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Wnt/β-catenin signaling stimulates the
expression and synaptic clustering of the
autism-associated Neuroligin 3 gene
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Giorgia D. Ugarte1, Ariel E. Reyes2, Carlos Opazo3 and Giancarlo V. De Ferrari 1

Abstract
Synaptic abnormalities have been described in individuals with autism spectrum disorders (ASD). The cell-adhesion
molecule Neuroligin-3 (Nlgn3) has an essential role in the function and maturation of synapses and NLGN3 ASD-
associated mutations disrupt hippocampal and cortical function. Here we show that Wnt/β-catenin signaling increases
Nlgn3 mRNA and protein levels in HT22 mouse hippocampal cells and primary cultures of rat hippocampal neurons.
We characterized the activity of mouse and rat Nlgn3 promoter constructs containing conserved putative T-cell factor/
lymphoid enhancing factor (TCF/LEF)-binding elements (TBE) and found that their activity is significantly augmented
in Wnt/β-catenin cell reporter assays. Chromatin immunoprecipitation (ChIP) assays and site-directed mutagenesis
experiments revealed that endogenous β-catenin binds to novel TBE consensus sequences in the Nlgn3 promoter.
Moreover, activation of the signaling cascade increased Nlgn3 clustering and co- localization with the scaffold PSD-95
protein in dendritic processes of primary neurons. Our results directly link Wnt/β-catenin signaling to the transcription
of the Nlgn3 gene and support a functional role for the signaling pathway in the dysregulation of excitatory/inhibitory
neuronal activity, as is observed in animal models of ASD.

Introduction
Autism spectrum disorders (ASD) are highly hetero-

geneous, pervasive neurodevelopmental disorders char-
acterized by persistent impairments in reciprocal social
communication and repetitive patterns of behaviors.1

Although its etiology is unknown, ASD prevalence
appears to be increasing.2–5 Family and twin studies have
established ASD as highly inheritable diseases with a 90%
phenotypic concordance among monozygotic twins.6

ASD mutations range from either common or de novo
single nucleotide to copy number variants, to large-scale
DNA deletions, duplications or translocations.7,8

According to SFARI Gene9 there are more than 800 genes
implicated in ASD, with at least 50 high-ranking candi-
date risk genes, including the Neuroligin-3 gene (NLGN3:
Gene ID: 54413, ChrXq13.1), which is strongly enriched
with variants that affect ASD risk.10–13

Neuroligins (Nlgns) are postsynaptic cell-adhesion
molecules that act as ligands for presynaptic Neurexins
(Nrxns).14–16 Five different NLGN genes have been
described in humans (NLGN1-3/4X/4Y), and since the
first description of NLGN3 and NLGN4 as candidate
genes for ASD10 all other NLGN genes have been asso-
ciated with the disorder.17–19 Moreover, genes coding for
Nlgn-interacting partners in the postsynaptic density,
such as some NRXN20–22 and SHANK family members,
have also been implicated with ASD,23–25 supporting an
essential role for Nlgn complexes in the onset or devel-
opment of ASD. At the functional level, Nlgns enhance
the formation and maturation of specific types of
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synapses. For instance, while Nlgn1 is found preferentially
in excitatory and Nlgn2 in inhibitory and cholinergic
synapses,26,27 Nlgn3 localizes at both excitatory and
inhibitory synapses.28–32 Nlgn4X has been observed in
inhibitory glycinergic synapses.33 Currently, mice
expressing Nlgn3 mutated forms display autism-like
behaviors and are highly sought as experimental models
for the study of ASD pathology.34,35

We predicted earlier that sustained gain-of-function of
Wnt/β-catenin signaling in the developing brain could be
responsible for the onset/development of ASD and that
this effect involves the additive effect of genetic variants
within components and/or genes whose products mod-
ulate its functional activity.36 This hypothesis has received
considerable attention recently,37–40 mainly since it has
been observed that 39% of the more disruptive de novo
mutations in ASD family trios were found within inter-
connected networks containing chromatin remodeling,
synaptic, and Wnt/β-catenin signaling genes.41,42 Like-
wise, integration of RNA-seq expression profiles during
brain development with protein–protein interaction net-
works have identified highly modules enriched of con-
nected Wnt signaling genes associated with ASD.43 At the
genetic level, several Wnt/β-catenin components have
been associated with ASD, including the canonical Wnt2
ligand,44 Wnt/β-catenin target genes Engrailed 2 (EN2)45

and the hepatocyte growth factor receptor (MET),46–48

and cadherins encoding genes such as CDH5, CDH8,
CDH9, CDH10, CDH13, CDH15, PCDH10, PCDH19, and
PCDHb4,49 some of which interact with β-catenin in cell-
cell adhesion complexes. More recently, the chromo-
helicase domain protein 8 (CHD8),41,50,51 which inhibits
β-catenin through direct binding,52 and DYRK1A that
modulates Wnt/β-catenin signaling through interaction
with the p120 catenin,53 have been found to be associated
with ASD. Interestingly, CHD8 and DYRK1A harbor
recurrent disruptive mutations and are highly correlated
with head size abnormalities,51 a feature commonly
observed in ASD. Moreover, rare de novo genetic variants
in the β-catenin (CTNNB1) gene itself have been impli-
cated in severe intellectual disability.54

Further support for a role of Wnt/β-catenin signaling in
ASD comes from pharmacological studies, research in
ASD comorbidities such as Tuberous sclerosis or in the
recognition that an abnormal immune response plays an
important role in the onset or development of the dis-
order.55–57 First, in utero exposure to teratogens such as
valproic acid (valproate; VPA) causes a higher incidence
of ASD in the offspring58,59 and VPA is known to increase
cytosolic and nuclear β-catenin levels and activate Wnt/β-
catenin-dependent gene expression, by a complex
mechanism involving inhibition of histone deacetylase
(HDAC) and glycogen synthase kinase-3α/β (GSK3α/β)
activities.60,61 Second, in Tuberous sclerosis the tumor

suppressor complex formed by hamartin (TSC1 in Chr 9)
and tuberin (TSC2 in Chr 16) interact with the β-catenin
degradation complex and thus modulates the action of
Wnt/β-catenin signaling.62,63 Finally, several inflamma-
tory cytokines, including interleukin 6 (IL-6), tumor
necrosis factor-α (TNF-α), transforming growth factor-β1
(TGF-β1) and interferon γ (IFN-γ), are elevated in per-
ipheral blood cells, serum, plasma, cerebrospinal fluid, or
in the brains of ASD children.64–72 In this context, recent
evidence indicates that Wnt/β-catenin and non-canonical
Wnt signaling have both pro- and anti-inflammatory
activity73 and that the signaling cascade is involved in
inflammation-driven brain damage and inflammation-
directed brain repair.74 Wnt3a selectively increases the
expression of proinflammatory immune response genes in
microglia and enhances the release of de novo IL-6, IL-12,
and TNF-α.75 Nevertheless, the transcriptional program
elicited by Wnt/β-catenin signaling in different types of
brain cells has received little attention.76–79

Therefore, considering that Wnt/β-catenin signaling has
an essential role in ASD affected regions such as the
frontal cortex and the hippocampal formation,80,81 that
others and we have observed that Wnt/β-catenin signaling
enhances excitatory neurotransmission in hippocampal
neurons,82–85 and that the transcriptional program con-
trolling Nlgn3 expression and function is currently
unknown, here we investigated the functional effects of
the signaling cascade on Nlgn3 expression and synaptic
function in hippocampal neurons.

Materials and methods
Primary cultures of rat hippocampal neurons
Primary hippocampal neurons were obtained from E18

Sprague-Dawley rat embryos (randomly selected; male/
female in equal proportion) as described.84,86 Cells were
maintained for 14 days in vitro (DIV) on culture plates
(3.5× 105 cells/plate) coated with poly-L-lysine (Sigma-
Aldrich, St. Louis, MO, USA). Primary neurons were
grown on Neurobasal medium supplemented with B27
(Gibco BRL, Thermo Fisher Scientific, Waltham, MA,
USA) and 50% media was replaced every 3 days. Cells
were kept at 37 °C in 5% CO2 incubator and saturated
humidity. The study protocol with rat embryos was
approved by the Bioethical Committee of Universidad
Andres Bello, Chile (026/2013) and was conducted in
accordance with the Ethical Guidelines for Treatment of
Laboratory Animals of the National Commission on Sci-
ence and Technology (CONICYT- Chile).

Cell lines
HT22 mouse hippocampal cells87–90 (a gift from Dr.

Randall T. Moon, University of Washington, WA, USA),
HEK293T, Wnt3a-L-cells mouse fibroblasts and control-
L-cells (CRL-3216, CRL-2647, and CRL-2648,
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respectively; ATTC, Rockville, MD, USA), were main-
tained in DMEM supplemented with 10% FBS and 1%
penicillin/streptomycin (Gibco BRL, Thermo Fisher Sci-
entific), 1% P/S (Invitrogen, Thermo Fisher Scientific) and
kept at 37 °C in 5% CO2 incubator with saturated
humidity.

Wnt3a purification
Wnt3a is a specific Wnt/β-catenin signaling agonist that

can be efficiently recovered from conditioned medium
from Wnt3a-secreting L-cells (Wnt3a-CM). Wnt3a pur-
ification was carried out, as previously described.84,91,92

The presence of the Wnt3a protein was detected with an
anti- Wnt3a antibody (R & D Systems, Minneapolis, MN,
USA). Purity was analyzed by SDS–PAGE (8%), stained
with Coomassie Blue G250, and analyzed through densi-
tometry by using software ImageJ.93

Semi- and quantitative-PCR (q-PCR) analysis
Primary cultures of hippocampal neurons or HT22 cells

were seeded in 6 well culture plates (5× 105 cells per ml)
and stimulated with 200–400 ng/ml of purified Wnt3a
protein or with 10–20mM LiCl (Sigma-Aldrich) and
collected for mRNA or protein analyses, as described.94,95

Briefly, total RNA was extracted in RNase free condi-
tions using TRIzol reagent (Thermo Fisher Scientific) and
2 µg of RNA was reverse transcribed with Affinity Script
QPCR cDNA synthesis kit (Agilent Technologies, Santa
Clara, CA, USA). q-PCR was performed in a Stratagene
Mx3005P thermal cycler using 40 ng of cDNA, Brilliant II
SYBR Green qPCR Master Mix (Agilent Technologies),
and 200–400 nM of primers targeting known Nlgn3
mouse and rat mRNA isoforms (Supplementary Table
S1). Thermal cycling conditions included an initial acti-
vation step at 95 °C for 10min and 40 cycles of denaturing
at 95 °C, annealing at 60 °C, and amplification at 72 °C for
15 s. Amplification was checked for a single product by
analyzing the melting curve, and the sizes of each product
were confirmed by gel electrophoresis using GelRed
Nucleic Acid Gel Stain (Biotium, Fremont, CA). The
expression levels of Nlgn3 and cMyc were normalized to
Rpl13a expression, using the delta–delta Cq method (2
−ΔΔCq), as described.96

shRNA experiments
Lentiviral constructs expressing shRNAs against mouse

β-catenin (β-catenin-pLKO.1, #SHCLND-NM_007614) or
control non-targeting shRNA (control-pLKO.1,
#SHC002) were obtained from MISSION® (MISSION
shRNA Library, Sigma-Aldrich). Lentiviral particles were
produced in HEK293T cells co-transfected with the
pLKO.1 construct, pCMV-dR8.91 (Delta 8.9) plasmid
(containing gag, pol and rev genes) and pVSV.G plasmid
(at a 3:2:1 ratio). Transfections were performed using

Lipofectamine 2000 (Invitrogen, Thermo Fisher Scien-
tific). Lentiviral particles were harvested 48 h post trans-
fection, filtered through a cellulose acetate filter (0.45 µm)
and concentrated by centrifugation (3,800 rpm at 4 °C for
30min) with a 100 kDa Ultra15 Amicon filter (EMD
Millipore, Billerica, MA, USA). Infections were carried
out in HT22 cells plated in 60mm diameter with 80–90 %
confluence for 48 h using 100 µl concentrated virus.

Western blot
Nlgn3, β-catenin and β-actin proteins were analyzed by

western blot using the H-55 anti-Nlgn3 antibody (SC-
50395; 1:1000; Santa Cruz Biotechnology, TX, USA), the
monoclonal E-5 β- catenin antibody (SC-7963; 1:2000;
Santa Cruz Biotechnology) or with the anti-β-actin anti-
bodies (SC-47778; 1:5000; Santa Cruz Biotechnology).
Membranes were washed (3×) and incubated with
appropriate secondary antibodies conjugated to horse-
radish peroxidase for 1 h at room temperature, washed
and incubated for 2 min with enhanced chemilumines-
cence solution (Pierce ECL, Thermo Scientific, IL, USA)
and exposed for 1–3min on Carestream Kodak BioMax
films (Sigma-Aldrich). Secondary antibodies were: goat-
anti rabbit IgG-HRP (SC-2004 for Nlgn3, 1:5000; Santa
Cruz Biotechnology), goat-anti mouse IgG-HRP (SC-
2055, for β- catenin and β-actin; 1:5000; Santa Cruz
Biotechnology).

Transcriptional activity of Nlgn3 promoter constructs
Nlgn3 promoter-luciferase fragments were generated by

conventional PCR from genomic DNA extracted from
either mouse HT22 hippocampal cells or Sprague-Dawley
primary neurons using specific primers containing
restriction sites (Supplementary Table S1) and subse-
quently inserted into the pGL3-Basic vector (Promega,
Madison, WI, USA), as described.94,95 Activity of Nlgn3
promoters was measured in 80–90% confluent HEK293
cells seeded in 24 well culture plates. Cells were co-
transfected using Lipofectamine 2000 (Invitrogen,
Thermo Fisher Scientific) for 24 h with either pNL3 or
pSUPERTOPFlash (STF) luciferase constructs,97 in the
absence or presence of constitutively active β-catenin
S33Y or the dominant negative ΔTCF4 constructs.98

The pRL-TK Renilla luciferase plasmid (1 ng) was used
as an internal control. Firefly and Renilla luciferase
activities were determined using the Dual-Luciferase
Reporter Assay (Promega) in a Victor-3 multiplate
reader (Perkin Elmer, Waltham, MA, USA). Promoter
activity was normalized as the ratio between Firefly and
Renilla luciferase units. Site-directed mutagenesis in TBE
Sites II and III were generated using the pNL3Mm1.4
construct as background with M1 or M2 primers (Sup-
plementary Table S1) with the QuickChange Site-
Directed Mutagenesis kit (Stratagene, Agilent
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Technologies). All constructs were verified through direct
sequencing (ABI-3130 Genetic Analyzer, Applied Bio-
systems, Foster City, CA, USA).

Chromatin immunoprecipitation (ChIP) assays
ChIP studies were performed in HT22 neurons, as

described.94 Briefly, 2.0× 107 cells were incubated with
cell-conditioned medium containing Wnt3a (Wnt3a-CM;
Wnt3a-CM 50% plus 50% of fresh HT22 incubation
media), LiCl or CHIR 98014 (Sigma-Aldrich), as Wnt/β-
catenin pharmacological agonists.99,100 Cells were cross-
linked with 1% formaldehyde (Sigma-Aldrich) for 10 min
at room temperature and then the reaction was stopped

with 0.125M glycine. Samples were sonicated with the
M220 Focused-ultrasonicator (Covaris, Woburn, MA,
USA) using milliTube caps (Covaris), following the high
cell chromatin shearing protocol suggested by the man-
ufacturer. In total 25 µg of chromatin was used in each
ChIP assay. Endogenous β-catenin bound to TBE Sites
within the mouse Nlgn3 promoter was immunoprecipi-
tated with rabbit anti β-catenin antibody (SC-7199; 4 µg;
Santa Cruz Biotechnology). Cross-linked chromatin
fragments averaging 200–300 bp were assessed by q-PCR
as described above. Antibody specificity was assayed with
normal rabbit-IgG (12–370; 4 µg; EMD Millipore).
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Fig. 1 Wnt/β-catenin signaling activates Nlgn3 transcriptional program in hippocampal cells. a Top: Genomic context of human NLGN3 in the
long arm of chromosome X and schematic exon-intron boundaries of the gene. White and gray boxes: 5′ and 3′ UTR and exons, respectively. Middle:
Conservation profile of the human NLGN3 promoter sequence compared with similar genomic regions in Mus musculus and Rattus norvegicus
(50–100%). Bottom: Schematic representation of potential TCF/LEF sites (TBE: CTTTG, circles) found in these species. ECR: Evolutionary conserved
region. b Early expression levels of Nlgn3 and cMyc genes after 2 h treatment with increasing doses of either purified Wnt3a protein or LiCl in HT22
hippocampal cells or rat primary hippocampal neurons (RHN). Rpl13a was used as a reference gene. c Quantitative determination of Nlgn3 and cMyc
mRNA levels after 2 h treatment with Wnt3a (200–400 ng/ml) protein or LiCl (10–20 mM) in HT22 hippocampal cells and RHNs. d TOP: protein levels
of β-catenin after 48 h treatment with β-catenin-shRNA. shRNA of GFP was used as control and β-actin as a loading control. Bottom: expression levels
of Nlgn3 and β- catenin. e Nlgn3 and β-catenin protein levels in HT22 cells and RHNs after 6 h treatment with 200 and 400 ng/ml of purified Wnt3a
protein. β-actin was used as a loading control. In (c) and (d), data represent mean ± s.e.m., *P < 0.05, **P < 0.01, two-tailed Mann–Whitney test
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Immunofluorescence and image processing
Control and Wnt3a-treated rat hippocampal neurons

(14 DIV) cultured in poly-L-lysine (Sigma- Aldrich) coated
coverslips (5.0× 105 cells/plate) were fixed using 4% for-
maldehyde-4% sucrose (pH: 7.0) solution for 20min at
room temperature. Cells were permeabilized with Triton
X-100 0.2 % for 5 min and treated with blocking solution
(PBS 1× /BSA 2%, pH: 7,4) for 30 min. Primary anti-
bodies against Nlgn3 (H-55; SC-50395; 1:100), PSD-95
(N-18; SC-6926; 1:100), and MAP2 (H-300; SC-20172;
1:100) (Santa Cruz Biotechnology, USA) were used and
Alexa Fluor Antibodies (1:400; Molecular Probes, Eugene,
OR, USA) for secondary staining. Samples were examined
on a LSM780 confocal microscopy (Carl Zeiss, Jena,
Germany). Images were deconvolved using the ImageJ/
FIJI101 plugin DeconvolutionLab102 using theoretical
point spread functions. Total Nlgn3 fluorescence intensity
was measured as arbitrary units in all dendritic processes
with clear signal of MAP2 in 15 µm segments that con-
sistently covered an area between 40 and 200 µm2. To
illustrate colocalization between Nlgn3 and PSD-95 pro-
teins, three-dimensional isosurfaces of dendritic processes
were created using Imaris v8.2 (Bitplane, Concord, MA,
USA) and by applying the ImarisSurface tool (smooth-
ness, 0.2 µm; quality level, 5) on the MAP2 fluorescent
signal. Nlgn3 and PSD-95 clusters inside of dendritic
processes were rendered using the ImarisSpots tool. Co-
localization coefficients of Nlgn3 and PSD-95 (Pearson
and Manders) were determined using the ImarisColoc
tool in an average of four dendrites per neuron, which
were selected based on brightness103 and length (~15 µm).
Briefly, while Pearson’s correlation coefficient is an adi-
mensional parameter that establishes whether colocali-
zation exists independent of signal strength, thus avoiding
the possibility of false positives, the Manders coefficient
represents directly the percentage of colocalization
between two signals.

Statistical analysis
Data are presented as mean± s.e.m. Each experiment

was repeated three times with three replicates. All data
processing and analysis were completed before unblinding
of the analyzer. Sample size was chosen according to
previous reports and our pre-experiments. A minimum
number of three biological replicates were performed to
ensure reproducible and robust changes. No cell samples
or animals were excluded from the analysis. Data were
analyzed with Prism v5 (GraphPad Software, La Jolla, CA,
USA). For the comparison of more than two groups, we
used one-way ANOVA test followed by Kruskal–Wallis
post hoc test. To compare two groups, we performed a
two-tailed Mann–Whitney test. Statistically significant p-
values are shown as *P< 0.05, **P< 0.01 and ***P< 0.001.

Results
Enhancement of Nlgn3 expression via Wnt/β-catenin
signaling in hippocampal cells
According to genome wide data on β-catenin and TCF/

LEF chromatin occupancy,78,104–106 most Wnt/β-catenin
target genes have regulatory sequences within 2.5 kb
clustering around transcriptional start sites (TSS). We
searched for core TCF/LEF-binding elements (TBE:
CTTTG) known to mediate β-catenin transcriptional
activation of Wnt target genes, including a 3000 bp region
upstream of the predicted transcriptional start site (TSS)
in human, mouse and rat Nlgn3 gene sequences (Fig. 1a).
We found multiple TBE sites in evolutionary conserved
regions (ECR browser),107 suggesting a conserved role for
the signaling cascade as a transcriptional regulator of
Nlgn3 genes.
We have previously shown that Wnt/β-catenin target

gene expression is rapidly induced (2–4 h) upon activation
of the signaling cascade in different cell lines and primary
cultures of hematopoietic cells.94,95,108 We therefore sti-
mulated mouse HT22 hippocampal cells for 2 h with
increasing concentrations of purified Wnt3a protein (200
and 400 ng/ml) or with LiCl (10 and 20mM), which acts
as a pharmacological inducer of Wnt/β-catenin signal-
ing.86,99 We observed that both treatments increased
Nlgn3 expression (Fig. 1b) and that the effect was paral-
leled by induction of the known Wnt/β-catenin target
gene cMyc.109 The increase in Nlgn3 expression was
consistently replicated in 14 DIV primary cultures of
hippocampal neurons following short- term Wnt3a or
LiCl treatments. Quantitative determination of mRNA
levels in cells similarly treated confirmed that there was a
significant increase in Nlgn3 and cMyc expression in
response to Wnt/β-catenin activation (>2.5 and >3-fold
induction, respectively; *P< 0.05; n= 3) (Fig. 1c) and that
the transcriptional effect was clearly observed after 4 h
treatment. Conversely, infection of HT22 cells with
shRNA against mouse β-catenin for 48 h significantly
decreased endogenous Nlgn3 expression (up to 35%; Fig.
1d). In addition, augmented protein levels of β-catenin
and Nlgn3 were readily observed in HT22 cells and hip-
pocampal neurons after 6 h Wnt3a treatment (200 and
400 ng/ml; Fig. 1e), at a time when most β-catenin is
found within the nucleus of these cells (Supplementary
Figure S1). We concluded that Wnt/β-catenin signaling is
involved in the transcriptional program that controls
Nlgn3 expression.

Contribution of TCF/LEF binding elements in mammalian
Nlgn3 promoter activity
To investigate the contribution of Wnt/β-catenin

responsive TBE sites on the transcriptional activity of the
mouse Nlgn3 promoter, we initially cloned a 2849 bp
genomic segment upstream of the luciferase gene in the
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pGL3-basic vector (pNL3Mm2.8) and assayed its activity
through transient transfections in HEK293 cells. This
promoter region included 2448 bp upstream of the TSS
(Nlgn3-001 transcript, ENSMUST00000065858 used as
reference), 87 bp of the unstranslated exon 1 and 314 bp
of intron 1, contained nine putative TBE sites (Fig. 2a) and
displayed significant basal transcriptional activity (Fig. 2b),
indicating that the pNL3Mm2.8 reporter maintains
necessary elements to support Nlgn3 gene expression. As
suspected, a significant enhancement in pNL3Mm2.8
reporter activity occurred when HEK293 cells were co-
transfected for 24 h with increasing concentrations of a
construct coding for a constitutively active β-catenin
(S33Y)98 protein (ca. 5 fold promoter activity; P< 0.05, n
= 3; Fig. 2c).
To identify the minimal promoter with maximal

response to Wnt/β-catenin signaling, we serially-deleted
potential TBE sites, using the pNL3Mm2.8 construct as
background. We observed that the activity of
pNL3Mm1.4 (1,362 bp, −961/+401), containing TBE
sites I–IV and basal elements, was significantly augmented
in the presence of constitutively active β-catenin (S33Y)
co-transfected for 24 h (>3-fold; p< 0.05; Fig. 2c). In
addition, we observed that a third 244 bp construct
(pNL3Mm0.3) containing only intron 1 and TBE site I
(+157/+401) did not support basal reporter transcription

(Fig. 2b) and thus it was discarded for subsequent
experiments. Next, the transcriptional activity
pNL3Mm1.4 was explored in loss-of-function assays with
a dominant-negative TCF4 (ΔTCF4) construct, which
codes for a transcription factor lacking 30 residues from
its amino-terminus and that is unable to bind β-catenin.98

We found that the enhancement induced by β-catenin on
pNL3Mm1.4 promoter activity was significantly antag-
onized (> 50%) by co-expressing ΔTCF4 for 24 h (Fig.
2d), corroborating that β-catenin- mediated transcrip-
tional activation involves association with TCF/LEF family
members. Finally, these gain and loss-of-function experi-
ments were consistently replicated using four additional
rat Nlgn3 promoter constructs (pNL3Rn2.8: 2098 bp,
−1786/+312; pNL3Rn1.4: 1377 bp, −1065/+312,
pNL3Rn1.1: 1116 bp, −1786/−671; and pNL3Rn0.6: 566
bp, −2098/−1221; Supplementary Figure S2), indicating
that pNL3-1.4 represents an evolutionary conserved
promoter region, which exhibits basal activity and a sig-
nificant induction in response to Wnt/β-catenin
modulation.

Novel and functional TBE site in the promoter of the Nlgn3
gene
The binding of endogenous β-catenin to conserved TBE

sites on the Nlgn3 promoter was analyzed through
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chromatin immunoprecipitation (ChIP) assays in HT22
cells. We observed that a significant binding of β-catenin
to TBE sites II and III within the mouse Nlgn3 promoter
was induced after treatment with either cell-conditioned
media containing Wnt3a (Wnt3a-CM, see Methods) for 4

h or 20mM LiCl for 24 h (rapid or persistent response,
respectively) (Fig. 2a). In addition, direct binding of β-
catenin to TBE sites II–III was similarly observed in HT22
cells incubated for 4 h with CHIR 98014 (Fig. 2b), which
acts as a specific inhibitor of GSK3β activity and thus
enhances nuclear and cytosolic levels of β-catenin.100

Finally, since these experiments did not resolve whether
β-catenin binds directly to Nlgn3 TBE Site II and/or TBE
Site III (mainly due to their close spatial proximity), we
introduced through site-directed mutagenesis two-
nucleotide changes in each TBE sequence, using
pNL3Mm1.4 as the template (Fig. 3c). Remarkably, tran-
sient transfection of these constructs in HEK293 cells for
24 h revealed that mutations affecting only the consensus
sequence of TBE site III (pNL3Mm1.4-MIII) completely
abrogated β-catenin activation of the pNL3Mm1.4
reporter construct. From these experiments, we conclude
that TBE site III (−378/−382) is a functional Wnt/β-
catenin transcriptional element within the Nlgn3
promoter.

Wnt/β-catenin signaling enhances Nlgn3 clustering
Nlgn3 promotes synapse formation and localizes at

excitatory or inhibitory synapses, where it interacts with
postsynaptic proteins PSD-95 or gephyrin, respec-
tively.29,30,32 Given that we reported that purified Wnt3a
modulated intracellular calcium and enhanced excitatory
neurotransmission in hippocampal neurons,84 we hypo-
thesized that the signaling cascade may enhance synaptic
function by increasing Nlgn3 levels in dendritic processes,
where it would interact with PSD-95 in the postsynaptic
terminal. Therefore, we incubated 14 DIV rat hippo-
campal neurons in the absence or presence of purified
Wnt3a (400 ng/ml) for 2 or 24 h and performed immu-
nofluorescence analyses to examine whether activation of
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the signaling cascade affects the differential recruitment of
Nlgn3 to dendritic processes. First, Nlgn3 was distributed
along dendrites in a punctate manner, in agreement to
previous reports,32 where it regularly colocalized with
PSD-95 protein (Fig. 4a). Notably, after 24 h Wnt3a
incubation we observed that the average Nlgn3 intensity
fluorescence was significantly increased in dendrites
compared to control primary neurons (Fig. 4b). We were
not able to detect differences in Nlgn3 fluorescence after
short-term Wnt3a treatment (2 h). Second, we examined
the effect of the Wnt3a ligand in Nlgn3 and PSD-95
clustering by measuring the intensity and surface area of
individual clusters in dendritic processes. We observed
that both Nlgn3 and PSD-95 cluster intensity and surface
area increased after 24 h Wnt3a treatment (Supplemen-
tary Figure S3a), indicating that these excitatory synaptic

proteins are differentially recruited to potential synaptic
sites. We further measured the area covered by these
proteins along dendrites and observed that Nlgn3 surface
area, but not PSD-95 surface area, was significantly
increased after 24 h Wnt3a treatment (Supplementary
Figure S3b). Finally, three-dimensional volume rendering
of Nlgn3 and PSD-95 clusters further revealed a sig-
nificant overlap of Nlgn3 and PSD-95 signals (Fig. 4c), and
confirmed that Wnt3a signaling induces Nlgn3 clustering
and colocalization with PSD-95 protein, likely participat-
ing in excitatory postsynaptic assembly.

DISCUSSION
An excess of synapses in frontal, temporal and parietal

lobes has been found in children with ASD compared to
age-matched controls110,111 and changes in synaptic
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structure are detected in multiple mouse models of
ASD.112 In this context, due to its participation in synaptic
structure and maturation since early development, post-
synaptic cell-adhesion molecules such as Nlgns and
associated partners are major candidate genes to under-
stand ASD. Nevertheless, very little is known regarding
the transcriptional program that controls the expression
of these molecules. Here we have shown that Wnt/β-
catenin signaling induces a dose-dependent enhancement
of Nlgn3 mRNA and protein levels, which is observed
soon after induction of the signaling cascade and within
the time frame observed for several other Wnt/β-catenin
target genes whose promoters contain TBE sites.77,113 We
detected that endogenous β-catenin was predominantly
associated with the Nlgn3 promoter region spanning TBE
site III (−378/−382) under control conditions, and that
such interaction was clearly enhanced when cells were
incubated in presence of signaling agonists. While our
results represent the first functional characterization of
the Nlgn3 promoter, we note that Nlgn1 and Nlgn2 have
already been predicted by bioinformatics approaches as
potential β-catenin target genes.78 Accordingly, activation
of the signaling cascade by the chemical compound cur-
cumin has been shown to effectively enhance Nlgn1
expression in endogenous neural stem cells.114 Interest-
ingly, curcumin has shown anti- inflammatory and anti-
oxidant properties and is being considered as a
therapeutic option in cancer and various prevalent neu-
rological disorders, including ASD.115–117

It is widely accepted that Wnt/β-catenin signaling is
essential for brain development and function and is
increasingly recognized that the cascade has a central role
in ASD neurodevelopmental pathology. Indeed, Wnt/β-
catenin signaling is involved in neurogenesis,118 axonal
remodeling,119 patterning and maturation of functional
synapses120–122 and excitatory neurotransmission.82–85

Likewise, increased β-catenin levels are critical for
synaptic structure and dendritic arborization.123–125 In
this regard, increased Nlgn3 intensity and Nlgn3 co-
localization with PSD-95 after 24 h Wnt3a treatment
supports the idea that the signaling cascade is involved in
excitatory synaptogenesis through recruiting and clus-
tering of proteins in dendritic processes. For instance,
while large clusters of PSD-95 are indicative of spine
stabilization126 it has been observed that similar treatment
of hippocampal neurons with canonical Wnt7a, con-
sistently increased PSD-95 puncta in a time-dependent
manner and in a calcium/calmodulin-dependent protein
kinase II (CAMKII) dependent mechanism.122 Interest-
ingly, CAMKII activation is dependent of calcium
entrance into the synaptic terminal and our group has
already shown that Wnt3a increases transient calcium
currents.84 Altogether, these data support a regulatory

role for this kinase in ASD and other neurodevelopmental
diseases.127,128

Cortical neuronal activity exerts mitogenic effects on
neural and oligodendroglial precursor cells129 and recent
experiments have shown that this neuronal activity
involves the shedding of the Nlgn3-extracellular-domain
from the postsynaptic surface.130 It would be interesting
to examine whether Nlgn3 expression and clustering
promoted by the Wnt/β-catenin signaling cascade leads to
Nlgn3 shedding and how this process relates to neu-
roinflammation and defects in excitatory/inhibitory
neurotransmission.131,132
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