
A resource scheduling method
for reliable and trusted
distributed composite services in
cloud environment based on
deep reinforcement learning

Lei Yu1*, Philip S. Yu2, Yucong Duan3* and Hongyu Qiao1

1Department of Computer Science, Inner Mongolia University, Hohhot, China, 2Department of
Computer Science, University of Illinois at Chicago (UIC), Chicago, IL, United States, 3College of
Computer Science and Technology, Hainan University, Haikou, China

With the vigorous development of Internet technology, applications are

increasingly migrating to the cloud. Cloud, a distributed network environment,

has been widely extended to many fields such as digital finance, supply chain

management, and biomedicine. In order to meet the needs of the rapid

development of the modern biomedical industry, the biological cloud

platform is an inevitable choice for the integration and analysis of medical

information. It improves the work efficiency of the biological information

system and also realizes reliable and credible intelligent processing of

biological resources. Cloud services in bioinformatics are mainly for the

processing of biological data, such as the analysis and processing of genes,

the testing and detection of human tissues and organs, and the storage and

transportation of vaccines. Biomedical companies formadata chain on the cloud,

and they provide services and transfer data to each other to create composite

services. Therefore, our motivation is to improve process efficiency of biological

cloud services. Users’ business requirements have become complicated and

diversified, which puts forward higher requirements for service scheduling

strategies in cloud computing platforms. In addition, deep reinforcement

learning shows strong perception and continuous decision-making capabilities

in automatic control problems,whichprovides a new idea andmethod for solving

the service scheduling and resource allocation problems in the cloud computing

field. Therefore, this paper designs a composite service scheduling model under

the containers instance mode which hybrids reservation and on-demand. The

containers in the cluster are divided into two instancemodes: reservation and on-

demand. A composite service is described as a three-level structure: a composite

service consists of multiple services, and a service consists of multiple service

instances, where the service instance is theminimum scheduling unit. In addition,

an improved Deep Q-Network (DQN) algorithm is proposed and applied to the

scheduling algorithm of composite services. The experimental results show that

applying our improved DQN algorithm to the composite services scheduling

problem in the container cloud environment can effectively reduce the

completion time of the composite services. Meanwhile, the method improves

Quality of Service (QoS) and resource utilization in the container cloud

environment.

OPEN ACCESS

EDITED BY

Maurice H. T. Ling,
Temasek Polytechnic, Singapore

REVIEWED BY

Fan Jiang,
Xi’an University of Posts and
Telecommunications, China
Guolin Sun,
University of Electronic Science and
Technology of China, China

*CORRESPONDENCE

Lei Yu,
yuleiimu@sohu.com
Yucong Duan,
duanyucong@hotmail.com

SPECIALTY SECTION

This article was submitted to
Computational Genomics,
a section of the journal
Frontiers in Genetics

RECEIVED 09 June 2022
ACCEPTED 21 September 2022
PUBLISHED 10 October 2022

CITATION

Yu L, Yu PS, Duan Y andQiao H (2022), A
resource scheduling method for reliable
and trusted distributed composite
services in cloud environment based on
deep reinforcement learning.
Front. Genet. 13:964784.
doi: 10.3389/fgene.2022.964784

COPYRIGHT

©2022 Yu, Yu, Duan andQiao. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 10 October 2022
DOI 10.3389/fgene.2022.964784

https://www.frontiersin.org/articles/10.3389/fgene.2022.964784/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.964784/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.964784/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.964784/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.964784/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.964784&domain=pdf&date_stamp=2022-10-10
mailto:yuleiimu@sohu.com
mailto:duanyucong@hotmail.com
https://doi.org/10.3389/fgene.2022.964784
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.964784

KEYWORDS

composite services, container cloud, deep reinforcement learning, service scheduling,
artificial intelligence

1 Introduction

With the rapid development and popularity of the Internet,

the number of network users is also increasing, but the

resources of the data center decreased relatively. The

development of cloud computing technology has led to a

great convenience of information processing, and users can

obtain reliable services through the cloud platform on a large

number of data centers. However, as the composite service

requested by the users are complex and diversified, the number

of requests is increasing. Especially in the field of

bioinformatics, biomedical research relies on a large amount

of genomic and clinical data. Biomedical companies form a data

chain on the cloud, and they provide services and transfer data

to each other to form composite services. In such a dynamic

environment, resource management and performance

optimization have become a significant challenge for cloud

and application providers, who not only consider user

Quality of Service (QoS) but also consider the load balancing

of the data center, resource utilization and problems such as

energy consumption (Almansour and Allah, 2019). Therefore,

an efficient and reasonable service scheduling method becomes

essential for the cloud computing platform.

In addition, many cloud platforms currently use virtual

machines as the underlying virtualization technology.

Additional operating systems carried by virtual machines

will bring performance losses to the cloud platform, and the

startup speed of virtual machines is slow, so it is difficult for

them to make rapid scaling responses to service load (Barik

et al., 2016). As the virtualization technology at the operating

system level, the container technology has minimal additional

resource overhead, shorter startup and destruction time, and

the performance of disk IO and CPU of the container is even

close to that of the host (Joy, 2015). Therefore, it is considered

to be a better solution for application distribution and

deployment on the cloud platform (Bernstein, 2014). Most

of the research on service scheduling is based on virtual

machines, while the research on composite service

scheduling based on container cloud environment is in the

exploratory stage. Because the container has the characteristics

of fast startup, strong migration ability, low-performance cost,

and high resource utilization (Joy, 2015), it is of great value and

significance to take the container as the virtualized computing

resource of the cloud platform to solve the service scheduling

problem.We need a model and an algorithm that can be applied

to the container cloud environment to reduce the completion

time of the composite service, satisfy the user service quality as

much as possible, and improve the resource utilization target of

the cloud platform.

Therefore, we proposed a novel composite service scheduling

model and algorithm according to container instance mode

which mixed reservation and on-demand. In addition, the

DQN (Deep Q-Network) algorithm is improved by combining

the three algorithms Dueling-DQN (Wang et al., 2016), Double-

DQN (DDQN) (Van Hasselt et al., 2016), and Prioritized

Experience Replay (PER) (Schaul et al., 2016). DDQN

improved the training algorithm by decoupling action

selection and value function evaluation. Although it is not

entirely decoupled, it effectively reduced over-estimation and

made the algorithm more robust. PER introduced a new learning

mechanism to solve the sampling problem of experience replay

and innovatively took Temporal Difference (TD) deviation as an

essential consideration to ensure that important experience can

be replayed first, and the priority experience replay was applied to

DQN and DDQN. The learning efficiency is greatly improved.

Dueling DQN is an improvement of the neural network

structure, which can decouple the value and advantages of the

DQN. Although the value function and the advantage function

can no longer be perfectly represented as the value function and

the advantage function in semantics, the accuracy of the strategy

evaluation was improved, and it can be combined with other

algorithms due to the strong versatility. Thus, the management of

the DQN algorithm is improved. From the three levels of training

algorithm, learning mechanism, and neural network structure,

three improvements have been made based on DQN, but its

implementation is more complex than these three algorithms.

The improved DQN algorithm is used as the scheduling decision

method under our model to reduce the completion time of the

composite service and improve the user QoS and resource

utilization of the cloud platform.

The contributions of this paper include: A new composite

service scheduling model is built for container instance mode

which mixed reservation and on-demand. The model considers

many features, such as container storage, computing speed,

network bandwidths and data streams of service output, etc.

Furthermore, the model is suitable for Map-Reduce based

services in distributed environments.

A new composite service scheduling algorithm is proposed,

which can effectively reduce the completion time of the

composite services. Meanwhile, the method improves Quality

of Service (QoS) and resource utilization in the container cloud

environment.

2 Related work

Cloud computing technology has greatly promoted the

transformation of various industries and the development of

Frontiers in Genetics frontiersin.org02

Yu et al. 10.3389/fgene.2022.964784

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964784

technological innovation. With the advancement of medical

technology, the field of biomedicine has ushered in the era of big

data (Yang et al., 2021). The application of cloud computing in

biomedicine is becoming more and more perfect. Myers et al.

(2020) developed an R package, LDlinkR, which leverages the

computing resources of the cloud by harnessing the storage

capacity and processing power of the LDlink web server to

calculate computationally expensive LD statistics. Service

scheduling, as an effective method to satisfy Quality of

Service (QoS), which can rationally allocate resources and

reduce energy consumption in cloud environment, has

always been a research hotspot of scholars in various fields

(Kyaw and Phyu, 2020). At the same time, scheduling in the

cloud environment is a multi-constraint, multi-objective and

multi-type optimization problem (Chen et al., 2019). Some

traditional scheduling algorithms, such as Round-Robin (RR)

scheduling algorithm and Least Connection (LC) algorithm, do

not consider the actual load and connection status of the work

node. Scheduling problem can be regarded as the problem of

finding the optimal one or a group of computing resources in a

limited set of computing resources under the condition of

satisfying multiple constraint objectives. Heuristic algorithm

is the most widely used method to solve such combinatorial

optimization problems (Bernstein, 2014). The common ones

are Ant Colony (AC) algorithm, Particle Swarm Optimization

(PSO) algorithm, Genetic Algorithm (GA), etc. Therefore,

many scholars are solving the problem of service scheduling

in cloud platforms by optimizing and improving heuristic

algorithms.

Panwar et al. (2019) combined Technique for Order

Preference by Similarity to an Ideal Solution (TOPSIS)

algorithm and PSO algorithm to divide task scheduling into

two phases, which reduces the makespan of tasks and improves

resource utilization of cloud platform. Chen et al. (2019) modeled

the cloud workflow scheduling problem as a multi-objective

optimization problem that takes both execution time and

execution cost into account, and proposed a multi-objective

ant colony system based on the co-evolutionary multi-

population and multi-objective framework, in which two ant

colony algorithms were adopted to deal with the two objectives,

respectively. Cui and Xiaoqing (2018) proposed a workflow tasks

scheduling algorithm based on a genetic algorithm. It plays an

optimal role in the execution time of the optimal allocation

scheme. George et al. (2016) adopted the Cuckoo Search

algorithm to complete the assignment of tasks with the

optimization goal of minimizing the computation time of

tasks. Ghasemi et al. (2019) proposed a workflow scheduling

method based on the Firefly Algorithm (FA), aiming at

minimizing the processing time and transmission cost of

workflow.

Compared with traditional scheduling algorithms, heuristic

algorithms have a stronger ability for exploration and

optimization. The above improvements of heuristic not only

inherited the advantages of heuristic algorithms in solving

combinatorial optimization problems but also solved some

problems of heuristic algorithms themselves to some extent.

However, these algorithms still have some problems, such as

the weight coefficients of resources according to subjective

experiences, slow convergence, and easily falling into local

optimal solutions.

Considering the uncertainty of user requests, the dynamic

nature of computing resources, the heterogeneity of cloud

platforms, and many other factors, it has higher requirements

for cloud platform service scheduling strategy. In recent

years, with the development of artificial intelligence-related

technologies, Deep Reinforcement Learning (DRL) has

shown strong perception and continuous decision-making

ability when dealing with automatic control problems

(Orhean et al., 2018), and many scholars have begun to

apply it to resource allocation and service scheduling

strategies in cloud environments. Li and Hu (2019)

described job scheduling as a packing problem, used DRL

algorithm to calculate the fitness of jobs and machine nodes,

and selected reasonable machines for jobs according to the

fitness. Finally, through experiments, it proved the

superiority of deep reinforcement learning as a scheduling

algorithm. Cheng et al. (2018) designed a two-level scheduler

combining resource allocation and task scheduling based on

Deep Q-Learning, which greatly reduced the energy

consumption of the cloud platform while maintaining a

low task rejection rate. Wei et al. (2018) proposed an

intelligent QoS aware job scheduling framework based on

Deep Q-Learning algorithm, which can effectively reduce the

average response time of jobs under varying loads and

improve user satisfaction. Meng et al. (2019) designed an

adaptive online scheduling algorithm by combining

reinforcement learning with DNN, which significantly

improved the scheduling efficiency of server-side task

queues. Ran et al. (2019) used the Deep Determining

Policy Gradient (DDPG) algorithm to find the optimal

task assignment scheme meeting the requirements of the

Service Level Agreement (SLA). Zhang et al. (2019)

proposed a parallel execution multi-task scheduling

algorithm based on deep reinforcement learning. And

compared with least connection and particle swarm

optimization, this algorithm significantly reduces the

completion time of the job. Dong et al. (2020) proposed a

task scheduling algorithm based on DRL, which can

dynamically schedule tasks that have priority relationships

in the cloud server, thus minimizing the task execution time

and effectively solving the task scheduling problem in the

cloud manufacturing environment.

Based on the above work, both the heuristic algorithm and

deep reinforcement learning algorithm show their respective

advantages in solving scheduling problems in cloud

environments. However, there are still some problems that

Frontiers in Genetics frontiersin.org03

Yu et al. 10.3389/fgene.2022.964784

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964784

TABLE 1 Summary of reviewed papers related to the task scheduling in the cloud computing.

Algorithm Core issues to be
solved

Algorithm idea Advantage

Dueling-DQN Wang et al. (2016) Solved the problem that in some states,
action is of low importance to the overall
result, and distinguished the change of Q
value caused by action and state

Improved the architecture, the idea of
advantage was added to evaluate the
advantage function

Ensured that the relative ranking of the
dominant functions of each action in this
state remains unchanged

Analyzed the advantages and
disadvantages of state and action,
respectively

Narrowed the range of Q value. Removed
excess degrees of freedom. Improved the
stability of the algorithm

DDQN Van Hasselt et al. (2016) Solved the problem of overestimation in
DQN algorithm

The idea of Double Q-learning is to reduce
overestimations by decomposing the max
operation in the target into action selection
and action evaluation

More stable training results

Reduced the error caused by variance

PER Schaul et al. (2016) Changed the selection method of samples
in experience replay

Improved the experience buffer training
strategy

More robust

Solved the problem of local optimization More robust Improved the performance of DDQN

Offset the impact of sample distribution Added weight to the original gradient
update in SGD

Simple implementation

MOACS Chen et al. (2019) Optimized execution time and cost Two ant colonies are adopted to optimize
execution time and execution cost,
respectively

MOACS has better global search ability,
particularly when dealing with large-scale
workflows

A new pheromone update rule is designed.
The CHS is proposed to ensure the quality
of the other objective

MOACS can generate a solution with
similar WET but lower WEC than the
other approaches

TOPSIS–PSO Panwar et al. (2019) Improved the execution time, maximum
completion time, resource utilization,
processing cost, and transmission time in
the process of task scheduling

The task scheduling is performed in two
phases

Improved average resource utilization

TOPSIS method calculates the RC of VMs
with respect to each task

Low processing cost

The PSO algorithm receives the calculated
RC of each task which acts as FV of tasks
(particles)

Reduced makespan for tasks

Workflow tasks scheduling
optimization based on genetic
algorithm Cui and Xiaoqing (2018)

Applicable to cloud computing
environment combining task
characteristics and resource
characteristics

Assigned priority to each task Reduced workflow scheduling cost

Workflow tasks were divided into different
levels, and a two-dimensional coding
method was designed

Reduced the execution cost of workflow
task scheduling

A new genetic crossover and mutation
operation were designed to produce new
different offspring, so as to increase
population diversity

FA Ghasemi et al. (2019) Optimized the cost of executing the whole
workflow and load balancing among
workstations

The position of each firefly represents the
feasible solution to a problem to be solved,
and the brightness of the firefly represents
the fitness of the firefly’s position

Minimized the processing time

Each firefly flies towards a firefly that looks
brighter than itself

Reduced transmission cost of workflow

An intelligent QoS-Aware Job Wei
et al. (2018)

Met the QoS requirements of users Learnt to make appropriate online job-to-
VM decisions for continuous job requests
directly from its experiences without any
prior knowledge

Reduced the average response time of jobs
under different loads. Improved user
satisfaction

(Continued on following page)

Frontiers in Genetics frontiersin.org04

Yu et al. 10.3389/fgene.2022.964784

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964784

have not been considered in some references when solving

scheduling problems in cloud platforms. References

(Almezeini and Hafez, 2017; Li and Hu, 2019; Panwar

et al., 2019) only discussed a single service type without

discussing the diversity of services and the correlation

between services. References (Cui and Xiaoqing, 2018;

Xiaoqing et al., 2018) gave the corresponding weight

coefficients of each resource through subjective experience.

TABLE 1 (Continued) Summary of reviewed papers related to the task scheduling in the cloud computing.

Algorithm Core issues to be
solved

Algorithm idea Advantage

Scheduling and resource management
algorithm for multi-user mobile-edge
computing systems Meng et al. (2019)

The problem of delay-sensitive task
scheduling and resource (e.g., CPU,
memory) management on the server side
in multi-user MEC scenario

Built a system that learns to manage
resources directly from experience by
using reinforcement learning with
adaptive policy iteration represented
via DNN.

Reduced average slowdown and average
timeout period of tasks in the queue

Designed a new reward function to reduce
average slowdown and average timeout
period of tasks in the queue

Improved the scheduling efficiency of
server-side task queue

DDPG Ran et al. (2019) Model free strategy for learning
continuous action

DDPG combines the ideas of DPG
and DQN

DDPG can run in a continuous action
space

It used the experience replay and delayed
update target network in DQN

Solved the classical inverted pendulum
control problem

It can run in continuous action space
based on DPG

Met service level agreements

MDTS Zhang et al. (2019) The problem of scheduling jobs with
scalable parallel tasks in general parallel
computing systems, where there is a
demand to determine the task placement
plan with the goal of minimizing the job
completion time, the load imbalance
value, and the total cost

Within each task-specific branch, there is a
fully connected layer and an output layer

Reduced the job completion time and
optimized the load balancing problem.
Improved task scheduling performance.
MDTS is superior to the raw DRL
algorithm

Data-dependent tasks re-scheduling
energy efficient algorithm Xiaoqing
et al. (2018)

Reduced energy consumption in the data
center

Set the task priority to the sum of the
upper and lower values of the task

Reduced energy consumption in the data
center

Used the task priority to calculate the
critical path and critical resources of the
task graph

Calculated the energy efficiency of each
resource under the initial scheduling
scheme

DRL-based algorithms Islam et al.
(2021)

Satisfied generalization to optimize
multiple objectives while capturing or
learning the underlying resource or
workload characteristics

Two DRL-based agents (DQN and
REINFORCE) DQN: An ϵ-greedy policy
was used that selects the greedy action with
probability 1 − ϵ and a random action with
probability ϵ

Reduced both the total cluster VM usage
cost and the average job duration

REINFORCE: It worked by utilizing
Monte Carlo roll-outs. After the collection
step, the algorithm updates the underlying
network using the updated policy gradient

Trained them as scheduling agents in the
TF-agent framework

Sharer Liang et al. (2020) Improved the efficiency of resource
management in CMfg

The proposed model transformed metrics
generated from the individual needs of
multiple users into a multiobjective reward

Adapt to different conditions

Proposed a blacklist mechanism and a
narrow baseline to improve the learning
performance of RL

Converged quickly

Frontiers in Genetics frontiersin.org05

Yu et al. 10.3389/fgene.2022.964784

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964784

References (Zhang et al., 2019; Dong et al., 2020) did not take

into account the transmission cost between resource nodes of

the execution results of services in the actual scheduling

process of composite services. In the actual environment,

the data transmission time between sub-services affects the

completion time and operation cost of composite services to

some extent. With the increasing complexity of user requests

and the increasing granularity of services, each service can be

scheduled for parallel execution in multiple servers to reduce

the response time of services and improve the quality of

services for users. References (Orhean et al., 2018; Xiaoqing

et al., 2018; Chen et al., 2019; Dong et al., 2021) did not

consider the parallelism of services when discussing the

problem of service scheduling. We compared some

algorithms in Table 1.

In addition, most of the above studies took virtual

machines as virtualized computing resources to study the

problem of service scheduling, while containers have the

advantages of simple deployment and fast startup speed, so

it is of certain research significance and value to discuss the

problem of service scheduling based on the container cloud

environment.

3 System model

3.1 Problem description

Based on the container cloud environment, this section

focuses on the scheduling method of composite services. In

the initialization stage, a certain number of host nodes are set,

and each host node initializes: 1) a certain number of reserved

container instances with different configurations; 2) a certain

number of on-demand containers. In the reserved mode, the

container instance is in the startup state and uses the allocated

resources for the scheduled services at any time. The container in

on-demand mode is dormant initially and takes a period of time

to be started. The composite service is defined as the three-level

structure of “composite service, sub-service, instance.” As the

basic scheduling unit, the sub-service instance is scheduled to be

executed in the container, which in essence represents the

number of parallel execution of sub-services. In addition, the

scheduling of sub-service instances and the starting of containers

in on-demand mode are determined by the service scheduling

algorithm.

3.2 Problem constraints

A composite service consists of multiple sub-services

(hereinafter referred to as “Services”) that have an

association relationship, including the order of prior

execution and data dependencies among the services. In

addition, each service includes one or more service

instances, and each service instance of the same service has

the same physical performance requirements. A composite

service can be represented by a directed acyclic graph,

i.e., CS = (SVC, E), where the finite set SVC = {svc1, . . .,

svcm} indicates that a composite service containsm(m ≥ 1,m ∈
N+) services. Each service has n(n ≥ 1, n ∈ N+) service

instances, denoted as svci � {st1i , . . . , stni }(i ∈ m). The set of

directed edges E = {(svci, svcj)|1 ≤ i, j ≤ m, i, j ∈ N+} describes

the relationship between services, (svci, svcj) means that svci is

the predecessor service of svcj, and svcj is called the successor

service of svci. Only after all service instances of all precursor

services of svcj have been executed, svcj is allowed to be

scheduled and executed. The service without the precursor

service is called the start service svcstart, and each composite

services has at least one start service. Service without successor

services is called end service svcend. Similarly, each composite

service has at least one end service. Each Roman character

(e.g., I, II) represents the number of service instances

contained in the corresponding service. This scenario is

prevalent for Map-Reduce algorithms in distributed

environments.

Each service instance will be scheduled to a container, and

each service contains multiple service instances, which means

that each service can be executed by multiple containers

together. The characteristic definition of service svci can be

denoted by Eq. 1, where cpui, memi, diski represent the physical

performance requirements of service svci, such as CPU,

memory, and disk storage, respectively. lengthi denotes the

length of the result data after the completion of the service

execution; instnumi denotes the number of service instances of

service svci; durationi represents the expected execution time of

the subservice svci.

svci � cpui, memi, diski, lengthi, inst_numi, durationi{ } i ∈ n()
(1)

As the smallest scheduling unit in a composite service, the

service instances have the same physical resource requirements

as the service it belongs to. All instances of the same service can

be executed in parallel, and instances of each service are able to

execute different binary files for Map-Reduce scenarios. Eq. 2

defines the kth service instance of svci.

stki � k, cpui, memi, diski, lengthi, durationi{ } i ∈ n, k ∈ m()
(2)

3.3 Resource model

In the cloud platform, physical hosts are the infrastructure

that truly provides physical resources such as CPU and memory

for containers and services. All hosts in a host cluster are denoted

Frontiers in Genetics frontiersin.org06

Yu et al. 10.3389/fgene.2022.964784

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964784

as H = h1, . . ., hP, where p is the number of hosts in the cluster.

hx(x ∈ p) represents the xth host in the host cluster, and the

definition of hx is shown in Eq. 3.

hx � hid, cpu_capx, mem_capx, disk_capx, bw_capx,{
container_numx, cpux,memx, diskx, bwx} x ∈ p() (3)

where hid represents the unique ID of the host. And cpu_capx,

mem_capx, disk_capx, bw_capx, respectively represent the CPU

capacity, memory capacity, disk storage capacity, and bandwidth

capacity of the host. container_numx represents the maximum

number of containers that can be allocated by the host hx. cpux,

memx, diskx, bwx respectively represent the remaining amount of

the host’s CPU, memory, disk storage, and bandwidth.

In addition, all containers in the cluster can be represented by

the set C = {c1, . . ., cq}, where q is the number of containers. cy(y ∈
q) represents the physical performance state of the yth container,

and the definition of cy is shown in Eq. 4.

cy � cidy, hidy, cpu_capy,mem_capy, disk_capy{ ,

bwy, cpuy,memy, disky, acty, act_timey} y ∈ q() (4)

where cidy represents the container ID, which is the unique

identifier of the container. hidy represents the host ID to which

the container cy belongs. cpu_capy, mem_capy, disk_capy, bwy

respectively represent the CPU capacity, memory capacity, disk

capacity, and bandwidth capacity of the container cy. cpuy,memy,

disky, respectively represent the remaining amount of the

container’s CPU, memory, and disk during operation. acty is

the judgment flag, which indicates whether the container cy is

already in the state of the host. If acty = 1, means that the

container cy is in the running state, and acty = 0 means that the

container cy is in the dormant state. act_timey represents the

startup time of the container.

In order to compare and analyze resource utilization from

three dimensions of CPU, memory, and disk, USTk
i is defined as

the resource utilization after each service instance is scheduled.

The definition of average resource utilization AVUST is shown in

Eq. 5.

AVUST � ∑m
i�1∑n

k�1UST
k
i

number of service instances
(5)

3.4 Scheduling model

Before all composite services are scheduled, the hosts and

containers in the data center need to be initialized. In the

initialization phase, a series of physical hosts with different

configurations are first created, and each host is allocated with

container_numx containers, including different

configurations of reserved and on-demand containers. The

containers in the reservation mode can run the scheduled

service instances at any time based on the allocated resources.

The containers in the on-demand mode are in the dormant

state by default, which occupies a certain amount of physical

resources, but there are no remaining amount of resources.

The resource state of the containers in the on-demand mode is

shown in Eq. 6.

cpu_capy > 0
mem_capy > 0
disk_capy > 0
bwy > 0
cpuy � 0
memy � 0
disky � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(6)

Constraints must be satisfied to schedule the service to the

container for execution. When the service instance stki is scheduled

to the container cy, the physical resource requirements of the service

instance stki must not be greater than the corresponding physical

resource capacity of the container cy, otherwise it will wait for the

right resources to execute. Therefore, the constraint condition that

needs to be met to dispatch the service instance stki to the container

cy is shown in Eq. 7.

cpuk ≤ cpu_capy

memk ≤mem_capy

diskk ≤ disk_capy

⎧⎪⎨⎪⎩ (7)

When a service svci is ready, all service instances of the service

can be scheduled to the containers for execution one by one

within the same scheduling time window. However, the resource

status of the container changes from time to time as the service

scheduling progresses. When the service instance is scheduled to

the appropriate container, it will not be executed immediately.

Because the following three steps are required:

(1) First, the status of the selected container needs to be

determined. If the container has already been started, that

is, acty = 1, then ignore this step. Otherwise, acty = 0, start the

container, which will consume the time of act_timey.

(2) After the completion of step one, it is necessary to wait for the

execution result of the precursor service to be transmitted to the

container. The data transmission time is related to the result

data length after the execution of the precursor subservice, the

bandwidth of the container, and the host. Since the precursor

service has multiple service instances, each service instance will

be scheduled to run in a container. It can be understood that

each service can be scheduled to run inmultiple containers, so it

is necessary to calculate the minimum transmission time of the

result data from the container scheduled by the precursor

service to the container where the current service instance is

located. The data transmission time between containers in the

same host is negligible. The data transmission time between

different hosts is directly related to factors such as container

bandwidth and data length. The data transmission time is

shown in Eq. 8.

Frontiers in Genetics frontiersin.org07

Yu et al. 10.3389/fgene.2022.964784

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964784

transTik cu, cv() � 0, u � v or hidu � hidv

ratio, other
{

ratio � lengthi
min bandwidthu, bandwidthv()

(8)

(3) In addition to the data transmission time, it is necessary to

wait for the remaining amount of the physical resources of

the container to meet the physical resource requirements of

the service instance itself. Record the waiting resource time

of the service instance stki in the container cy as wrki .

Based on the above three steps, it can be concluded that after

the service instance stki is scheduled, the period before execution

is the total waiting time of the service instance TWk
i :

TWk
i � transTik + wrki , acty � 1

act_timey + transTik + wrki , acty � 0
{ (9)

As mentioned above, the execution of the service is

finished when all the instances of the service svci are

executed. Therefore, the response time Ti of the service svci
should be denoted as:

Ti � max
k

Tk
i() (10)

Taking the submission time of the composite services as the

earliest start execution time Tstart and the completion time Tend of

the last service instance in the sub-service as the completion time

of the composite service, thus the actual completion time TC of

the entire composite service is denoted by Eq. 11.

TC � Tend − Tstart (11)

In order to denote the expected completion time of the

composite services more conveniently, the composite service is

divided into layers according to the execution order of the

service. The start sub-service is placed in the first layer, and

the end sub-service is placed in the last layer.

The service completion time of each level is the response time

of the service with the longest response time in the level, as shown

in Eq. 12, where l represents the level and u represents the

number of services contained in the level.

TLl � max
u

Ti() (12)

Define the maximum expected completion time for an entire

composite service as:

TE � 2∑
v

TLl (13)

The interaction between the user and the cloud platform takes

the whole composite service as the unit, and the user can set the

desired QoS demand when sending the request. The completion

time of the composite service is an important QoS indicator for

users, so this paper takes themaximum expected completion time of

the composite servicesTE as the user’s QoS demand. Eq. 14 indicates

whether the user’s demand QoS can be met:

success CS() � 1, TC≤TE
0, else

{ (14)

For cloud and service providers, the goal of service scheduling is

to meet users’QoS requirements as far as possible while completing

service execution under the constraints of limited IaaS or PaaS

resources, which needs to be implemented through an efficient

online service scheduling algorithm.

4 Algorithm design and
implementaion

4.1 Prioritized 3-deep Q-network

In the process of using DQN (Deep Q-Network), there will be

a problem of overestimate (Liang et al., 2020). Therefore, in

recent years, many scholars have proposed improved algorithms

for DQN, including DDQN, Dueling DQN, distributed DQN,

PER, etc. This section combines DDQN, Dueling DQN, and

Prioritized Experience Replay three algorithms to improve DQN

at the same time to construct Prioritized Dueling-DDQN

(hereinafter referred to as Prioritized 3-DQN) algorithm. This

algorithm avoids overestimation of DQN to a certain extent. At

the same time, when updating the parameters of neural network,

PER algorithm is used to replace the random sampling method in

DQN and select the most effective learning samples from the

sample memory to achieve the purpose of efficient learning.

The Prioritized 3-DQN algorithm also uses two neural networks

with the same structure: the Eval network and the Target network.

The Eval network is used to calculate the estimatedQ value and can

be updated in real time. The Target network is used to calculate the

targetQ value, and it is a temporarily frozen network. This article has

made three improvements to DQN: two decoupling actions and one

sampling method improvement. The specific descriptions are as

follows:

(1) The output layer of the neural network is decoupled into two

output streams, which output the current state value V and

the action advantage function A, respectively, and then

combine the state value V and the advantage function A

to form the Q value. The advantage function refers to the

degree of merit of the value that can be obtained by taking an

action relative to the average value of the state for a particular

state. In order to calculate the advantage function value

corresponding to each action more conveniently, the

average value of the advantage function value of all

actions is set to 0. If the advantage function value

corresponding to a certain action is greater than the

average value in the state, then the advantage function

Frontiers in Genetics frontiersin.org08

Yu et al. 10.3389/fgene.2022.964784

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964784

value corresponding to the action is positive, and vice versa.

At this time, the calculation method of the Q value is shown

in Eq. 15, where θ represents the neural network parameter,

α and β represent the output flow neural network parameters

corresponding to the state value and the action advantage

function, and n is the action dimension.

Q s, a; θ() � V s; α() + A s, a; β() − ∑n
a′A s, a′; β()

n
(15)

(2) Based on DQN, the overestimation problem is solved by

decoupling the selection of target action and calculating the

target Q value. When calculating the actual value of Q, the

Eval network provides the action in the next environment

state, and the Target network provides the Q value of this

action.

The Q value. At this time, the update process of the neural

network is shown in Eq. 16, where θ and θ− represent the Eval

network and the Target network, respectively.

Q st, at; θ() ← Q st, at; θ()
+ ∝ rt + γQ s′, amax s′; θ(); θ−() − Q st, at; θ()[] (16)

(3) In the offline training phase of traditional DQN, the training

samples are randomly selected from the experience replay

pool without considering the priority relationship of the

samples. However, different samples have different values,

and the samples directly affect the training effect of the

neural network. In order to improve the training effect of the

neural network, it is necessary to determine a priority for

each sample and conduct sampling according to the priority

of the sample. As mentioned above, the Target network does

not have the function of real-time updates. Therefore, as the

Eval network is continuously updated, there will be a certain

gap between the two networks while calculating the Q value.

This gap is named the timing difference TD_Error.

TD_Error can be represented by Eq. 17. The larger the

TD_Error, the larger the gap between the currentQ function

and the targetQ function, the more the neural network needs

to be updated at this time, so TD_Error can be used to

measure the value of the sample. In order to prevent the

network from overfitting, samples can be drawn by

probability. At this time, the probability of samples being

drawn is shown in Eq. 18, where ϵ is a small value close to 0,

which guarantees Samples with TD_Error of 0 may also

have a chance to be drawn.

TD_Error � rt + γQ s′, amax s′; θ(); θ−() − Q st, at; θ() (17)
P i() � pi∑pi

(18)

where, pi � |TDError + ϵ|. The process of our Prioritized 3-

DQN algorithm is as follows:

Algorithm 1. Prioritized 3-DQN.

4.2 State space

When the service svciis ready, the method selects an instance

of svci each time stki and schedules it to a certain container. The

environment status at this time is mainly determined by the

physical relevant factors of the service instance stki , such as

resource requirements, running status of the container cluster

are determined. Therefore, the state space can be denoted by

Eq. 19:

Ski � stki , c1, obsc1, pre
svci
c1

, . . . , cq, obscq, pre
svci
cq

[] (19)

where

obscy � [que_leny, cpu_leny, mem_leny, disk_leny], (y ∈ q)
Each value in the state space affects the scheduling decision of

DRL, where stki represents the current service instance to be

scheduled, which is represented by the aforementioned Eq. 2,

and cy represents the resource state of the yth container in the

cluster, as shown in Eq. 4. It should be noted that there is a one-to-

many relationship between service instances and containers. Each

service instance can only be completed by one container, but each

container can be assigned multiple service instances. When the

remaining physical resources of the container are insufficient and

the resource requirements of the service instance are required, the

newly scheduled service instance needs to be added to the services

queue to be executed in the container. obscy is the running status of

container cy, where que_leny represents the length of the service

instance queue to be executed in container cy, and cpu_leny,

mem_leny, and disk_leny respectively represent the sum of the

CPU, memory, and disk storage space requirements of the waiting

queue. The characteristic value presvcic1
represents the proportion of

the result data length of the predecessor service of the current

service instance in the container cy after execution. For example

svc3 has two predecessor services svc1 and svc2. Assume that the

length of the result data after the execution of these two precursor

services is 4 and 6, so only the service instance of svc1 is scheduled

to the container c1. The service instance of svc3 is st13. When being

scheduled, prec1 � 4/(4 + 6) � 0.4.

Frontiers in Genetics frontiersin.org09

Yu et al. 10.3389/fgene.2022.964784

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964784

4.3 Action space

During scheduling decision-making, a suitable container is

selected for the service instance as the action in DRL, and the

action space is all the containers that can be selected. Suppose that

the data center contains p hosts {h1, . . ., hp} at a certain time, host

hx can assign at most container_numx containers with different

configurations. When service instance stki is ready to be scheduled,

the agent in DRL can schedule it to any container in the cluster for

execution, including all containers in reserved and on-demand

modes. The action space at this time is shown in Eq. 20.

anum � hx × container_numx x ∈ p() (20)

4.4 Reward function

In order to enable the agent in DRL to learn effectively and

obtain an effective scheduling strategy that optimizes the goal, a

reasonable reward function needs to be designed to guide the

learning process of the agent. In our model, in order to minimize

the completion time and improve the user QoS and resource

utilization of the cloud platform, this paper uses the difference

between the expected execution time of the service instance and

the waiting time. It then uses the ratio of the expected execution

time as the reward for each scheduling. The value is as follows:

rki �
durtationi − TWk

i()
durationi

� 1 − TWk
i

durationi
(21)

Based on Eq. 21, the interval of reward value can be deduced

as[−∞, 1]. When the overall waiting time of the service instance

TABLE 2 Table of data relation comparison.

Fields
of batch_task table

Attributes
of class service

Description

task_name service_name Service name

inst_num inst_num The number of instances

job_name cs_name The name of composite service

Duration Duration Expected execution time

plan_cpu cpu CPU cores requirements

plan_mem mem Memory requirements

Disk Disk Disk storage requirements

Length Length The length of result

TABLE 3 Table of dataset settings.

Dataset name The number of
composite services

The number of services The number of
service instances

Training data set 1,036 5,832 38,586

Test data set1 345 1,500 12,320

Test data set2 426 2,200 18,020

Test data set3 512 2,780 25,200

TABLE 4 Resource node settings.

Hosts Containers Detailed description

(CPU cores; Memory
capacity; Disk capacity;
Bandwidth; Status)

Host 0 Container 0 4; 1.56; 10; 5; Running

Container 1 4; 1.56; 10; 5; Stopped

Container 2 8; 3.13; 18; 8; Running

Host 1 Container 3 4; 1.56; 10; 5; Stopped

Container 4 8; 3.13; 18; 3; Running

Container 5 8; 3.13; 18; 3; Stopped

Host 2 Container 6 4; 2.34; 12; 5; Stopped

Container 7 8; 3.13; 18; 3; Running

Host 3 Container 8 4; 2.34; 12; 3; Running

Container 9 8; 3.13; 18; 5; Stopped

Frontiers in Genetics frontiersin.org10

Yu et al. 10.3389/fgene.2022.964784

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964784

TWk
i is 0, the scheduling reward reaches the highest value of 1;

when the overall waiting time TWk
i is equal to the expected

execution time, the reward value is 0; when the overall waiting

time TWk
i is greater than the expected execution time, the reward

value begins to show a negative value. The longer the waiting

time for execution, the smaller the reward value, and the greater

the punishment. Through the reasonable design of the reward

function, DRL can learn an effective service scheduling policy.

5 Experimental results

5.1 Simulation experiment setup

This paper uses Alibaba Cluster Data V2018 (Alibaba,

2018) as the data set for the simulation experiment. The data

set contains six files in CSV format, describing the status

information of the physical machine cluster, container

cluster, and batch processing tasks. The original data set

has a huge amount of data. There is inevitably a problem

of missing data, and the data set is scattered and difficult to

operate. Therefore, it is necessary to preprocess the original

data set to obtain more targeted and valuable data. During the

experiment, the preprocessed batch job data needs to be

parsed and mapped into a composite service entity. The

comparison between the fields of the preprocessed

batch_task table and the attributes of the service class is

shown in Table 2.

This paper divides the experimental data set into two parts:

the training data set and the test data set, as shown in Table 3. In

this experiment, 5,832 pieces of data are selected as services from

the batch_task table, forming a total of 1,036 composite services,

including 38,586 service instances. At the same time, to fully

verify the effectiveness of Prioritized 3-DQN as a scheduling

algorithm, this paper sets up three test sets with different data

volumes.

In the initial stage of the simulation experiment, four hosts

with different configurations are set, and each host contains

container instances with different configurations and states.

The relevant configuration of each container is shown in

Table 4.

In implementing the Prioritized 3-DQN algorithm, the

parameter settings are shown in Table 5. Both the Eval

network and the Target network contain three fully

connected neural network hidden layers, the last layer of

which is divided into two output channels: state value and

action advantage function. The greedy coefficient ε is 0.9. Each

time the neural network parameters are updated, it will

increase by 0.0001. That is, when selecting the container

for the service instance, the container with the largest Q

value will be selected with a probability of 0.9, and the

container will be randomly explored with a probability of

0.1. After 1,000 updates, the value of ε becomes 1, and random

exploration is no longer performed when selecting a

container, but only the container corresponding to the

largest Q value is selected. ϵ is set to 0.001, which ensures

that samples whose timing difference TD_Error is 0 will also

have a chance to be sampled. The target network update

frequency C is set to 30, which means that every 30 times

the Eval network is updated, its network parameters are

copied to the Target network.

5.2 Prioritized 3-deep Q-network training
effect

The essence of deep reinforcement learning algorithm

learning is to maximize the cumulative reward of the round

as the optimization goal, so the training effect can be reflected

by the trend of the cumulative reward as the value changes

with the number of training rounds. In addition, the

Prioritized 3-DQN scheduling algorithm proposed in this

TABLE 5 Algorithm parameter setting.

Parameter name Value

The number of hidden layers 3

Activation function ReLU

Greed index ε 0.9

Experience replay pool size N 3,000

Number of sample sets N_b 200

Learning rate α 0.001

Discount factor γ 0.9

ϵ 0.001

Target network update frequency C 30

FIGURE 1
Training effect comparison chart.

Frontiers in Genetics frontiersin.org11

Yu et al. 10.3389/fgene.2022.964784

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964784

paper is improved based on the DQN algorithm. In order to

evaluate the convergence and stability of the improved

Prioritized 3-DQN scheduling algorithm, it is compared

with the original DQN algorithm. After 2,500 rounds of

training using the training data set, they finally reached

their optimal training effects. Figure 1 is a comparison

chart of training effects.

It can be seen from Figure 1 that as the number of training

rounds increases, the cumulative reward values calculated by

the two algorithms show a gradual upward trend. After a

certain number of rounds, they have reached a stable trend,

indicating Prioritized 3-DQN and DQN are reasonable as the

scheduling algorithm of the composite service model

proposed in this paper. However, from the perspective of

convergence, our algorithm can obtain a higher cumulative

reward value under the same number of training rounds. In

addition, When the number of training epochs reaches around

1,600, the Prioritized 3-DQN scheduling algorithm starts to

converge. The DQN starts to converge when the number of

training rounds reaches about 2,200. Thus, the convergence

speed of our algorithm is faster, and a higher cumulative

reward value is obtained after the iteration is completed. This

is because each time the weight parameters of the neural

network are updated in our algorithm, the experience

samples with larger time-series differences are selected first,

so as to ensure the learning effect of the neural network. From

the perspective of stability, Prioritized 3-DQN decouples the

selection of the target Q value action and the target Q value

calculation, thereby avoiding the problem of overestimation.

Therefore, compared with the DQN rising trend, the upward

trend of our results is slightly smoother and more stable. In

general, our Prioritized 3-DQN is very suitable for composite

service scheduling strategies. Compared with DQN, it has

higher learning efficiency and can converge earlier to achieve

better results.

5.3 Makespan comparison

To verify the generalization ability of Prioritized 3-DQN

as a composite service scheduling algorithm, DQN and the

four common scheduling algorithms mentioned above are

respectively applied to the composite service model. In the

process of the comparative experiment, three test sets were

used for 20 experiments, the completion time of the

composite service was calculated, and the average results

were obtained. Figure 2 summarizes the average

completion time obtained after 20 experiments on each of

the three test data sets.

It can be seen from Figure 2 that the completion time

of Prioritized 3-DQN on different test data sets is shorter

than the results of the other four scheduling algorithms.

Among them, the difference in completion time between

DQN and Prioritized 3-DQN is smaller than the other

three scheduling algorithms. The completion time of

Prioritized 3-DQN on three data sets is about 3.32% less

than that of DQN on average. The number of service

instances in the three test sets increases sequentially. With

the increase in the number of service instances, the increase in

the completion time of the composite service under different

scheduling algorithms is different, and the gap in completion

time between Prioritized 3-DQN and the other four

scheduling algorithms is more prominent. This means

that the algorithm and DQN algorithm proposed in this

paper are more adaptable than other algorithms in terms

of completion time.

FIGURE 2
Comparison chart of average completion time of each test
set with standard error.

FIGURE 3
Comparison chart of composite services success rate with
standard error.

Frontiers in Genetics frontiersin.org12

Yu et al. 10.3389/fgene.2022.964784

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964784

5.4 Quality of service comparison

The degree of user satisfaction is also the main optimization

goal of this article. The degree of user satisfaction is closely

related to many factors, such as the number of requests for

composite services reached per unit time, the number of service

instances contained in each composite service, and the

processing capacity of the container cluster set in the

experiment. In this experiment, five scheduling algorithms are

used in the same experimental environment to simulate

simulation experiments on three composite service test sets,

and then the success rate of each composite service test set is

recorded, as shown in Figure 3.

By observing the above graph from a horizontal

perspective, our algorithm can achieve the highest success

rate compared to other scheduling algorithms. Vertically, with

the increase in the number of composite services and service

instances, the success rate of each scheduling algorithm after

the completion of the composite service allocation is

continuously reduced, but the reduction is different. Our

algorithm is compared with the other four algorithms. It

can be maintained in a relatively stable state, which ensures

that the success rate of composite services is about 80% under

different composite service test sets. The composite service

success rate of Prioritized 3-DQN on the three data sets is

about 4.82% higher than that of DQN. From the perspective of

diversified loads, the Prioritized 3-DQN is more capable of

making reasonable service scheduling decisions than other

scheduling algorithms, thereby it increases the success rate of

composite services and improves user QoS.

5.5 Resource utilization comparison

In addition to completion time and user QoS, the resource

utilization of a container cluster can also be used as one of the

criteria for evaluating the performance of scheduling algorithms.

This section compares and analyzes resource utilization from the

three dimensions: CPU, memory, and disk. During the simulation

experiment, the resource utilization rate of the container cluster

was recorded after each service instance was scheduled, and the

average result of each resource utilization rate was calculated after

one round of scheduling was completed. Figure 4 shows the

resource utilization results of the three composite service test sets.

The above three graphs show that our prioritized 3-DQN,

DQN, and Best-fit algorithms are significantly higher than the

FIGURE 4
Resource utilization results of the three composite service test sets with standard error. (A) Resource utilization of test set 1. (B) Resource
utilization of test set 2. (C) Resource utilization of test set 3.

Frontiers in Genetics frontiersin.org13

Yu et al. 10.3389/fgene.2022.964784

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964784

other two algorithms in terms of resource utilization in the three

dimensions, indicating that they can make full use of limited

resources when scheduling service instances to complete the

execution of composite services. When the Best-fit algorithm

schedules service instances, it does not consider the data

transmission relationship between services and the scheduling

of subsequent service instances. It only schedules the current

service instance to the container with the best performance and

the shortest execution time. Therefore, the resource utilization in

the three dimensions is lower than Prioritized 3-DQN and DQN.

On the three data sets, the resource utilization of Prioritized 3-

DQN on CPU, memory, and disk is about 1.39%, 1.11%, and

1.09% higher than that of DQN, respectively. The Prioritized 3-

DQN is also higher than DQN in terms of resource utilization,

indicating that Prioritized 3-DQN can make more reasonable

scheduling decisions compared to DQN and has a more stable

optimization capability under the same environment.

6 Conclusion

Cloud computing has brought great flexibility and cost-

effectiveness to end-users and cloud application providers, and it

has become a very attractive computingmode for various fields.With

the continuous development of biological technology, massive

biological data are continuously generated, and the requirements

for data processing operation speed, computing power, and stability

in practical applications also increase rapidly. Cloud computing has

the characteristics of high-speed computing power, high storage

capacity, and convenient use, which can meet the needs of

biological research. At the same time, cloud providers provide

security services to ensure the privacy and integrity of data. When

biological samples are processed, each step needs to be supported and

completed by cloud services. Between stages, biopharmaceutical

companies realize data isolation by transferring data between

services. Data quality plays a crucial role in the application effect

of data, and the problem of data timeliness is one of the main factors

affecting data quality. The timeliness of data can be improved

synergistically by combining timeliness rules with statistical

technical conditions or functional dependencies. How to use

service scheduling strategy to improve service quality and resource

utilization has become a key issue in cloud computing. This paper

focuses on the core problem of service schedulingmanagement in the

container cloud platform.We proposed the composite service model

under the modes of container instance (mixed reservation and on-

demand), and we proposed the improved DQN algorithm as the

scheduling algorithm of the composite service model in this paper.

The simulation results show that, under the model presented in this

paper, our 3-DQN algorithm is superior to the original DQN

algorithm in terms of reliability and convergence. In addition, the

algorithm can effectively reduce the completion time of the

composite service and improve the user QoS and resource

utilization in the container cloud environment.

The method proposed in this paper still has many defects for

the actual cloud environment. From the results represented in the

paper, the differences in completion time, composite service

success rate, and resource utilization between DQN and

Prioritized 3-DQN are small. The reason for the smaller

difference may be that the scale of our experiments is

relatively small. If the scale of the experiments is large, the

advantages of Prioritized-3DQN may be more prominent. We

also consider comparing Prioritized 3-DQN with the three

algorithms used in this paper in the future. In addition, in the

process of designing the composite service model in the container

cloud environment, the energy consumption and resource cost of

the cloud platform are not considered. We can do further

research in future work.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://github.com/alibaba/clusterdata/

blob/v2018/cluster-trace-v2018.

Author contributions

LY, PY, and YD contributed to conception and design of the

study. LY wrote the manuscript and performed the statistical

analysis. PY and YD helped supervise the project. HQ completed

the formatting and editing of the manuscript. All authors

contributed to manuscript revision, read, and approved the

submitted version.

Funding

NSFC (Nos 61962040, 72062015, and 61662021), Hainan

Education Department Project No. Hnky 2019-13, and Hainan

University Educational Reform Research Project (Nos

HDJY2102 and HDJWJG03).

Acknowledgments

This work was supported by grants from NSFC, Hainan

Education Department Project and Hainan University

Educational Reform Research Project.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Frontiers in Genetics frontiersin.org14

Yu et al. 10.3389/fgene.2022.964784

https://github.com/alibaba/clusterdata/blob/v2018/cluster-trace-v2018
https://github.com/alibaba/clusterdata/blob/v2018/cluster-trace-v2018
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964784

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Almansour, N., and Allah, N. M. (2019). “A survey of scheduling algorithms in
cloud computing,” in 2019 International Conference on Computer and Information
Sciences (ICCIS), Sakaka, Saudi Arabia, 03-04 April 2019, 1–6.

Almezeini, N., and Hafez, A. (2017). Task scheduling in cloud computing using
lion optimization algorithm. Int. J. Adv. Comput. Sci. Appl. 8 , 78–83. doi:10.14569/
ijacsa.2017.081110

Barik, R. K., Lenka, R. K., Rao, K. R., and Ghose, D. (2016). “Performance analysis
of virtual machines and containers in cloud computing,” in 2016 international
conference on computing, communication and automation (iccca), Greater Noida,
India, 29-30 April 2016 (IEEE), 1204–1210.

Bernstein, D. (2014). Containers and cloud: From lxc to docker to kubernetes.
IEEE Cloud Comput. 1, 81–84. doi:10.1109/mcc.2014.51

Chen, Z.-G., Zhan, Z.-H., Lin, Y., Gong, Y.-J., Gu, T.-L., Zhao, F., et al. (2019).
Multiobjective cloud workflow scheduling: A multiple populations ant colony system
approach. IEEE Trans. Cybern. 49, 2912–2926. doi:10.1109/TCYB.2018.2832640

Cheng, M., Li, J., and Nazarian, S. (2018). “Drl-cloud: Deep reinforcement
learning-based resource provisioning and task scheduling for cloud service
providers,” in 2018 23rd Asia and South pacific design automation conference,
Jeju, Korea (South), 22-25 January 2018, 129–134. ASP-DAC. IEEE.

Cui, Y., and Xiaoqing, Z. (2018). “Workflow tasks scheduling optimization based
on genetic algorithm in clouds,” in 2018 IEEE 3rd International Conference on
Cloud Computing and Big Data Analysis (ICCCBDA) (IEEE), Chengdu, China, 20-
22 April 2018, 6–10.

[Dataset] Alibaba (2018). Cluster-trace-v2018. [EB/OL]. Available at: https://github.
com/alibaba/clusterdata/blob/v2018/cluster-trace-v2018 (Accessed December 13,2018).

Dong, T., Xue, F., Xiao, C., and Li, J. (2020). Task scheduling based on deep
reinforcement learning in a cloud manufacturing environment. Concurr. Comput.
Pract. Exper. 32, e5654. doi:10.1002/cpe.5654

Dong, T., Xue, F., Xiao, C., and Zhang, J. (2021). Workflow scheduling based on
deep reinforcement learning in the cloud environment. J. Ambient. Intell. Humaniz.
Comput. 12, 10823–10835. doi:10.1007/s12652-020-02884-1

George, N., Chandrasekaran, K., and Binu, A. (2016). “Optimization-aware
scheduling in cloud computing,” in Proceedings of the International Conference
on Informatics and Analytics, August 25 - 26, 2016, Pondicherry India, 1–5.

Ghasemi, S., Kheyrolahi, A., and Shaltooki, A. A. (2019). Workflow scheduling in
cloud environment using firefly optimization algorithm. JOIV Int. J. Inf. Vis. 3,
237–242. doi:10.30630/joiv.3.3.266

Islam, M. T., Karunasekera, S., and Buyya, R. (2021). Performance and cost-
efficient spark job scheduling based on deep reinforcement learning in cloud
computing environments. IEEE Trans. Parallel Distrib. Syst. 33, 1695–1710.
doi:10.1109/tpds.2021.3124670

Joy, A. M. (2015). “Performance comparison between linux containers and virtual
machines,” in 2015 International Conference onAdvances in Computer Engineering and
Applications (IEEE), Ghaziabad, India, 19-20 March 2015, 342–346.

Kyaw, L. Y., and Phyu, S. (2020). “Scheduling methods in hpc system,” in
2020 IEEE Conference on Computer Applications (ICCA) (IEEE), Yangon,
Myanmar, 27-28 February 2020, 1–6.

Li, F., and Hu, B. (2019). “Deepjs: Job scheduling based on deep reinforcement
learning in cloud data center,” in Proceedings of the 2019 4th international

conference on big data and computing, Guangzhou China, May 10 - 12, 2019,
48–53.

Liang, S., Yang, Z., Jin, F., and Chen, Y. (2020). “Data centers job
scheduling with deep reinforcement learning,” in Advances in knowledge
discovery and data mining (New York: Springer International Publishing),
906–917.

Meng, H., Chao, D., Huo, R., Guo, Q., Li, X., and Huang, T. (2019). “Deep
reinforcement learning based delay-sensitive task scheduling and resource
management algorithm for multi-user mobile-edge computing systems,” in
Proceedings of the 2019 4th International Conference on Mathematics and
Artificial Intelligence, Chegndu China, April 12 - 15, 2019, 66–70.

Myers, T. A., Chanock, S. J., and Machiela, M. J. (2020). Ldlinkr: An r package for
rapidly calculating linkage disequilibrium statistics in diverse populations. Front.
Genet. 11, 157. doi:10.3389/fgene.2020.00157

Orhean, A. I., Pop, F., and Raicu, I. (2018). New scheduling approach using
reinforcement learning for heterogeneous distributed systems. J. Parallel
Distributed Comput. 117, 292–302. doi:10.1016/j.jpdc.2017.05.001

Panwar, N., Negi, S., Rauthan, M. M. S., and Vaisla, K. S. (2019). Topsis–pso
inspired non-preemptive tasks scheduling algorithm in cloud environment. Clust.
Comput. 22, 1379–1396. doi:10.1007/s10586-019-02915-3

Ran, L., Shi, X., and Shang, M. (2019). “Slas-aware online task scheduling based
on deep reinforcement learning method in cloud environment,” in 2019 IEEE 21st
International Conference on High Performance Computing and Communications;
IEEE 17th International Conference on Smart City; IEEE 5th International
Conference on Data Science and Systems (HPCC/SmartCity/DSS) (IEEE),
Zhangjiajie, China, 10-12 August 2019, 1518–1525.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). “Prioritized experience
replay,” in International Conference on Learning Representations, San Juan, Puerto
Rico, May 2-4, 2016.

Van Hasselt, H., Guez, A., and Silver, D. (2016). “Deep reinforcement learning
with double q-learning,”, Phoenix, Arizona USA, February 12–17, 2016, 2094–2100.
doi:10.1609/aaai.v30i1.10295Proc. AAAI Conf. Artif. Intell.30

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., and Freitas, N. (2016).
“Dueling network architectures for deep reinforcement learning,” in International
conference on machine learning (PMLR), New York NY USA, June 19 - 24, 2016,
1995–2003.

Wei, Y., Pan, L., Liu, S., Wu, L., and Meng, X. (2018). Drl-scheduling: An
intelligent qos-aware job scheduling framework for applications in clouds. IEEE
Access 6, 55112–55125. doi:10.1109/access.2018.2872674

Xiaoqing, Z., Yajie, H., and Chunlin, A. (2018). “Data-dependent tasks re-
scheduling energy efficient algorithm,” in 2018 IEEE 4th International
Conference on Computer and Communications (ICCC), Chengdu, China, 07-
10 December 2018, 2542–2546. IEEE.

Yang, S., Zhu, F., Ling, X., Liu, Q., and Zhao, P. (2021). Intelligent health care:
Applications of deep learning in computational medicine. Front. Genet. 12, 607471.
doi:10.3389/fgene.2021.607471

Zhang, L., Qi, Q., Wang, J., Sun, H., and Liao, J. (2019). “Multi-task deep
reinforcement learning for scalable parallel task scheduling,” in 2019 IEEE
International Conference on Big Data (Big Data), Los Angeles, CA, USA, 09-
12 December 2019, 2992–3001. IEEE.

Frontiers in Genetics frontiersin.org15

Yu et al. 10.3389/fgene.2022.964784

https://doi.org/10.14569/ijacsa.2017.081110
https://doi.org/10.14569/ijacsa.2017.081110
https://doi.org/10.1109/mcc.2014.51
https://doi.org/10.1109/TCYB.2018.2832640
https://github.com/alibaba/clusterdata/blob/v2018/cluster-trace-v2018
https://github.com/alibaba/clusterdata/blob/v2018/cluster-trace-v2018
https://doi.org/10.1002/cpe.5654
https://doi.org/10.1007/s12652-020-02884-1
https://doi.org/10.30630/joiv.3.3.266
https://doi.org/10.1109/tpds.2021.3124670
https://doi.org/10.3389/fgene.2020.00157
https://doi.org/10.1016/j.jpdc.2017.05.001
https://doi.org/10.1007/s10586-019-02915-3
https://doi.org/10.1609/aaai.v30i1.10295
https://doi.org/10.1109/access.2018.2872674
https://doi.org/10.3389/fgene.2021.607471
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964784

	A resource scheduling method for reliable and trusted distributed composite services in cloud environment based on deep rei ...
	1 Introduction
	2 Related work
	3 System model
	3.1 Problem description
	3.2 Problem constraints
	3.3 Resource model
	3.4 Scheduling model

	4 Algorithm design and implementaion
	4.1 Prioritized 3-deep Q-network
	4.2 State space
	4.3 Action space
	4.4 Reward function

	5 Experimental results
	5.1 Simulation experiment setup
	5.2 Prioritized 3-deep Q-network training effect
	5.3 Makespan comparison
	5.4 Quality of service comparison
	5.5 Resource utilization comparison

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

