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Abstract: Almond is the most important nut species worldwide and almond kernels show the
highest levels of tocopherols among all nuts. In almond, tocopherols not only play a substantial
role as a healthy food for human consumption, but also in protecting lipids against oxidation
and, thus, lengthening the storage time of almond kernels. The main tocopherol homologues
detected in almond in decreasing content and biological importance are α-, γ-, δ-, and β-tocopherol.
Tocopherol concentration in almond depends on the genotype and the environment, such as the
climatic conditions of the year and the growing management of the orchard. The range of variability
for the different tocopherol homologues is of 335–657 mg/kg of almond oil for α-, 2–50 for γ-,
and 0.1–22 for β-tocopherol. Drought and heat have been the most important stresses affecting
tocopherol content in almond, with increased levels at higher temperatures and in water deficit
conditions. The right cultivar and the most appropriate growing conditions may be selected to obtain
crops with effective kernel storage and for the most beneficial effects of almond consumption for
human nutrition and health.
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1. Introduction

Almond is the most important tree nut crop in terms of commercial production [1]. An adaptation
to harsh climates combined with an ability to develop a deep and extensive root system has allowed
almond to exploit a wide range of ecological niches. Almond is well-adapted to the Mediterranean
climate, characterized by mild winters and dry, hot summers. This adaptation has led to early bloom
and rapid early shoot growth because of the low chilling requirements of almond. Almond also shows
high tolerance to summer drought and heat. Almond has traditionally been the earliest temperate fruit
tree crop to bloom, which limited growing to areas relatively free from spring frosts before the release of
late-blooming cultivars by different breeding programs, since frosts at bloom or early fruit development
can reduce, and even completely nullify, the crop. Since almond is naturally self-incompatible, it often
requires cross-pollination, which further acts to promote genetic variability and adaptability to diverse
environments [2].

The edible part of the almond nut is the kernel, considered an important food crop with a high
nutritional and medicinal value. The oldest and most extensive medical system that first recorded the
health uses for almonds derives from ancient Greeks and then the Persians, and later in traditional
Chinese medicine and Indian Ayurvedic medicine [3]. From medieval times to the 18th century,
almond nuts were a source of substitute “milk” [4], and also it was used as thickener before starch was
“discovered” [3]. Almond consumption has almost doubled in the last 20 years [5], a fact that highlights
how this consumption has evolved from a convenient snack food and component of a high number of
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confectioneries, to an important food which is increasingly recognized as essential for maintaining
and increasing human health. Recent nutritional and medical studies have associated the regular
consumption of almonds with a wide range of health benefits, including protection from cancer [6,7],
obesity [8–10], diabetes [11,12], and heart diseases [13–17]. Almond kernels may be consumed in many
different ways, blanched or unblanched, raw or combined, and/or mixed with other nuts. They can
also be transformed to produce marzipan, nougat, almond milk, and almond flour, incorporated in
many pastries and ice creams. Almonds may also be combined in other products and gastronomic
specialties [18]. The high nutritive value of almond kernels is mainly due to their high lipid content.
This lipid fraction, even constituting an important source of calories, does not contribute to cholesterol
formation because of their high level of unsaturated fatty acids, mainly mono-unsaturated fatty
acids [19]. Although almond kernels are high in energy, humans compensate their effect with their
high satiety value [20]. The absorption of energy from almond kernels is rather inefficient, having
been suggested that their chronic consumption may raise resting energy expenditure [21]. Acute and
longer-term almond ingestion may help in regulating body weight [17], modulating fluctuations of
blood glucose [22], total low density/high density lipoprotein cholesterol ratio, and triglycerides [23].

Almond kernel quality must be high in order to fulfill not only the industry requirements, but also
to be attractive for the consumers [24]. Until recently only the kernel physical traits were considered
when trying to establish almond quality [18], but the kernel chemical composition appears to be
essential when establishing the best raw material for the different industrial applications and the
high diversity of almond confectioneries [24]. In view of the high lipid fraction in the almond kernel,
the quality of the almond oil is considered as the most important feature in the evaluation of almond
quality. Different parameters related to the lipid fraction have been suggested for quality evaluation of
the almond kernels, such as the amount of oil content in the kernel (fat percentage over the kernel dry
weight), the percentage of oleic acid of the total fatty acids, the ratio of the percentages of oleic/linoleic
acids (O/L), and, especially, the tocopherol concentration in the almond oil [24,25].

Early reviews on the composition of the almond nuts [18,26] did not include tocopherols as
an important component of almond kernels. More recently tocopherols were already included in
several reviews [27,28], but most of them were primarily descriptive without attempts to assess quality,
particularly as it relates not only to industrial requirements, but also to breeding goals and approaches.
Extensive variability in the chemical composition has been demonstrated among cultivars; additionally
the importance of differences in geographical origins, as well as climatic and growing conditions have
also been demonstrated. Despite this extensive information, little is known concerning the genetic
control and inheritance of biochemical components of almond quality. For all these reasons, this review
summarizes the current knowledge of the almond kernel tocopherol composition and factors affecting
its variability.

2. Tocopherol Variability in Almond

Almost all studies carried out on vitamin content in almond are limited to those having
an antioxidant effect, mainly tocopherols. The main tocopherol homologues detected in almond in
decreasing importance are α-, γ-, δ-, and β-tocopherol. The main biochemical function of tocopherols
is considered to be the protection of polyunsaturated fatty acids against peroxidation [29]. They also
have protective roles in human health since recent data indicate that they have hypo-cholesterolemic,
anti-cancer, and neuroprotective properties [30]. Tocopherol concentrations have been determined
in many vegetable oils, having been correlated with their antioxidant activity, since this activity
may depend on the ratio of % total tocopherols/% polyunsaturated fatty acids [31]. Tocopherol
concentration plays an important role in protecting almond lipids against oxidation, thus increasing
the possibilities of lengthening kernel storage [31–33].

The range of variability of the different tocopherol homologues has been reported for different
almond cultivars and genotypes from different countries [27,34–44], being summarized in Table 1.
The most biologically active form of vitamin E is α-tocopherol, being preferentially utilized in the
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human body over the other homologues [45], ranging from 200 mg/kg oil in some Australian
cultivars [44] to 656.7 mg/kg oil in some local accessions from Morocco [37]. At high temperatures
γ-tocopherol has been reported to be much more effective as an inhibitor of polymerization and
protection against oxidation than α-tocopherol [46,47]. The range of variability of this homologue
was from 2.4 mg/kg oil in some local Moroccan almond seedlings [37] to 50.2 mg/kg oil in some
almond selections from the CITA breeding program [35,48]. For δ-tocopherol, the range of variability is
reduced as compared to the other homologues and ranged from 0.1 mg/kg oil in some local Moroccan
almond seedlings [37] to 22.0 mg/kg oil in some Spanish almond cultivars [39].

Table 1. Tocopherol homologue concentration in almond kernel and kernel oil.

Tocopherol Homologue
Range of Variability

Origin Reference
mg/kg Kernel mg/kg Oil

α-tocopherol

85–190 Spain [42]
335.3–551.7 [39]

309–656.7 Morocco [37]
180–320 California [38]

250–840 Italy [32]
350–471 [43]

370–571 Argentina [40]
200 Australia [44]

β-tocopherol 50–80 Italy [32]
1.2 Australia [44]

γ-tocopherol

6.1–50.2 Spain [34,39]
1.4–8.4 [42]

75 Italy [31]
2.4–13.5 Morocco [37]

5.7 Australia [44]

δ-tocopherol
0.2–1.6 Spain [42]

0.2–22 [34,39]

0.1–0.3 Morocco [37]

3. Environmental Effects

Tocopherol levels increase in response to a variety of abiotic stresses, considered as evidence
of its protective role [49]. Tocopherol concentration in almond oil depends on the genotype and the
climatic conditions of the year [36,38–40,42], as well as on the environmental conditions of the growing
region [36,38]. Drought and heat have been the most important stresses studied until now on the
expression of the chemical compounds in fruit trees, including almond. The climatic conditions of the
year, mainly temperature, affect the concentration of the different tocopherol homologues in several
nut crops [50], indicating that these components depend on the temperature and the occurrence of
drought during fruit or nut growth.

The effect of drought stress on the oil percentage in almond kernels and on its composition
is not clear since the results of different studies undertaken in this field are ambiguous. However,
studies in other species reported that water stress appears to promote tocopherol synthesis [51–53].
In almond there was no obvious relationship between almond tocopherol content and the degree of
water deficiency [54], since little variation in kernel oil tocopherols was observed under moderate
water stress, except for the more severe deficit of 70% SDI (sustained deficit irrigation) which for
all components, except γ-tocopherol, had higher values than the control. In this study, the minor
tocopherol homologues appeared to be slightly more responsive to deficit irrigation than the main
homologue, α-tocopherol, but their small proportion had little impact on the amount of the total
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tocopherol content [54]. In the “Nonpareil” almond cultivar, the highest accumulation rate of
α-tocopherol takes place during the period from 74 to 94 days after anthesis [44], indicating that the
critical period to add nutrient and water to ensure normal accumulation of these chemical compounds
is during this period. Tocopherol concentration has been reported to be affected by drought stress
in olive oil [55], but not in Brassica napus [56], by temperature in soybean [57], and by a combination
of both in shea butter (Vitellaria paradoxa C.F. Gaertn.) [50]. In olive oil, the total tocopherols and
α-tocopherol were highly influenced by the crop-year rainfalls, with the highest concentration from
olives harvested during the driest year [58]. The increase in tocopherol content might contribute to the
prevention of plant oxidative damage in drought conditions [59,60].

Higher tocopherol concentrations were found in almond kernels harvested in years with higher
temperatures suggesting that this environmental factor could affect tocopherol synthesis during kernel
development [34]. A study on the effect of two contrasting environments, with drought and heat
conditions in Morocco, and irrigated and cold conditions in Spain, concluded that the tocopherol
content, mainly of α-tocopherol, increased under the warmer climate conditions of Morocco [37].
More recently, higher α-tocopherol concentrations (~646 µg/g in average) were found when the almond
kernel development mostly coincided with spring and summer months with warmer mean temperature
in a study in arid Northwestern Argentina [40]. Similar results were reported for α-tocopherol in
some almond genotypes grown under hot and dry conditions in Afghanistan [61]. Temperature during
seed development in sunflower has shown to affect oil yield and tocopherol concentration since high
temperatures may have a negative effect in oil synthesis, but not in tocopherol concentration [62,63].
In soybean seed, it has been reported that the increasing temperature from 23 ◦C to 28 ◦C can
significantly increase tocopherol levels [64]. Thus, the temperature could be considered an important
parameter playing a great role in tocopherol accumulation in different species, including almond.

Concerning the effect of solar radiation, in “Nonpareil” almond kernels the concentration of
α-tocopherol was increased after a mild solar UV radiation supplement using the white weed mat,
which may have altered metabolic pathways and stimulated α-tocopherol accumulation in almond
lipids [44]. In sunflower, it has been reported that an increase in intercepted solar radiation per plant
increased the amount of tocopherol per grain [65].

4. Genetic Effects

The evaluation of tocopherol concentration in the oil of different almond cultivars and
genotypes showed high variability of the different tocopherol homologues, with a great effect of
the environment [28]. However, it has been reported that the cultivars “Atocha”, “Desmayo Rojo”,
“Desmayo Largueta” from Spain, and “Ferraduel” from France showed stable and similar year to year
values for α-tocopherol; whereas “Atocha”, “Ferraduel”, and “Fournat de Brézenaud”, and “Yaltinskij”
from Ukraine were also stable for γ-tocopherol content in almond kernels produced under contrasting
climatic conditions, with drought and heat conditions in Morocco, and irrigated and cold conditions
in Spain [36]. These results confirmed that the stability of each tocopherol homologue depends on
the specific characteristics of the genotype [34,35]. The estimation of the heritability of the different
tocopherols isomers were estimated for the first time in almond [35], reporting that the content of
γ-tocopherol showed high heritability estimates, with h2 = 60.0%, whereas α-tocopherol showed lower
heritability (h2 = 20.5%). These results confirm that the tocopherol content in almond oil kernel is
under polygenic control, as previously suggested [28].

The biosynthetic pathway of vitamin E in plants was biochemically elucidated several years ago,
and all enzymes in this pathway were localized to the inner chloroplast envelope [66–68]. Today,
the availability of complete genome sequences, in particular from Arabidopsis and Synechocystis sp.
PCC6803, all biosynthetic genes in tocopherol biosynthesis have been identified and cloned to
date [69,70]. A mutation in the gene VTE5 (PCT) of Arabidopsis lead to the discovery of its function,
since it is encoding a protein with phytol kinase activity, directly involved in the biosynthetic pathway
of tocopherol [70,71]. Tocopherol QTL analysis found that up to 65% of the markers were co-located
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in certain genomic regions of maize, including the candidate genes PDS1 (p-hydroxyphenylpyruvate
dioxygenase; HPPD) and VTE4 (γ-tocopherol methyltransferase; γ-TMT), thus showing that a single
QTL may affect more than one tocopherol homologue [71]. After exploring mutant inbred lines in
sunflower, three loci (m = Tph1, g = Tph2, and d) were shown to disrupt synthesis in α-tocopherol
production; additionally, the loci losing function in these mutations enhanced synthesis of other
tocopherols [72]. In almond no studies have been conducted to elucidate the pathway biosynthesis of
tocopherol isomers and the genes involved in this process, but, recently, five different QTLs believed to
control the tocopherol concentration in the almond kernel oil have been identified [73]. More studies
are required to understand the biosynthetic pathway of these biochemicals components to elucidate
the gene involved in these pathways. This information will be of great interest for the breeders to
improve tocopherol content in the future, since the almond kernel is used more and more in different
industrial processes using high temperatures in their application [24].

5. Conclusions

The present information on the different effects on tocopherol content in almond is scarce. Only
descriptive results have been published, not allowing a critical comparison among them, since some
results are given as tocopherol content in the almond kernel and others in the kernel oil, not always
stating the oil concentration of the almond kernel. Although genetic and environmental effects
affecting tocopherol content in almond have been described, no interaction between them has ever
been established. The present scenario of climatic change and of the shift of almond growing to
warmer regions [1] may have a positive effect on the tocopherol content in almond kernels due to the
effect of higher temperatures increasing this content. Consequently, the right cultivar and the most
appropriate growing conditions may be selected in order to have almond crops not only allowing
a better effective kernel storage, but also holding the most beneficial effects for human nutrition and
health with their consumption. The objective of selecting for high tocopherol content in a breeding
progeny is easily attainable because of its high heritability, whenever the adequate parents are chosen.
As a consequence, these components could be considered as selection criteria in almond breeding
programs as already suggested [24]. At present the possibilities of selecting cultivars, growing regions,
and orchard practices offer an optimistic outlook for increasing tocopherol content in almond.
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