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ABSTRACT

Objective: Drug repositioning is a promising methodology for reducing the cost and duration of the drug dis-

covery pipeline. We sought to develop a computational repositioning method leveraging annotations in the lit-

erature, such as Medical Subject Heading (MeSH) terms.

Methods: We developed software to determine significantly co-occurring drug-MeSH term pairs and a method

to estimate pair-wise literature-derived distances between drugs.

Results We found that literature-based drug-drug similarities predicted the number of shared indications across

drug-drug pairs. Clustering drugs based on their similarity revealed both known and novel drug indications. We

demonstrate the utility of our approach by generating repositioning hypotheses for the commonly used diabe-

tes drug metformin.

Conclusion: Our study demonstrates that literature-derived similarity is useful for identifying potential reposi-

tioning opportunities. We provided open-source code and deployed a free-to-use, interactive application to

explore our database of similarity-based drug clusters (available at http://apps.chiragjpgroup.org/MeSHDD/).
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BACKGROUND

Computational drug repositioning is an attractive methodology for ac-

ademia and industry alike, because such a method can quickly and in-

expensively nominate compounds for new indications.1–3 Especially

promising are methods that predict novel indications for currently ap-

proved drugs, as such drugs that have a substantially reduced risk of

side effects. Previous approaches have generally focused on molecular

evidence for repositioning, such as network studies using genomic,4

transcriptomic,5–8 or proteomic level information,9 or some combina-

tion thereof.10 Recently, however, a number of methods have been de-

veloped to utilize large-scale biomedical data from indirect sources,

such as side effect profiles11,12 and medical records data.13

Another source of information on approved drugs is the medical

literature. In contrast to repositioning methods developed by our

group and others that leverage specific types of evidence, such as dif-

ferential gene expression,5–8 methods that rely on Medical Subject

Heading (MeSH) terms integrate the full spectrum of biomedical ev-

idence, including structural, genetic, and clinical studies. The fore-

most repository of curated medical literature is MEDLINEVR , which

contains manually annotated MeSH terms for over 20 million bio-

medical articles. Mining this resource for drug-related information

is a natural direction for computational drug repositioning, as it rep-

resents a simplified review of the literature surrounding a given

drug. However, despite the fact that these data are readily and freely

available, only a handful of methods have leveraged MEDLINE for

repositioning. Currently available MeSH-based methods have fo-

cused on building networks connecting drugs to genes,14,15 drugs to

diseases,16–19 or drugs to other compounds that interact when

coprescribed,20,21 but not on investigating the MeSH terms shared

between drugs.

Drug-drug similarity studies are driven by the hypothesis that

similar drugs should be similar in mechanism of action and be useful

VC The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com 614

Journal of the American Medical Informatics Association, 24(3), 2017, 614–618

doi: 10.1093/jamia/ocw142

Advance Access Publication Date: 27 September 2016

Brief Communication

http://apps.chiragjpgroup.org/MeSHDD/
http://www.oxfordjournals.org/
http://www.oxfordjournals.org/


in treating a similar constellation of diseases. Drug-drug similarity

has been widely applied to a variety of direct and indirect sources of

evidence and with high predictive power in discovering validated re-

positioning opportunities.9,12,22–24 Building on these successes, we

developed MeSHDD, a MeSH-based drug-drug similarity method

for computational drug repositioning.

Here, we extend methods for chemical-wise MeSH term enrich-

ment25 and cluster drugs based on their pair-wise similarities. We

develop a methodology for predicting novel indications within drug

clusters based on cluster-wise disease enrichment. We examine

MeSHDD as a tool for generating repositioning hypotheses, taking

metformin as a case study. Finally, we provide fully commented

source code (at http://github.com/adam-sam-brown/) as well as an

interactive online tool to aid investigators in generating reposition-

ing hypotheses (at http://apps.chiragjpgroup.org/MeSHDD/).

METHODS

Drug-MeSH term overlap database construction
To identify drug-MeSH term overlap, we downloaded the main

headings and corresponding chemical items file (which tracks arti-

cles referring to specific chemicals) from the MEDLINE baseline re-

pository (accessed January 18, 2016; https://mbr.nlm.nih.gov/

Download/). In parallel, we downloaded the list of 2214 US Food

and Drug Administration–approved drugs from DrugBank (accessed

January 18, 2015; http://www.drugbank.ca/).26 DrugBank includes

manually curated information on approved, investigational, and il-

licit drugs and their targets, mechanisms of action, and indications.

To ensure a high degree of specificity in our Drug-MeSH term over-

lap, we chose to keep those MEDLINE chemicals with a

case-insensitive full-length match to a DrugBank-approved drug

name, resulting in 1629 overlapping drugs.

Enriched drug-MeSH terms
Using the drug-MeSH term overlap database, we calculated the en-

richment for co-occurrence between each drug and MeSH term (Fig-

ure 1A).25 To do so, we calculated a hypergeometric P value using

the phyper function in the R programming language,27 which corre-

sponds to the probability of having as many or more drug-MeSH

co-occurrences conditioned on the full set of drug-MeSH pairs. To

control for multiple testing, we applied the Bonferroni correction us-

ing the p.adjust function in R. All associations with a Bonferroni-

adjusted P< .05 were considered significant.

Drug cluster definition
To cluster the 1629 drugs, we leveraged a binary distance measure

as implemented in the dist function in R. We first converted signifi-

cant P values to binary bits, where significant entries were consid-

ered “on” (a value of 1) and nonsignificant terms were considered

“off” (a value of 0). The binary distance between any 2 drugs could

then be calculated as the proportion of bits for which only 1 drug

was “on” among those where at least 1 was “on” (see Figure 1A).

Highly similar drugs (and those on the diagonal) have distances

close to 0, while those that are dissimilar have values close to 1.

Drugs were then clustered using pair-wise distances and boot-

strapped means clustering as implemented in the clusterboot func-

tion from the fpc package in R (Figure 1B).28 We used clusterboot

because it is optimized for large datasets and produces disjoint clus-

ters containing all the drugs in our database. We examined a broad

range of potential numbers of clusters (k clusters between 10 and 50)
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Figure 1. MeSHDD leverages literature similarity to pair drugs and diseases. (A) Literature similarity is assessed by calculating the bit-wise distance between

2 drugs using their significantly associated MeSH terms. (B) Robust clusters are defined from pair-wise distances using bootstrapping with 10 000 resamples.

(C) Repositioning hypotheses are developed by connecting drugs to new, significantly enriched indications.
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corresponding to a large window around the commonly used “rule-

of-thumb” value for k.29 For each value of k, we performed 100

clusterboot bootstraps, as recommended (see the fpc package man-

ual, https://cran.r-project.org/web/packages/fpc/fpc.pdf). Goodness

of clustering was assessed using the Jaccard index;30,31 the value of

k that maximized the mean Jaccard index was chosen as the optimal

k (see Supplementary Figure S1). Following k selection, we

performed 10 000 bootstraps to define robust clusters.

Cluster-based repositioning
To identify what indications were enriched in the putative indica-

tions in the drug-drug similarity clusters, we downloaded the Thera-

peutics Target Database (TTD, accessed January 23, 2016; http://

bidd.nus.edu.sg/group/cjttd/).32 The TTD contains a variety of man-

ually curated information on over 30 000 approved and investiga-

tional drugs, including drug-disease indication information. As

before, we selected only those TTD drugs with a case-insensitive

full-length match to a DrugBank-approved drug name, and further

restricted ourselves to those drugs tracked by MEDLINE, resulting

in 1426 unique FDA-approved drugs. We then calculated the statis-

tical overrepresentation of each disease in a given cluster using the

phyper function in R. The resulting P value corresponds to the prob-

ability that a given cluster is enriched for drugs that treat a given dis-

ease, conditioned on the full set of disease-drug pairs. Bonferroni

correction was applied within each cluster and across clusters to cor-

rect for multiple testing. Following correction, all P values that re-

mained< .05 were considered significant. To assess whether more

similar drugs according to our methodology would share more TTD

indications, we performed ordinal logit regression using the ordinal

package in r. Ordinal logit regression accounts for the fact that the

number of shared indications between 2 drugs is an ordinal, rather

than continuous. We regressed the binary distance between each

pair of drugs on the number of shared indications from the TTD and

assessed significance using a P value cutoff of .05.

RESULTS

Characteristics of data sources
We downloaded the MEDLINE baseline repository for 2013, which

contained 234 030 670 total MeSH term-article pairs for

20 275 470 unique indexed PubMed articles. From this database,

we extracted 81 474 709 drug-MeSH co-occurrences corresponding

to 1629 unique FDA-approved drugs catalogued in DrugBank.26 We

determined enriched drug-MeSH term pairs as described above, re-

sulting in 251 594 statistically significant pairs. In parallel, we re-

trieved indications for FDA-approved drugs from the TTD,32

resulting in 1924 drug-disease pairs corresponding to 1426 unique

FDA-approved drugs and 622 unique diseases (summarized in

Figure 2).

Drug-drug similarity is predictive of shared disease

indications
As described above, we calculated the pair-wise distance between all

drug-drug pairs based on overrepresented co-occurring MeSH terms

and examined the relationship between distance and number of

pair-wise shared indications. As expected, if similarity were predic-

tive of shared indication, we found that binary distance is strongly

negatively correlated with number of shared indications (ordinal

logit regression, bdistance � �21.5, 95% confidence interval [�21.7,

�21.3], P < 2.2�10�16), which corresponds to a loss of roughly 2

shared indications per 10% decrease in literature-based similarity.
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Figure 2. MeSHDD workflow for drug repositioning using MeSH terms. (1) MeSH terms are downloaded from the MEDLINEVR baseline repository (2013 summary

for this study). (2) Drug mentions are downloaded from the MEDLINE baseline repository, using the Chemical Items feature. (3) A list of approved drugs is down-

loaded from DrugBank. (4) The overlap between approved drugs and all MEDLINE MeSH terms is computed. (5) Each drug-term pair is tested for significance us-

ing the hypergeometric test for enrichment. P values from the test are corrected using the Bonferroni multiple-hypothesis testing method. (6) Drug-drug

similarity is measured by binary distance (see Methods section). (7) Drug-drug network neighborhoods are defined using bootstrapped k-means, with the optimal

number of clusters determined by highest mean Jaccard index. Enrichment for indications is calculated using the hypergeometric test for enrichment. (8) Screen-

shot from the R Shiny application, showing cluster containing metformin (used in the case study, see Results section). Height of cladogram is normalized distance

between cluster members.
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This suggests that high MeSH similarity is predictive of therapeutic

similarity and is a potentially useful metric for repositioning.

Drug-drug similarity clustering and disease indication

enrichment
By performing bootstrapped clustering, we determined that the opti-

mal number of drug clusters was 33, producing a median cluster size

of 31 drugs. We then calculated enrichment for disease indications

in the 33 clusters, which yielded predicted enrichment for 482

unique diseases of the 622 diseases considered. The median number

of enriched indications per cluster was 2 (interquartile range for all

33 clusters: 1–6), which compares favorably to currently available

computational repositioning methods, which typically recommend

hundreds or thousands of repositioning opportunities.5,9 MeSHDD

on average provides a much tighter set of testable hypotheses.

MeSHDD R Shiny application
To enable investigators to browse the results described in this study,

we developed and deployed an R Shiny application. In “drug-cen-

tric” mode, the MeSHDD application allows users to select a drug

from the full list of drugs we examine, and then view other drugs in

the selected drug’s cluster (displayed as a dendrogram) as well as

cluster-enriched disease indications (Supplementary Figure S2A). In

addition to drug-centric mode, the application also allows investiga-

tors to select a disease of interest and identify clusters for which that

disease is enriched (Supplementary Figure S2B). The application is

available at http://apps.chiragjpgroup.org/MeSHDD/.

DISCUSSION

In this study, we describe MeSHDD, a novel literature-based reposi-

tioning methodology that leverages drug-drug similarity based on

MeSH term co-occurrence. We show that our similarity measure is

predictive of shared indication, with less similar drugs sharing statis-

tically fewer indications in common. To allow investigators to gen-

erate repositioning hypotheses, we clustered drugs using their pair-

wise similarities and calculated disease-treatment enrichment in the

resulting clusters. We also provide an interactive online tool that al-

lows users to browse the resulting repositioning suggestions, in ei-

ther a drug- or disease-centric manner. Drug-centric repositioning

may be useful for academic or industry groups hoping to discover

new indications for a given molecule or family of molecules, while

disease-centric repositioning may be useful for identifying a small

number of compounds to screen for a given disease. MeSHDD there-

fore represents a flexible methodology for generating a variety of

different types of repositioning hypotheses.

To demonstrate MeSHDD’s capability in drug-centric reposi-

tioning, we attempted to reposition the antidiabetic drug metformin.

We chose metformin because, in addition to being a first-line type 2

diabetes mellitus medication,33 it is an excellent example of success-

ful drug repositioning. In addition to diabetes, metformin has been

investigated and is currently used for a number of alternate

indications.34–36

To generate repositioning hypotheses for metformin, we first ex-

amined the MeSHDD clustering results using the MeSHDD R Shiny

application. As expected, metformin clusters with other known dia-

betes medications, including the glitazones, pioglitazone and rosigli-

tazone. Furthermore, MeSHDD correctly predicts both the primary

indication, diabetes mellitus, and several investigational indica-

tions for metformin, including obesity, hyperlipidemia, and

hypercholesterolemia. Interestingly, the metformin cluster is also en-

riched for drugs that treat cystic fibrosis (CF), linking CF to metfor-

min (the metformin cluster contains tyloxapol, a mucus-liquefying

drug). This is striking, as metformin itself is not significantly associ-

ated with CF MeSH terms. Metformin is a potent activator of AMP-

activated kinase, which has recently been implicated in slowing the

lung and renal pathologies of CF.37,38 Despite initial excitement

over the prospect of metformin as a well-tolerated AMP-activated

kinase agonist for the treatment of CF, to our knowledge it has not

yet been tested for CF in a clinical setting (from clinicaltrials.gov, ac-

cessed March 3, 2016). Using MeSHDD, we were therefore able to

identify a nonobvious and testable repositioning hypothesis for the

use of metformin in CF therapy.

While we have discussed the potential of MeSHDD as a flexible

repositioning methodology and demonstrated its utility with a case

study, we do note that it has 2 main limitations. First, MeSHDD re-

quires that a given drug be represented in the biomedical literature

in order to have the potential to share similarity with other drugs;

we therefore suggest that users focus on well-studied, approved

drugs rather than investigational compounds (as provided in our on-

line tool). Second, we note that MeSH term association is agnostic

to the directionality of association; for example, 2 drugs could treat

and cause a symptom, respectively, and yet both could still be asso-

ciated with the directionless symptom MeSH term. However, we ar-

gue that this does not generally impact performance, as our

similarity metric is strongly correlated with shared indication.

CONCLUSION

Here, we have described MeSHDD, a framework for computational

drug repositioning using literature-derived drug-drug similarity.

Critically, we claim that MeSHDD provides an alternate way of

searching the biomedical corpus for novel (and existing) uses of ap-

proved drugs. We expanded previous methods using curated MeSH

terms from MEDLINE to find drug-MeSH term pairs that were en-

riched for co-occurrence in the medical literature and developed a

method for calculating pair-wise similarities between drugs. Using

this methodology, we robustly clustered 1426 FDA-approved drugs

and identified within-cluster repositioning opportunities. We dem-

onstrate the utility of MeSHDD with an end-to-end case study for

metformin and identify a nonobvious but supported opportunity for

the treatment of cystic fibrosis. All analysis presented in this study is

fully reproducible using open-source code available from GitHub; in

addition, we provide free, interactive online tools to explore the full

results of MeSHDD.

FUNDING

This work was supported by National Human Genome Research Institute

grant T32HG002295-12, National Institute of Environmental Health Scien-

ces grants R00 ES023504 and R21 ES025052, a gift from Agilent Technolo-

gies, and a PhRMA fellowship.

COMPETING INTERESTS

The authors have no competing interests to declare.

CONTRIBUTORS

ASB and CJP conceived of the study. ASB conducted all statistical

analyses. ASB and CJP wrote the manuscript.

Journal of the American Medical Informatics Association, 2017, Vol. 24, No. 3 617

http://apps.chiragjpgroup.org/MeSHDD/


SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.

REFERENCES

1. Readhead B, Dudley J. Translational bioinformatics approaches to drug

development. Adv Wound Care. 2013;2:470–89.

2. Shameer K, Readhead B, Dudley JT. Computational and experimental ad-

vances in drug repositioning for accelerated therapeutic stratification.

Curr Top Med Chem. 2015;15:5–20.

3. Li J, Zheng S, Chen B, et al. A survey of current trends in computational

drug repositioning. Brief Bioinform. Published online first: March 31,

2015, doi:10.1093/bib/bbv020.

4. Grover MP, Ballouz S, Mohanasundaram KA, et al. Identification of novel

therapeutics for complex diseases from genome-wide association data.

BMC Med Genomics. 2014;7 (Suppl 1):S8.

5. Lamb J, Crawford ED, Peck D, et al. The Connectivity Map: using gene-

expression signatures to connect small molecules, genes, and disease. Sci-

ence. 2006;313:1929–35.

6. Sirota M, Dudley JT, Kim J, et al. Discovery and preclinical validation of

drug indications using compendia of public gene expression data. Sci

Transl Med. 2011;3:96ra77.

7. Kidd BA, Wroblewska A, Boland MR, et al. Mapping the effects of drugs

on the immune system. Nat Biotechnol. Published online first: November

30, 2015, doi:10.1038/nbt.3367

8. Brown AS, Kong SW, Kohane IS, et al. ksRepo: a generalized platform for

computational drug repositioning. BMC Bioinformatics. 2016;17:78.

9. Huang H, Nguyen T, Ibrahim S, et al. DMAP: a connectivity map data-

base to enable identification of novel drug repositioning candidates. BMC

Bioinformatics. 2015;16 (Suppl 13):S4.

10. Gottlieb A, Stein GY, Ruppin E, et al. PREDICT: a method for inferring

novel drug indications with application to personalized medicine. Mol

Syst Biol. 2011;7:496.

11. Campillos M, Kuhn M, Gavin A-C, et al. Drug target identification using

side-effect similarity. Science. 2008;321:263–66.

12. Tatonetti NP, Ye PP, Daneshjou R, et al. Data-driven prediction of drug

effects and interactions. Sci Transl Med. 2012;4:125ra31.

13. Ryan PB, Madigan D, Stang PE, et al. Medication-wide association stud-

ies. CPT Pharmacometrics Syst Pharmacol. 2013;2:e76.

14. Kissa M, Tsatsaronis G, Schroeder M. Prediction of drug gene associations

via ontological profile similarity with application to drug repositioning.

Methods 2015;74:71–82.

15. Zhang R, Cairelli MJ, Fiszman M, et al. Exploiting Literature-derived

knowledge and semantics to identify potential prostate cancer drugs. Can-

cer Inform. 2014;13:103–11.

16. Qu XA, Gudivada RC, Jegga AG, et al. Inferring novel disease indications

for known drugs by semantically linking drug action and disease mecha-

nism relationships. BMC Bioinformatics. 2009;10(Suppl 5):S4.

17. Cheung WA, Ouellette BFF, Wasserman WW. Compensating for litera-

ture annotation bias when predicting novel drug-disease relationships

through Medical Subject Heading Over-representation Profile (MeSHOP)

similarity. BMC Med Genomics. 2013;6 (Suppl 2):S3.

18. Patchala J, Jegga AG. Concept Modeling-based Drug Repositioning.

AMIA Jt Summits Transl Sci Proc. 2015;2015:222–26.

19. Xu R, Wang Q. PhenoPredict: A disease phenome-wide drug repositioning

approach towards schizophrenia drug discovery. J Biomed Inform.

2015;56:348–55.

20. Zhang R, Adam TJ, Simon G, et al. Mining Biomedical Literature to

Explore Interactions between Cancer Drugs and Dietary Supplements.

AMIA Jt Summits Transl Sci Proc. 2015;2015:69–73.

21. Zhang R, Cairelli MJ, Fiszman M, et al. Using semantic predications to

uncover drug-drug interactions in clinical data. J Biomed Inform.

2014;49:134–47.

22. Iwata H, Sawada R, Mizutani S, et al. Systematic drug repositioning for a

wide range of diseases with integrative analyses of phenotypic and molec-

ular data. J Chem Inf Model. 2015;55:446–59.

23. Sawada R, Iwata H, Mizutani S, et al. Target-based drug repositioning us-

ing large-scale chemical-protein interactome data. J Chem Inf Model.

2015;55:2717–30.

24. Shi J-Y, Yiu S-M, Li Y, et al. Predicting drug-target interaction for new

drugs using enhanced similarity measures and super-target clustering.

Methods. 2015;83:98–104.

25. Cheung WA, Ouellette BFF, Wasserman WW. Quantitative biomedical

annotation using medical subject heading over-representation profiles

(MeSHOPs). BMC Bioinformatics. 2012;13:249.

26. Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource

for in silico drug discovery and exploration. Nucleic Acids Res.

2006;34:D668–72.

27. Development Core Team R. R: A Language and Environment for Statisti-

cal Computing. Vienna, Austria: the R Foundation for Statistical Computing;

2011.

28. Hennig C. fpc: Flexible Procedures for Clustering. 2015. https://CRAN.R-

project.org/package¼fpc. Accessed February 22, 2016.

29. Kodinariya TM, Makwana PR. Review on determining number of Cluster

in K-Means Clustering. Aquat Microb Ecol. 2013;1:90–95.

30. Hennig C. Cluster-wise assessment of cluster stability. Comput Stat Data

Anal. 2007;52:258–71.

31. Hennig C. Dissolution point and isolation robustness: robustness crite-

ria for general cluster analysis methods. J Multivar Anal.

2008;99:1154–76.

32. Yang H, Qin C, Li YH, et al. Therapeutic target database update 2016: en-

riched resource for bench to clinical drug target and targeted pathway in-

formation. Nucleic Acids Res. Published online first: November 17, 2015,

doi:10.1093/nar/gkv1230.

33. An H, He L. Current understanding of metformin effect on the control of

hyperglycemia in diabetes. J Endocrinol. 2016;228:R97–106.

34. Dai X, Wang H, Jing Z, et al. The effect of a dual combination of noninsu-

lin antidiabetic drugs on lipids: a systematic review and network meta-

analysis. Curr Med Res Opin. 2014;30:1777–86.

35. Boland CL, Harris JB, Harris KB. Pharmacological management of obe-

sity in pediatric patients. Ann Pharmacother. 2015;49:220–32.

36. Hart T, Dider S, Han W, et al. Toward repurposing metformin as a preci-

sion anti-cancer therapy using structural systems pharmacology. Sci Rep.

2016;6:20441.

37. Myerburg MM, King JD Jr, Oyster NM, et al. AMPK agonists ameliorate

sodium and fluid transport and inflammation in cystic fibrosis airway epi-

thelial cells. Am J Respir Cell Mol Biol. 2010;42:676–84.

38. Takiar V, Nishio S, Seo-Mayer P, et al. Activating AMP-activated protein

kinase (AMPK) slows renal cystogenesis. Proc Natl Acad Sci U S A.

2011;108:2462–67.

618 Journal of the American Medical Informatics Association, 2017, Vol. 24, No. 3

https://CRAN.R-project.org/package=fpc
https://CRAN.R-project.org/package=fpc
https://CRAN.R-project.org/package=fpc

