Fig. 2A to D; Table 2; Data Set S1). 10-
1074-LS and BG18, which target the base of the V3 loop, demonstrated geometric mean
IC50s of 2.55mg/ml and 2.64mg/ml, respectively (Fig. 2A to D; Table 2; Data Set S1).
PGDM1400 and CAP256-VRC25.26, which target the V2 loop, demonstrated geometric
mean IC50s of 3.38mg/ml and 0.16mg/ml, respectively. However, 10-1074-LS, BG18,
PGDM1400, and CAP256-VRC25.26 covered only 52%, 49%, 46%, and 47% of the viruses,
respectively, at concentrations below 10mg/ml (Fig. 2A to D; Table 2; Data Set S1). The
combination of 3BNC117-LS and 10-1074-LS performed better than any single antibody
alone in terms of potency. The geometric mean IC50 for the combination was 0.65mg/ml,
and 84% of the viruses were sensitive at concentrations below 10mg/ml (Fig. 2A to D;
Table 2; Data Set S1).

To determine whether the sensitivity of the primary African isolates to bNAbs dif-
fers from that of standard pseudovirus panels, we compared the data obtained
from the outgrowth cultures with those from well-characterized clade A, C, and D
pseudoviruses (Fig. 3A and B; Tables 3 and 4). All of the bNAbs tested were more
potent and showed increased breadth against the pseudoviruses compared to the
primary isolates. The difference between pseudovirus and primary isolates varied
between antibodies. For example, CD4 binding site-specific bNAbs showed signifi-
cant average decreases in potency of 20-, 13-, and 27-fold for primary isolates from
clades A, C, and D, respectively (P, 0.0001 for all clades tested for CD4 binding
site-specific antibodies). Moreover, these antibodies neutralized an average of
4.2%, 13.5%, and 28.1% fewer clade A, C, and D primary isolates, respectively, when
tested against primary isolates than against pseudoviruses at concentrations below
10mg/ml.

The difference in potency and breadth between pseudoviruses and primary isolates
was less dramatic for bNAbs targeting the V3 glycan. On average, there was only a 3-
fold difference in IC50 between primary isolates and pseudovirus panels for clades A, C,
and D (P = 0.002 for 10-1074-LS on clade C; the difference was not significant for clades
A and D for both 10-1074-LS and BG18). V3 glycan antibodies also retained most of
their breadth, as shown by the numbers of strains reaching IC50s at concentrations
below 10mg/ml (Fig. 3A and B; Tables 3 and 4).

The two V2-loop bNAbs were unusual in that they had very different relative poten-
cies against primary and pseudotyped clade A and C viruses. Whereas CAP256-
VRC25.26 showed no significant difference in activity, PGDM1400 was 85- and 42-fold
less active against primary clade A and C viruses than pseudotyped viruses, respec-
tively (P, 0.0001) (Fig. 3A and B; Tables 3 and 4). These antibodies neutralized 24%
and 32% fewer clade A and C primary isolates, respectively, than pseudoviruses at

TABLE 2 Breadth, IC50s, and IC80s in TZM-bl cells for PBMC-derived isolates
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concentrations below 10mg/ml. Finally, the 3BNC117-LS/10-1074-LS combination
was on average 12-fold less active against the primary isolates than pseudoviruses
and showed no decrease in breadth for clade A but did show 13.5% and 26.5%
decreases in breadth with regard to the numbers of strains reaching IC50s at con-
centrations below 10mg/ml for clades C and D, respectively (Fig. 3A and B; Tables 3
and 4).

To determine whether the differences between primary isolates and pseudovirus
panels were attributable to sequence differences between the viruses being tested, we
cloned HIV-1 env genes from 11 different primary cultures, expressed them as pseudo-
typed viruses, and tested them against a panel of 5 bNAbs in the TZM-bl neutralization
assay. IC50s and IC80s for the PBMC-derived viruses and the matched pseudoviruses
showed similar fold differences than those found between primary isolates and pseu-
dovirus panels for all bNAbs tested (Fig. 4). Besides the underestimation of the resist-
ance levels of to bNAbs presented in the pseudovirus experiments, we observed a sig-
nificant correlation between the results of both experiments (Fig. 4). The data suggest
that there are significant differences in bNAb potency and breadth between primary

FIG 3 (A) IC50s of unique PBMC-derived viruses (Pr) shown in color, and corresponding clade pseudovirus panel in black (Pv). The viruses are organized by
HIV-1 clade. Each dot represents a single virus. Black bars represent geometric mean IC50s. (B) Fold change between the geometric mean IC50s (in
micrograms per milliliter) of PBMC-derived viruses and the corresponding pseudovirus panel. Statistical analysis was done using the Mann-Whitney test.
Statistical significance was defined as a P value of ,0.05 unless stated otherwise. P values smaller than 0.05 were considered statistically significant. *,
P, 0.05; **, P, 0.01; ***, P, 0.001; NS, not significant.
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clade A, C, and D isolates and pseudotyped viruses and that the magnitude of these
differences is bNAb specific.

DISCUSSION

We measured the neutralization profile of nine bNAbs currently in clinical develop-
ment on 126 primary isolates obtained from PBMC cultures from individuals infected
with HIV-1 clades A, C, and D. VRC01, the most advanced clinical candidate, is nearly 15
times less active against primary isolates than pseudotyped viruses. Similar results
were obtained with other CD4 binding site antibodies. In contrast, the two V2-directed
antibodies tested varied widely in their ability to neutralize pseudotyped viruses and
primary isolates. Thus, the results obtained with pseudotyped virus panels cannot be
translated directly to bNAb activity on primary isolates.

Our results extend earlier work with less potent antibodies (16–18) and with bNAbs
against clade B viruses (15) to clades A, C, and D. In all cases, primary isolates were less
sensitive to bNAbs than pseudotyped viruses. However, the relative reduction in activ-
ity differed between antibodies that target different epitopes on the envelope spike,
with V3 glycan bNAbs 10-1074-LS and BG18 being least affected and PGDM1400 the
most affected. In addition, the magnitude of the differences varies among viral clades.
Combinations of bNAbs, as exemplified by 3BNC117-LS and 10-1074-LS, are advanta-
geous in this respect, as also suggested by in vitro and in silico analysis using Env-
pseudotyped panels (28).

A number of non-mutually exclusive hypotheses have been suggested to explain
the enhanced susceptibility of 293T-derived pseudotyped viruses to neutralization by
bNAbs. For example, sensitivity to neutralization could be dependent on the number
of envelope protein spikes, with fewer spikes bound on the surface of 293T-derived
pseudotyped viruses than PBMC-derived primary isolates (16, 18). Another possibility
involves differential glycosylation by different packaging cell types. bNAbs frequently
target glycan-dependent epitopes; therefore, the differential glycosylation profile of
the envelope spike produced in different cell types could also alter their neutralization
profile (49, 50). However, V3 glycan bNAbs and CAP256-VRC25.26, which target highly
glycan-dependent epitopes, were the least affected. Similarly, PG9, a V2 peptide gly-
can-specific bNAb (29, 30), showed only small changes in its neutralization profile
between clade B pseudotyped viruses and PBMC-derived viruses (18). Still another pos-
sibility is that most of the pseudoviruses tested in the standard panels were isolated
between 1998 and 2010, whereas our samples were collected between 2007 and 2012
(31), and there appears to be increased bNAb resistance over time (32–35).

Clinical trials testing bNAbs for HIV-1 prevention are now being conducted in Africa
and other parts of the world. The largest of these trials is testing VRC01 at several sites in
Africa (Botswana, Kenya, Malawi, Mozambique, South Africa, Tanzania, and Zimbabwe),
where the majority of the HIV-1 infections are caused by clade A, C, and D viruses (14).
Although the results of those trials are not yet known, data are available from smaller trials
where bNAbs were administered to individuals undergoing analytical treatment

TABLE 4 Number of tested samples for PBMC derived isolates (Pr) and pseudovirus
panels (PV)
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interruption (ATI). In the absence of antiretroviral therapy, nearly all participants experience
viral rebound in 2 to 3weeks, and it is believed that recrudescence of viremia is due to
reactivation of HIV-1 from latently infected CD41 T cells (36). Single antibodies were able
to decrease viremia levels or delay the return of quantifiable viremia, but their ability to do
so correlated with their neutralizing activity against primary isolates and not pseudotyped
viruses (6, 7, 10, 11, 37, 38). For example, VRC01 had little measurable effect on delaying
HIV-1 rebound when administered during ATI (13, 39). In contrast, antibody combinations
maintain suppression of viremia during ATI in individuals harboring bNAb-sensitive viruses
for as long as antibody concentrations remain above 10mg/ml (12). Should the clinical out-
comes in the ongoing VRC01 prevention trials track with bNAb activity against primary iso-
lates as opposed to pseudotyped virus panels, there could be up to a 15-fold difference
between the predicted and observed outcomes of the trial. Nevertheless, by analogy with
the ATI trials, if the AMP trials demonstrate even a smaller-than-projected effect with
VRC01, it provides a proof of concept that passive immunization can prevent sexual trans-
mission of sensitive HIV-1 strains and indicates that combinations should be highly
effective.

FIG 4 (Top and middle) IC50s and IC80s of unique PBMC-derived clonal viruses (Pr) and corresponding
pseudoviruses (Pv) for each antibody. Each dot represents a single virus. Black bars represent
geometric mean IC50s. Numbers under the dots indicate the fold change in geometric mean IC50s
between the 2 groups. Statistical analysis was done using the Mann-Whitney test. Statistical
significance was defined as a P value of ,0.05 unless stated otherwise. P values smaller than 0.05
were considered statistically significant. *, P, 0.05; **, P, 0.01; ***, P, 0.001; NS, not significant.
(Bottom) Correlation analysis between Pr and Pv. r2 and P values were obtained from the Pearson
correlation coefficient.
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MATERIALS ANDMETHODS
Samples. The study was conducted with the approval of The Rockefeller University Institutional

Review Board. Samples were collected during the course of three studies in sub-Saharan Africa. (i) The
first is the Partners in Prevention HSV/HIV Transmission Study. Between November 2004 and April 2007,
3,408 HIV-serodiscordant heterosexual couples were enrolled from 14 study sites in sub-Saharan Africa
into this phase III clinical trial evaluating the efficacy of herpes simplex virus 2 (HSV-2) suppressive ther-
apy (acyclovir 400mg orally twice daily versus matching placebo) provided to persons infected with
both HIV-1 and HSV-2 who had CD4 counts of $250 at enrollment to prevent HIV transmission to their
HIV-uninfected heterosexual partner (20). (ii) The second was the Couples Observational Study. A total
of 485 HIV-serodiscordant heterosexual couples were recruited at two of the same sites as the Partners
in Prevention HSV-2/HIV Transmission Study (Kampala, Uganda, and Soweto, South Africa) for a prospec-
tive, observational study of biologic correlates of HIV protection; there was no HSV-2 coinfection or CD4
count enrollment requirement (21). (iii) The third was the Partners PrEP Study. This was a randomized,
phase III clinical trial of antiretroviral pre-exposure chemoprophylaxis (300mg tenofovir once daily ver-
sus 300mg tenofovir plus 200mg emtricitabine once daily versus matching placebo) conducted at nine
sites in Kenya and Uganda (22).

CD4+ T cell outgrowth culture. Bulk outgrowth cultures were performed as previously described
(11). Briefly, PBMCs were obtained from HIV-1-infected individuals, and CD41 T lymphocytes were iso-
lated by negative selection with magnetic beads (Miltenyi). A total of 2� 106 CD41 T lymphocytes were
activated using anti-CD3/CD2/CD28 beads (Miltenyi) and cultured in the presence of 100 U/ml interleu-
kin 2 (IL-2) (Peprotech) at 37°C and 5% CO2. CD4

1 T lymphocytes were cocultured with irradiated heter-
ologous PBMCs from healthy donors (1� 106). After 24 h of activation, 1� 105 Molt 4 CCR5 cells were
added. The medium was replaced twice a week, and the presence of p24 in the culture supernatant was
quantified by the Lenti-X p24 Rapid Titer kit (Clontech) after 7, 14, and 21 days of culture. The infectivity
of viral cultures was confirmed by a 50% tissue culture infective dose assay with TZM-bl cells (40). We
performed a single outgrowth culture for each tested individual (n=218) and further analyzed the ones
with a positive enzyme-linked immunosorbent assay (ELISA) signal (n=126).

Neutralization assays. TZM-bl cell neutralization assays were performed as previously described
(40, 41). Neutralization assays were conducted in laboratories meeting good clinical laboratory practice
quality assurance criteria. All bulk outgrowth culture primary isolates were tested against 3BNC117-LS,
VRC01, 10-1074-LS, VRC07-523LS and the combination of 3BNC117-LS and 10-1074-LS. Sixty-nine were
also tested against PGDM1400 (provided by Dennis Burton, Scripps Research Institute), BG18, 1-18 (pro-
vided by Florian Klein, University of Cologne), and CAP256-VRC25.36 (provided by John Mascola, NIH
Vaccine Research Center). The maximum antibody concentration tested was 50mg/ml. All the experi-
ments were performed in triplicate. Neutralization values used in Fig. 3 for the pseudovirus panel were
obtained from the Antibody Database software (42), the CATNAP database (43), or the original reports
for antibodies 1-18 (25), BG18 (24), and the combination of 3BNC117-LS and 10-1074-LS (44).

Virus sequence analysis. HIV env sequences from p24-positive supernatants were obtained and an-
alyzed as previously described (45). Sequences derived from each bulk culture that had double peaks
(cutoff consensus identity for any residue, ,75%) or stop codons or were shorter than the expected en-
velope size were omitted from downstream analysis. Phylogenetic analysis was performed by generating
nucleotide alignments using MAFFT (46) and posterior phylogenetic trees using PhyML v3.1 (47), using
the GTR model with 1,000 bootstraps. Clade determination was performed using the NCBI subtyping
tool (http://www.ncbi.nlm.nih.gov/projects/genotyping/formpage.cgi). For samples not sequenced in
this study, the clade was determined by sequencing a 514-bp region of the env gene (C2-V3-C3 region)
from plasma samples as previously described (20–22).

Pseudotyped-virus production. Pseudotyped-virus production was performed as previously
described (48). The cytomegalovirus (CMV) promoter was amplified by PCR from the pcDNA 3.1D/V5-
His-TOPO plasmid (Life Technologies) with forward primer 59-AGTAATCAATTACGGGGTCATTAGTTCAT-39
and reverse primer 59-CATAGGAGATGCCTAAGCCGGTGGAGCTCTGCTTATATAGACCTC-39. A 1-ml volume
of the first-round PCR product from each individual env gene obtained from bulk cultures was amplified
with primers 59-CACCGGCTTAGGCATCTCCTATGGCAGGAAGAA-39 and 59-ACTTTTTGACCACTTGCCACC
CAT-39. PCR products were purified with the Macherey-Nagel gel and PCR purification kit. The CMV pro-
moter amplicon was fused to individual env genes by overlap PCR with 10 ng of env and 0.5 ng of CMV
with forward primer 59-AGTAATCAATTACGGGGTCATTAGTTCAT-39 and reverse primer 59-ACTTTTTGAC
CACTTGCCACCCAT-39. Resulting amplicons were analyzed by gel electrophoresis, purified with the
Macherey-Nagel gel and PCR purification kit, and cotransfected with pSG3Denv backbone vector (NIH
AIDS Reagent Program) into HEK293T cells to produce pseudoviruses as previously described (48).

Statistical analysis. Statistical analyses were performed with GraphPad Prism 8.0 software.
Statistical analysis presented in Fig. 3 and 4 were analyzed using the Mann-Whitney test. Correlations
were tested by Pearson correlation coefficient. Statistical significance was defined as a P value of ,0.05
unless stated otherwise. P values smaller than 0.05 were considered statistically significant. The data are
shown as means and individual data points.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, XLSX file, 0.03 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.04 MB.
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