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A Commentary on

Dopamine-Dependent Loss Aversion during Effort-Based Decision-Making

by Chen, X., Voets, S., Jenkinson, N., and Galea, J. M. (2019). J. Neurosci. 40, 661–670.
doi: 10.1523/JNEUROSCI.1760-19.2019

In a recent study, Chen et al. (2019) found that medicated Parkinson’s patients were less loss averse
than healthy controls in an effort-based decision-making task. Loss aversion refers to a tendency
to weight losses (punishments) more heavily than equivalent gains (rewards) (Kahneman and
Tversky, 1979; Tversky and Kahneman, 1992), while effort-based decision making refers to tasks
in which responding requires the exertion of physical effort (Kurniawan et al., 2011). Chen et al.
found that when decisions were framed in terms of maximizing gains, Parkinson’s patients and
healthy controls were equally motivated to exert effort to obtain reward. However, when framed
in terms of minimizing losses, patients were less motivated to exert effort to avoid punishment.
Given that many clinical disorders are characterized by aberrant motivational states (Rahman et al.,
2001; Cléry-Melin et al., 2011; Baraduc et al., 2013; Chong et al., 2015) and abnormal sensitivity to
rewards and punishments (Kobayakawa et al., 2010; Treadway et al., 2012), studying effort-based
decision making can provide important insights into the behavioral effects of such disorders and
the mechanisms by which they arise.

In Chen et al., participants performed a typical effort-based decision-making task: On each trial
they were shown an amount of points and a level of physical force required to execute the decision
(using an individually-calibrated dynamometer). In the reward context, participants could choose
to either exert the displayed force to gain the points (obtain reward) or skip the trial and receive
nothing. In the punishment context, participants could exert the force to receive nothing (avoid
punishment) or skip the trial and lose the points. Trial duration was fixed to avoid confounding
temporal discounting with effort discounting. To the resulting choice data, the authors fit several
computational models of effort discounting, which compute choice utility based on the size of
the reward/punishment attenuated by the effort required to respond (Hartmann et al., 2013). For
example, Chen et al.’s (best-fitting) parabolic discounting function is given by:

Ut = Rt − αE2t (1)

where U represents choice utility, R is the reward/punishment amount, E is the effort required, α is
an effort-discounting parameter, and t indexes trials. The probability of choosing to exert effort on
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a given trial is then computed using a soft-max choice function
that scales choice utility by a choice stochasticity parameter, β :

p
(

effort
)

t
=

1

1+ e−β∗Ut
(2)

Parameter estimates from these models supported the behavioral
results: Patients and controls had similar average effort-
discounting parameters in the reward context, but patients
had significantly higher effort-discounting parameters in the
punishment context, confirming that patients were lessmotivated
to exert effort to avoid punishment.

Although Chen et al. did not explicitly model the latent
cognitive processes driving observed choice behavior (nor did
they include any neurophysiological measures), the authors
speculate that their findings could be due to dopaminergic
Parkinson’s medication differentially suppressing activity in Basal
Ganglia pathways associated with processing punishment (Frank,
2005; Argyelan et al., 2018). This suggestion is consistent
with several computational reinforcement learning studies
linking reduced Basal Ganglia dopamine activity with impaired
learning on punishment-based tasks in medicated Parkinson’s
patients (Frank et al., 2004; Frank, 2005). However, without
additional neurophysiological measures (e.g., fMRI, PET) and an
appropriate cognitive model of latent decision processes (e.g.,
Ratcliff, 1978; Brown and Heathcote, 2008), it is difficult to
draw strong conclusions about the latent mechanisms driving the
observed loss aversion effects or their neurophysiological basis
from Chen et al.’s analyses.

A natural starting point for extending Chen et al.’s modeling
to answer such questions would be to augment their soft-max
choice rule and utility-based effort-discounting functions with
a more comprehensive cognitive process model of decision
making, such as a sequential samplingmodel—themost successful
and widely applied class of decision-making models in model-
based cognitive neuroscience (for reviews, Mulder et al., 2014;
Forstmann et al., 2016). Sequential sampling models treat
decision making as a process of accumulating samples of
evidence1 from stimuli until a threshold amount is reached,
triggering a response (Figure 1).

Crucially, sequential sampling models can be thought of as
generalizing soft-max into the time domain, which allows them
to simultaneously explain how choices and response times arise
from a common set of latent cognitive processes. This provides
closer contact between model and data, additional constraint
on theory, and more robust inferences. As noted in prior work
(Tuerlinckx and De Boeck, 2005; Bogacz et al., 2006; Miletić
et al., 2020), soft-max (Equation 2) is formally equivalent to the
following sequential sampling choice function, which describes
the probability that evidence first reaches the upper threshold

1In the present context, evidence would constitute information about the relative

value or utility of exerting effort vs. skipping the trial. This evidence is assumed to

be sampled from noisy internal representations, in line with applications of these

models to memory- and value-based decisions (e.g., Ratcliff, 1978; Krajbich and

Rangel, 2011; Westbrook et al., 2020).

FIGURE 1 | Illustration of a sequential sampling model of effort-based decision

making. Within a trial, evidence about the relative value of each choice option

(exert effort vs. skip trial) is accumulated over time with mean rate v until a

threshold is reached, which triggers the corresponding response (at the time

labeled response onset). Response time is the time it takes to reach a

threshold (decision time) plus an intercept term representing non-decision

processes (e.g., perceptual encoding and motor response time). Note that

other linking functions between drift rate and choice utility are possible. For an

introduction to applying such models to experimental data, Voss et al. (2013).

(corresponding to an “exert effort” response in Figure 1) as:

p(effort)t =
1

1+ e
−

2vtA

s2

(3)

where v is the mean rate of information processing (drift rate),
A is the response threshold, s is the standard deviation of the
evidence accumulation process, and t indexes trials. Equating
drift rate with choice utility2 (Equation 1) and substituting β for
2A/s2 yields the original soft-max choice function used by Chen
et al. (Equation 2). Integrating Chen’s models with Equation
3 would thus yield a standard sequential sampling model
with choice utility-based drift rates and an additional effort-
discounting parameter. Sequential sampling models explain
behavior in terms of psychologically interpretable parameters
(e.g., information processing speed, response caution, motor
response/encoding time, choice bias), so a combined model
would simultaneously decompose observed decision-making
behavior into component cognitive processes and quantify effort
discounting within a single theoretical framework (for a similar
approach to decomposing loss aversion in risk-based decision
making using a standard sequential sampling model, Clay et al.,
2017).

Such an approach would offer clear benefits for the field
of effort-based decision making, improving measurement and
facilitating theory development by providing a more detailed

2The connection between drift rate and choice utility or value has been well-

established in recent work merging reinforcement learning with sequential

sampling models in the domain of value-based decision making (for a review,

Miletić et al., 2020). Here drift rate is simply set equal to choice utility, however,

many other linking functions are possible.
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characterization of group and individual differences in loss
aversion. In particular, this approach could expand on Chen
et al.’s results by explaining the relationship between effort
discounting and additional Parkinson’s-related cognitive and
motor deficits known to affect response latency (e.g., longer
motor response times, less efficient information processing,
impaired cognitive control over thresholds, O’Callaghan et al.,
2017; Servant et al., 2018). Patients prone to effort discounting
may have difficulty integrating information about effort into
the decision process (a drift rate effect) or set more impulsive
evidence criteria (a threshold effect) compared with healthy
controls. Testing these competing accounts would further
our understanding of Parkinson’s disease and better titrate
individual differences in cognitive and motor processes. Explicit
mechanisms to capture additional phenomena relevant to effort-
based decision making, such as learning, urgency, and fatigue
effects, can also be instantiated within the same sequential
sampling framework (Milosavljevic et al., 2010; Miletić et al.,
2020), and linking cognitive processes with neurophysiological
measures (e.g., by treating model parameters as covariates to
neural activity or constructing a joint model, Turner et al.,
2017, 2019) would be especially informative regarding Chen
et al.’s broader questions about the role of dopamine and Basal

Ganglia activity in explaining Parkinson’s-related differences in
decision making. Overall, moving toward a cognitive process
model of effort-based decision making promises a finer-grained
mechanistic understanding of aberrant motivational states in
neuropsychiatric disorders and more detailed insight into the
sources of group and individual differences in effort-based
decision making.
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