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Despite treatments being improved and many risk factors being identified, cardiovascular

disease (CVD) is still a leading cause of mortality and disability worldwide.

N6-methyladenosine (m6A) is the most common, abundant, and conserved internal

modification in RNAs and plays an important role in the development of CVD. Many

studies have shown that aabnormal m6Amodifications of coding RNAs are involved in the

development of CVD. In addition, non-coding RNAs (ncRNAs) exert post-transcriptional

regulation in many diseases including CVD. Although ncRNAs have also been found

to be modified by m6A, the studies on m6A modifications of ncRNAs in CVD are

currently lacking. In this review, we summarized the recent progress in understanding

m6A modifications in the context of coding RNAs and ncRNAs, as well as their regulatory

roles in CVD.
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INTRODUCTION

Cardiovascular disease (CVD) is a leading cause of mortality and disability worldwide
despite recent improvements in health care, with many risk factors identified (1). Therefore,
the mechanisms underlying CVD development remain to be elucidated. Recently, abnormal
modifications in RNA have been identified in CVD and have attracted attention to our
understanding of the mechanism underlying CVD development (2).

Currently, over 100 chemical modifications of RNA have been identified. Among them, N6-
methyladenosine (m6A) is the most common conserved internal modification in RNA and is
activated by the m6A methyltransferases (m6A writers), reversed by m6A demethylases (m6A

erasers), and recognized by m6A-binding proteins (m6A readers) (3). m6A is enriched in the 3
′

untranslated regions (3
′

-UTRs), stop codons, internal long exons, and consensus sequence RRACH
(where R: A or G and H: A, C, or U), thus affecting mRNA splicing, export, translation, and

decay (4). m6A modification is also present in the 5
′

cap, which is required for RNA stability or
degradation (5). m6A modification accounts for ∼50% of the mRNA modifications in mammals
(6). In addition to mRNAs, the m6A modification is also found in non-coding RNAs (nc RNAs)
including micro RNAs (miRNAs), long non-coding RNAs (lnc RNAs), and circular RNAs (circ
RNAs), which have been found to regulate transcription in many diseases including CVD (6–9).

Abnormal m6A RNAmodifications have been found in the CVD risk conditions and to regulate
the CVD development. However, research regarding the underlying mechanism is still lacking.
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In this review, we summarize the recent progress on the m6A
modifications of mRNAs and ncRNAs, as well as their regulatory
roles in CVD.

BIOLOGY OF m6A RNA MODIFICATION

The m6A RNA modification is dynamically regulated by
diverse functional proteins, including m6A methyltransferases,
demethylases, and others (m6A writers, erasers, and readers,
respectively). m6A writers include methyltransferase-like
3/14/16 (METTL3, METTL14, METTL16), Wilm’s tumor-
associated protein (WTAP), RNA-binding motif protein
15 (RBM15)—and its paralog RBM15B—and KIAA1429,
NOP2/Sun RNA methyltransferase 2 (NSun2), and zinc finger
CCHC domain-containing protein 4 (ZCCHC4) (10–13).
METTL3 and METTL14 are the core components of the m6A
writers; WTAP, RBM15, and KIAA1429 are also important
components of the m6A methylase complex to enhance
methyltransferase activity (10, 11). METTL16, NOP2/Sun
RNA methyltransferase 2 (NSun2), and zinc finger CCHC
domain-containing protein 4 (ZCCHC4) are other components
of the m6A methylase complex, which are indispensable for
m6A deposition (12, 13). m6A erasers consist of fat mass and
obesity-associated protein (FTO) and AlkB family member 5
(ALKBH5) and can mediate m6A demethylation (14). m6A
readers include YT521-B homology (YTH) domain family
proteins (YTHDF1-3), insulin-like growth factor 2 mRNA-
binding protein (IGF2BP), YTH domain-containing proteins
(YTHDC), heterogeneous nuclear ribonucleoprotein (HNRNP),
and eukaryotic translation initiation factor 3 (eIF3), which are
also involved in m6A modification (15–19). YTHDC1 can also
regulate target gene transcription (16, 17). YTHDF1 can bind
to the 3′UTRs and the stop codon of m6A-containing RNAs,
and interact with eIF3 to initiate translation (18). IGF2BPs,
HNRNPC, and HNRNPG affect the stability, storage, the
structure of RNA (18, 19). Therefore, m6A writers, erasers,
and readers affect the translation, export, degradation, and
structure of RNAs to regulate the development of many
diseases (Figure 1).

Abbreviations: CVD, Cardiovascular disease; m6A,N6, methyladenosine; 3
′

-

UTRs, 3
′

untranslated regions; miRNAs, micro RNAs; lnc RNAs, long non-coding

RNAs; circ RNAs, circular RNAs; METTL3, methyltransferase-like 3; METTL14,

methyltransferase-like 14;WTAP,Wilm’s tumor-associated protein; RBM15, RNA-

binding motif protein 15; IGF2BP, insulin-like growth factor 2 mRNA-binding

protein; HNRNP, heterogeneous nuclear ribonucleoprotein; NSun2, NOP2/Sun

RNAmethyltransferase 2; ZCCHC4, zinc finger CCHCdomain-containing protein

4; FTO, fat mass and obesity-associated protein; ALKBH5, AlkB family member

5; YTH, YT521-B homology; YTHDF, YTH domain family proteins; YTHDC,

YTH domain-containing proteins; eIF3, eukaryotic translation initiation factor 3;

DGCR8, DiGeorge Critical Region 8; T2D, type 2 diabetes; FOXO1, forkhead box

O1; H/R, hypoxia and reperfusion; MI, myocardial infarction; ox-LDL, oxidized

low-density lipoprotein; MALAT1, metastasis-associated lung adenocarcinoma

transcript 1; EC, endothelial cell; VSMCs, vascular smooth muscle cells; XIST, X-

inactive specific transcript; ESC, embryonic stem cells; I/R, ischemia-reperfusion;

GAS5, growth arrest-specific 5; MIAT, myocardial infarction associated transcript;

TLR4, toll-like receptor 4; NF-κB, nuclear factor-κB; ECM, extracellular matrix.

m6A Modification of mRNAs
m6A methylation is the most prevalent internal post-
transcriptional modification of mammalian mRNA and can
affect mRNA splicing, translocation, translation, stability, and
structure (20). m6A modification frequently occurs in the
introns of pre-mRNAs and promotes the nuclear export of
mRNAs and facilitates mRNA transcription in the cytoplasm
(21). m6A writer, METTL3 accelerates mRNA translocation
from the nucleus to the cytoplasm and enhances translation
of target mRNAs (22, 23). Moreover, METTL3 and METTL14
also reduce mRNA stability and promote mRNA degradation
efficiency (5). In contrast, m6A eraser, ALKBH5 inhibits mRNA
export and stability (14, 24). m6A readers are also found to
regulate mRNA in many ways. For example, YTHDF1, YTHDF3,
and IGF2BP1/2/3 can drive mRNA translation and promote
translation efficiency (25, 26). Furthermore, IGF2BP also can
enhance the stability of mRNA by binding to mRNA-stabilizing
proteins such as human antigen R (HuR) (27). HuR is an RNA
binding protein and can increase RNA stability (28). However,
m6A modification can interact with HuR and inhibit its
ability of enhancing RNA stability (28). YTHDF2 can promote
the degradation of m6A-containing mRNA by recruiting
RNA-degrading enzymes or adaptor proteins CCR4/NOT or
HRSP12-RNase (29). Similarly, HNRNPC and HNRNPG can
recognize specific sites on mRNA, thereby altering the structure
of mRNAs (19). m6A writers, erasers, and readers affect mRNA
expression in many aspects.

m6A Modification of nc RNAs
Nc RNAs exert post-transcriptional regulation in many diseases
and mainly include miRNAs, lnc RNAs, and circ RNAs (30).
miRNAs are small nc RNA molecules ∼22 nucleotides in length

that bind with the 3
′

-UTR of mRNA to post-transcriptionally
regulate genes (31). Lnc RNAs are ncRNAs that are longer than
200 nucleotides in length and circ RNAs are a specific class of
ncRNA that form a covalently closed loop, and they interfere with
gene expression and signaling pathways at various stages, such as
the sponging of miRNAs (32, 33). Recently, many studies showed
that miRNAs, lnc RNAs, and circ RNAs are modified by m6A
(28, 34–45).

The m6A writers, METTL3 and METTL14 affect miRNA
maturation by interacting with DiGeorge critical region 8
(DGCR8), which can bind to pri-miRNAs and promote miRNA
maturation (34, 35). HuR is also found to increase miRNA
stability by interfering with the binding of miRNAs to the Ago
complex (28). The m6A eraser, FTO can enhance the stability
of hsa-miR-6505-5p, hsa-miR-651-5p, and hsa-miR-493-5p, and
reduce the stability of hsa-miR-7-5p, hsa-miR-92a-1-5p, and hsa-
miR-6769a-3p, but the underlying molecular mechanism is not
clear (36). While m6A modifies miRNA, miRNAs can also target
m6A independently. For example, the miRNA let-7g binds to
the 3′-UTR of METTL3 mRNA to inhibit its expression (37).
Similarly, miR-145 targets the mRNA encoding YTHDF2 and
inhibits YTHDF2 expression, which can stabilize m6A-modified
mRNAs (38). Therefore, there is crosstalk of m6A modification
with miRNAs.
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FIGURE 1 | Mechanism of the deposition of m6A modification on mRNA and non-coding RNAs. m6A writers, erasers, and readers regulate the deposition of m6A

modification and affect the translocation, translation, stability, degradation, and structure of RNA.

Many m6A-methylated lnc RNA transcripts have been
identified in mouse transcriptome (46). For example, METTL3
can increase the nuclear accumulation of lnc RNA RP11
to enhance its expression in colon cancer (39). METTL16
can methylate 68 lnc RNAs in human embryonic kidney
293 cells (40). By contrast, the m6A eraser, ALKBH5,
can demethylate lnc RNA KCNK15-AS1 and nuclear
paraspeckle assembly transcript 1 (NEAT1) (41). ALKBH5
was also found to reduce the m6A level and increase the
stability of lnc RNA growth arrest-specific 5 (GAS5) (42).
The m6A readers, YTHDF2 and YTHDF3 were found to
promote the degradation of GAS5 (42, 43). The m6A reader
IGF2BP2 interacts with the lnc RNA DANCR and stabilizes
DANCR RNA (44). In addition, YTHDC1 and YTHDF2
are found to regulate the export and stability of circ RNAs
(29, 45). Thus, the m6A modification exerts the regulatory
effect through regulating the expressions of lnc RNAs and
circ RNAs.

m6A RNA MODIFICATION IN
CARDIOVASCULAR RISK CONDITIONS

Many risk factors of CVD such as hyperlipidaemia, diabetes,
and inflammation have been identified, but their molecular
mechanisms in regulating CVD are still investigated (47–49).
Recently, it has been found that m6A RNA methylations are
dysregulated in risk conditions, and involved in the pathology
of CVD (50, 51). These findings may provide insight into the
molecular mechanisms underlying CVD development.

Hyperlipidaemia and obesity are risk factors for CVD
development, and m6A functional enzymes are dysregulated and
involved in lipid metabolism (47, 50). Oscillations in mRNA
m6A methylation in the murine liver depend on a functional
circadian clock, which is essential for lipid metabolic homeostasis
(52). m6A methylation of peroxisome proliferator-activated
receptor α (PPaRα) mRNA that codes for a nuclear receptor can
accelerate lipid metabolism (22). m6A modification of PPaRα

mRNA was decreased by METTL3 knockdown, causing the
reduction of cellular lipid accumulation (53). In addition, m6A
erasers and readers are also involved in lipid metabolism. FTO
facilitates the adipogenesis of 3T3-L1 cells by interacting with
YTHDF2 to maintain FTO-induced m6A demethylation (54).
Consistently, FTO inhibition suppresses adipogenesis through
an m6A-YTHDF2-dependent mechanism (54, 55). YTHDF2 is
found to promote lipid accumulation by directly binding to
the m6A modification site to promote the translation of 6-
phosphogluconate dehydrogenase, which can increase the level
of cholesterol FAM134B (56). Similarly, YTHDF1 is also found
to promote adipogenesis in intramuscular preadipocytes by
enhancing the translation of mitochondrial carrier homolog 2,
which limited energy utilization and promoted diet-induced
obesity (57). These evidences show that m6Awriters, erasers, and
readers can regulate lipid metabolism genes, which are involved
in the development of CVD.

Diabetes is another risk factor positively correlated with
the incidence of CVD (48). In patients with type 2 diabetes
(T2D), m6A levels were reduced, while the mRNA levels of
FTO, METTL3, METTL14, WTAP were significantly elevated
and involved in the pathogenesis of diabetes (51). However,
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high glucose was found to enhance FTO levels in HepG2 cells
(58). FTO can participate in glucose and insulin metabolism
by inducing the expression of forkhead box O1 (FOXO1),
glucose-6-phosphatase catalytic subunit, and diacylglycerol O-
acyltransferase 2 mRNA (51). METTL3 and METTL14 were
found to regulate insulin secretion in human β-cells. METTL14
inhibition can inhibit β-cell proliferation and promote insulin
dysregulation (58). These findings indicate that FTO, METTL3,
and METTL14 play important roles in the development
of diabetes or CVD by regulating glucose metabolism and
insulin secretion.

Inflammation was found in all phenomena associated with
CVD including vascular and cardiac dysfunction (49). For
example, M1-type macrophage-mediated inflammation plays
an important role in the development of atherosclerosis (59).
METTL3 expression is increased in M1-type macrophages and
can directly methylate the mRNA of signal transducer and
activator of transcription 1 to increase its expression (60).
METTL3 can also promote the activation of dendritic cells by
activating toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-
κB) signaling and increasing the expression of CD40, CD80,
and IL-12 (61). METTL3 also can stimulate T cells and
promote their differentiation (61, 62). METTL14 was found to
promote an inflammatory response in endothelial cell (EC) and
atherosclerotic plaque formation by interacting with FOXO1 and
mediating its m6A modification (63). FOXO1 is an important
transcription factor that acts directly on the promoter regions of
VCAM-1 and ICAM-1 to promote their transcription (63). This
evidence indicates that METTL3 and METTL14 can promote
inflammation to regulate the development of CVD.

m6A RNA METHYLATION IN CVDs

CVD risk factors, such as hyperlipidaemia, hyperglycaemia, and
inflammation can lead to vascular dysfunction, which ultimately
results in cardiomyocyte ischemic injury and myocardial
infarction (MI) (64, 65). The fibroblasts are activated and
extracellular matrix (ECM) components are over-produced after
MI; these compensate for cardiomyocyte loss and maintain
the structural integrity of the ECM (66). Excessive cardiac
remodeling and fibrosis following the cardiac injury can cause
cardiomyocyte hypertrophy, which ultimately leads to heart
failure (67). Dysregulated m6A RNA methylation has also been
found to be responsible for vascular or cardiac dysfunction
(Figure 2).

m6A Modification of mRNAs in CVDs
METTL3 and FTO have been found to regulate vascular or
cardiac dysfunction under stress conditions (68). METTL3
induced by hypoxic stress can promote the differentiation
of adipose-derived stem cells into vascular smooth muscle
cells (VSMCs) by increasing the expression of paracrine
factors, including VEGF, and TGF-β (69). Similarly, METTL3
was also found to promote the differentiation of mouse
embryonic stem cells into cardiomyocytes (70). In addition,
METTL3 promoted the apoptosis of hypoxia and reperfusion
(H/R)-treated cardiomyocytes by regulating the expression

of transcription factor EB, which is a master regulator of
lysosomal biogenesis and autophagy genes (71). Moreover,
METTL3 promotes cardiac remodeling and hypertrophy by
catalyzing the m6A methylation of certain subsets of mRNAs
(70). In contrast, METTL3 knockout hearts develop maladaptive
eccentric remodeling and cardiac functional defects with aging
and rapid progressive dysfunction following acute pressure-
overload stress (72). Cardiac FTO expression is decreased in
cardiomyocytes under conditions of hypoxia, ischemia, and heart
failure (73). It has been observed that FTO overexpression
attenuates hypoxia-induced cardiomyocyte dysfunction and
restores calcium handling and sarcomere dynamics (73). FTO has
been shown to attenuate ischemia-induced cardiac remodeling
and improve cardiac contractility by demethylating the m6A
modifications of p53, thereby inhibiting the expression of p53
(74, 75). Thus, m6A writers, erasers, and readers can regulate
the developments of vascular and cardiac diseases via the
methylation of target mRNAs.

m6A-Methylated miRNAs in CVD
miRNAs are a determinant of cardiovascular pathology and
could be modified by m6A (31). For example, m6A modification
and METTL14 are significantly up-regulated in atherosclerotic
vascular endothelial cells and promote their proliferation (76).
The underlying mechanism is that the METTL14 inhibits
the expression of pri-miR-19a but increases the expression of
mature miR-19a by binding to DGCR8 (76). Similarly, METTL3
homolog, mRNA adenosine methylase (MTA) can accumulate
primary pri-miRNAs but inhibits the expression of mature
miRNAs In Arabidopsis (77). In addition, many miRNAs are
found to be mediated the deposition of m6A modification by
METTL3 or METTL14, and some of them play important roles
in CVD development (78). For example, METTL3 affect the
stability of Let-7e, miR-25, miR-126, miR-221/222, and miR-143-
3p (78). METTL14 modulates the primary processing of miR-
126 and miR-375 by interacting with DGCR8 in hepatocellular
carcinoma or colon cancer, respectively (34, 79). Let-7, miR-
126, miR-221/222, and miR-143-3p are key vascular biology
players that are involved in the development of atherosclerosis
and angiogenesis via their effects on ECs and VSMCs (80–
85). Let-7, miR-25, and miR-375 play an important role in the
development of cardiac diseases, including arrhythmia, dilated
cardiomyopathy, MI, cardiac hypertrophy, fibrosis, and heart
failure by regulating apoptosis, autophagy, oxidative stress,
inflammation, and calcium handling (80, 86, 87). Those pieces
of evidence indicate that m6A modifications are involved in the
development of CVD by affecting the expressions of miRNAs.

m6A Methylation of lnc RNAs and Circ
RNAs in CVDs
Similar to miRNAs, lnc RNAs and circ RNAs have been
thoroughly investigated in the context of CVD and have recently
been found to be m6A-methylated (32, 88). For example, the
m6A modification is enriched on lnc RNA 1281 and the m6A
modification of lnc RNA 1281 affects the differentiation of
embryonic stem cells (ESC) via sponging Let-7, which has
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FIGURE 2 | Regulation of m6A RNA modification in CVD. CVD risk factors can result in deregulated m6A deposition on mRNA, miRNA, lnc RNA, circ RNA, which are

known to play a role in the development of cardiac and vascular disease.

been reported to play an important role in the cardiovascular
differentiation of ESCs and the development of CVD (80, 89).

The lnc RNA H19 is highly expressed in human
atherosclerotic lesions and promotes the development of
atherosclerosis by regulating the mitogen-activated protein
kinase and NF-kB signaling pathways (90). Additionally, H19
ameliorates ischemia-reperfusion (I/R)-induced myocardial
apoptosis or MI-induced myocardial injury by sponging miR-
877-3p or miR-22-3p, respectively (91, 92). In H9c2 cells with
H2O2-induced senescence, H/R enhanced the level of m6A
methylation and increased the expression of lnc RNA H19 by
upregulating ALKBH5 (93). Therefore, the m6A modification of
H19 is involved in the development of CVD.

Lnc RNA myocardial infarction associated transcript (MIAT)
is also found to inhibit EC proliferation, migration, and tube
formation in diabetes via the sponging of miR-29b (94).
MIAT levels were also increased in MI and deregulated some
fibrosis-related regulators by sponging miR-24 and increasing
the expression of furin and TGF-β1 (95). Similarly, the
MIAT levels increase in response to hypoxia, and MIAT is
involved in cardiac interstitial fibrosis (96). Oxidized low-
density lipoprotein (ox-LDL)-induced m6A demethylation was
found to facilitate the binding of HIF1α to the ALKBH1-
demethylated MIAT promoter and the transactivation of MIAT,
indicating that MIAT is a target gene of ALKBH1-related m6A
methylation (97).

Lnc RNA X-inactive specific transcript (XIST) was reported
to play an important role in CVD development and is
highly m6A-methylated (3). XIST was highly expressed in
human thoracic aortic dissection and promoted the apoptosis
of VSMCs by sponging miR-17 (98). Consistently miR-17
was reported to promote mitochondria-dependent apoptosis
by targeting at phosphatase and tensin homolog deleted on
chromosome 10 (PTEN) (98). In addition, XIST inhibited
myocardial cell proliferation by sponging miR-130a-3p, which
targets phosphodiesterase 4D (99). XIST was also found to
promote phenylephrine-induced cardiac hypertrophy via the
miR-330-3p/S100B and miR-101/TLR2 axis (100, 101). The
METTL3/METTL14 complex deposited the 78 m6A-methylation
on XIST RNA by interacting with the MACOM complex,
comprising WTAP, VIRMA, and RBM15 proteins, and inhibited
the expression of XIST (102). YTHDC1 and YTHDF2 bind
to XIST and mediate its degradation (102). This evidence
indicated that the m6A modification of XIST might regulate the
development of CVD.

Metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) regulates the development of CVD and contains
several m6A motifs (103, 104). MALAT1 protects against
endothelial injury induced by ox-LDL, hyperglycaemia, and
oxidative stress via the sponging of miR-22-3p or activation
of nuclear factor erythroid 2 (105, 106). MALAT1 levels
were increased in the serum and myocardial tissue of AMI
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and promoted cardiomyocyte apoptosis or myocardial tissue
injury induced by hypoxia, H/R, or I/R by targeting miR-
144, miR-125, miR-200a-3p, or miR-320, respectively (107–110).
However, it was also found that MALAT1 inhibits isoproterenol-
induced cardiomyocyte apoptosis by sponging miR-558 (111).
Additionally, MALAT1 promoted angiotensin II-induced cardiac
fibrosis by sponging miR-145, thereby enhancing target growth
factor-β1 activity (112). Recently, the m6A-deposition sites of
MALAT1 have been identified. For example, m6A modification
at the A2577 or A2515 site of MALAT1 can destabilize the
RNA hairpin, release the poly(U) tract, and increase binding
with HNRNPC or HNRNPG, respectively (103, 104). METTL16
specifically binds to the 3′-end of a triple-helix and enhances
the stability of MALAT1 transcripts (113). This evidence
indicates that MALAT1 could be m6A modified to regulate the
development of CVD.

The levels of GAS5 were increased in atherosclerotic rats
and aggravated ox-LDL-induced inflammation by inhibiting the
expression of miR-221 or miR-135a (114, 115). GAS5 was also
found to accelerate myocardial I/R injury by sponging miR-
532-5p (116). In contrast, other studies showed that GAS5
could attenuate homocysteine-induced cardiac microvascular
ECs by inhibiting miR-33a-5p and reverse cardiac apoptosis
and fibrosis via the inhibition of semaphorin-3A or miR-21
expression, respectively (117–119). The m6A modifications of
GAS5 have also been identified. ALKBH5 reduced the m6A level
and increased the stability of GAS5. m6A induced GAS5 RNA
degradation in a YTHDF2-dependent manner (42). Knockdown
of YTHDF3 was also found to prolong the degradation of GAS5.
This evidence indicates that m6A-deposited GAS5 might be
involved in the development of CVD (42, 43).

Lnc RNA, Myheart (MHRT), plays an important role in
cardiac disease. MHRT protects against the H2O2 or H/R -
induced apoptosis of cardiomyocytes (120). In addition, MHRT
is found to regulate cardiac hypertrophy and is associated with
the outcome of heart failure (121, 122). Over-expression of FTO
protects against H/R-induced apoptosis of myocardial cells by
regulating m6A modification of MHRT, indicating that m6A
modification ofMHRT participates in the development of cardiac
disease (123).

Certain circ RNAs, such as circXpo6 and circTmtc3, have also
demonstratedm6A-methylation in the lungs of rats with hypoxia-
induced pulmonary hypertension, as well as in pulmonary artery
smooth muscle cells, and, finally, in pulmonary arterial ECs
exposed to hypoxia. This suggests that m6A-methylated circXpo6
and circTmtc3 might be involved in the development of CVD
(124). However, the role of m6A-methylated circ RNAs in the
development of CVD requires further study.

MODULATION OF m6A FOR CVD
TREATMENT

Modulation of m6A could be a strategy for CVD treatment.
For example, silencing of METTL reduced I/R-induced cardiac

injury and H/R-induced apoptosis of cardiomyocytes by
inducing autophagy (71). Moreover, METTL3 inhibition reduced
cardiomyocyte remodeling under the hypertrophic stimuli (125).
Similarly, inhibition of METTL14 was found to decrease the
calcification and enhance the vascular repair function (126).
It was favored that inhibition of METTL14 inhibited the
proliferation of atherosclerotic vascular endothelial cells by
affecting the expression of miR-19 (76). Over-expression of
FTO by adeno-associated virus serotype 9 (AAV9) significantly
prevented the formation of atherosclerotic plaques by reducing
total cholesterol (127). Furthermore, FTO over-expression
significantly improved cardiac function by reducing fibrosis and
increasing angiogenesis at the chronic stage of post-myocardial
infarction (73). Moreover, the protective effect of FTO in cardiac
disease is associated with the regulation of m6A modification of
MHRT (123).

Non-coding RNAs also can regulate m6A Micro RNAs such
as miR-33a and miR-4429 were found to inhibit METTL3 in
the field of tumor studies, indicating that those miRNAs might
be as therapeutic agents for CVD (128, 129). In addition,
lnc RNA H19 has been reported to protect against H2O2-
induced H9c2 cell apoptosis by up-regulating ALKBH5 (93).
Thus, ncRNAs might be used for the regulation of m6A and
CVD treatment.

CONCLUSION

CVD is a leading cause of death worldwide, but the underlying
mechanism remains unknown. m6A is the most common,
abundant, and conserved internal modification in RNAs,
including mRNA and ncRNAs. In this review, we summarized
the current research on m6A RNA modification on CVD
risk conditions and development, which may help elucidate
the molecular mechanism underlying CVD development. In
addition, inhibition of MELL3/14 or over-expression of FTO
could be used for the treatment of CVD. Notably, some ncRNAs
also can regulate m6A modifications and could be therapeutic
molecules for CVD, However, m6A modifications of ncRNAs in
CVD require further study.
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