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A B S T R A C T

Mineralized collagen (MC) is the basic unit of bone structure and function and is the main component of the
extracellular matrix (ECM) in bone tissue. In the biomimetic method, MC with different nanostructures of neo-
bone have been constructed. Among these, extra-fibrous MC has been approved by regulatory agencies and
applied in clinical practice to play an active role in bone defect repair. However, in the complex microenviron-
ment of bone defects, such as in blood supply disorders and infections, MC is unable to effectively perform its pro-
osteogenic activities and needs to be functionalized to include osteogenesis and the enhancement of angiogenesis,
anti-infection, and immunomodulation. This article aimed to discuss the preparation and biological performance
of MC with different nanostructures in detail, and summarize its functionalization strategy. Then we describe the
recent advances in the osteo-inductive properties and multifunctional coordination of MC. Finally, the latest
research progress of functionalized biomimetic MC, along with the development challenges and future trends, are
discussed. This paper provides a theoretical basis and advanced design philosophy for bone tissue engineering in
different bone microenvironments.
1. Introduction

Natural bone is a mineralized hard tissue, consisting of an extracel-
lular matrix (ECM) and bone progenitor cells, osteoblasts, osteoclasts,
and bone cells. Embedded therein [1] (Fig. 1). The ECM is composed of
organic-inorganic composite materials with mineralized collagen (MC)
fibers and a complex hierarchical structure. Calcium phosphate, mainly
composed of hydroxyapatite (HA), is the principal inorganic component
of vertebrate bones, that constitutes nearly the 65% of bone weight [2].
HA has a hexagonal crystal system, which has a flexible and stable
structure and composition, allowing the substitution of a variety of metal
ions [3–5]. Impure ions, such as carbonate, sodium, and magnesium, can
replace phosphate and hydroxyl sites [6–8], resulting in poor crystalli-
zation, calcium deficiency, and carbonization of the HA [9]. Organic
components account for approximately 30% of bone weight [10], among
which type I collagen is the most abundant in bone tissue. The triple helix
structure of collagen I is usually heterotrimeric and composed of two
identical a1(I) chains and one a2(I) chain. Individual triple helix mole-
cules of collagen undergo self-assembly to form fibrils, and the ordered
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arrangement forms an observable periodicity known as the D-band,
measuring 67 nm with a gap between two consecutive collagen mole-
cules measuring 36 nm, hence the name, “gap region” [11]. Additionally,
collagen fibers provide more nucleation sites for apatite crystals to
aggregate [12,13], which guides the growth of mineral crystals and
aligns them along the long axis of the fiber, resulting in a larger particle
size [14]. MC is assembled by the orderly deposition of nano-
hydroxyapatite (nHAP) across the collagen Iorganic matrix, and is the
most prominent level in the complex hierarchical structure of natural
bone. MC provides the nanostructure base for the excellent mechanical
and biological properties of bone [15]. According to how the HA is
distributed relative to the collagen fibrils, MC can be divided into
intra-fibrous MC (IMC) and extra-fibrous MC (EMC) [16]. IMC minerals
are deposited within the collagen matrix, while EMC minerals are
randomly deposited on the surface.

Throughout the human life cycle, bone tissue continues to remodel to
adapt to mechanical stress and maintain skeletal tissue integrity. Minor
bone defects can heal by themselves through bone reconstruction, while
large traumatic injuries and defects caused by tumors, congenital
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Fig. 1. The multiscale structure of bone [1]. Reproduced with permission [1]. Copyright 2019, Elsevier.
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diseases, and infectious diseases usually require the intervention of sur-
gery and bone substitutes [17]. Autologous and allogeneic bone are
common alternative materials to aid the healing of bone defects. How-
ever, the sources of autologous bone are limited and are prone to
infection-related complications at the sampling site following trans-
plantation. In addition, the use of bone allografts is not widespread in
clinical practice due to the risks of infection and immune rejection [18,
19]. Bone tissue engineering is an innovative approach to repairing and
regenerating bone tissue, and a significant advancement in this field is
the use of autologous bone replacement. Thus, it is imperative to identify
suitable alternatives or substitutes to bone transplants.

The hierarchical structure of bone, consisting of nine levels, provides
the skeletal system with the ability to bear weight and withstand me-
chanical stresses [20]. Suitable alternatives or substitutes for bone
transplants should have similar mechanical strength and degradation
rates to natural bone, while also mimicking the composition and struc-
ture of the extracellular matrix (ECM), and creating a microenvironment
that is conducive to the growth of cells and tissues [21–26]. Biomimetic
materials, such as MC, are engineered to mimic the first two levels of this
hierarchy - the chemical composition and structural elements [27]. They
possess excellent biocompatibility, biodegradability, low antigenicity,
and compositional and structural flexibility, which promote adhesion,
proliferation, and differentiation of pre-osteoblasts or stem cells in vitro,
as well as cell migration ratios [21,28–31]; enhances osteogenesis and
angiogenesis in vivo; and promotes the repair of bone defects and the
osseointegration of implants [31–36]. Compared with pure collagen, HA,
and tricalcium phosphate (TCP) bone scaffold materials, MC can better
promote osteogenic differentiation, induce ECM secretion and mineral-
ization, stimulate angiogenesis, and ultimately promote osteogenesis
[24,28,37–41]. At present, there are numerous MC products composed of
collagen/hydroxyapatite (COL/HA), some of which have been commer-
cialized and approved by regulatory agencies for clinical application
[42]. In terms of repairingminor bone defects and bone regeneration, MC
has virtually achieved the same effect as autologous bone [43,44].
However, for the repair of larger and more complex bone defects, MC
materials with better biomimetic properties, and stronger functionality is
often required, which is a hotspot of research for MC bone replacement
materials. In principle, if only the structure and morphology of MC are
changed, the biological-enhancing effects of these materials are limited.
To enhance the function of MC, it is often necessary to introduce addi-
tional therapeutic stimuli (e.g. cells, growth factors, bioactive elements,
drugs.), rapidly promote the deposition of new bone, and ensure the
formation of an adequate vascular network to achieve rapid regeneration
of endogenous tissue at the injured site [22,45–48].

Currently, research on MC has progressed from pure and composite
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biological materials to multifunctional coordination materials that can
incorporate specific functional cells, bioactive factors, and drugs for
enhanced therapeutic efficacy (Scheme 1). Existing reviews on MC
mainly focus on the mechanism of biomineralization, classical and non-
classical crystallization theories, in vitro mineralization of collagen, and
preparation of the MC scaffolds and MC [15,16,49–51]. The construction
of more coordinated and multifunctional MC composites for the repair of
complex bone defects are a current research hotspot, with a growing
number of related studies. We present the preparation strategies and
biological performance of MC. We then summarize the
multi-functionalized programs of MC, and subsequently focus on two
major issues: improving the osteogenic property and versatile coordi-
nation potential of MC. Finally, we review related studies, discuss the
current problems of MC materials, and provide an outlook for future
development trends of more coordinated and multifunctional MC com-
posites. This will provide an advanced treatment strategy and theoretical
basis for the application of MC in large or complex bone defects.

2. Biomimetic collagen mineralization

The hierarchical structure and chemical composition of native bone
tissue have been described earlier to further our knowledge and under-
standing of MC. Here, we will focus on advanced strategies for preparing
MC with different nanostructures (as shown in Fig. 2) and explore their
biological functions.

2.1. Fabrication of MC with different nanostructures

Type I collagen, minerals, and non-collagen analogs (NCP) are the
three basic elements for the preparation of MC [15]. Based on the dif-
ferences in minerals, the preparation of MC can be divided into two
methods: direct mineral addition and in situ mineralization [49]. The
former is described as directly adding the minerals to the collagen so-
lution. Then, the MC scaffold is prepared by electrospinning,
freeze-drying, or coating methods. Finally, MC, which mimics natural
bone matrix in composition and structure, is obtained. This is the
simplest method for the preparation of MC. During in situ mineralization,
the calcium and phosphate ions are introduced into the collagen solution
instead of mineral crystals, or a pre-formed collagen scaffold is immersed
in a solution containing both mineral ions. In situ deposition is a research
hotspot in the preparation of MC, and MC with nanostructures similar to
natural bone has been successfully prepared [52–55]. In situ deposition
contains a variety of MC preparation strategies, and different strategies
provide diverse forms of I-col binding with minerals, which have been
comprehensively described by Li et al. [49]. Here, we introduce the



Scheme 1. Schematic illustration of functional MC synthesis strategies, modification, and some of the active factors and cellular aspects that take part in the bone
repair processes in each stage.
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preparation methods of EMC, IMC, and HIMC, which has been well
investigated. This will further facilitate our understanding of the nano-
structure and function of MC.

Classical ion-mediated crystallization strategy (CIMC) is the most
commonmethod to prepare EMC [56–59]. The collagen solution is mixed
with a mineralization solution containing calcium and phosphate ions,
the pH is then adjusted to 7.4 to produce a neutral solution, and the EMC
is obtained by incubation at 37 �C for a period of time without external
force. In this process, the self-assembly process of collagen fibers and
mineralization occurs simultaneously. However, the amorphous calcium
phosphate formed during the process is often too large to penetrate into
the collagen fibers. As a result, larger calcium phosphate particles only
attach to the surface of the collagen. This process is simple and easy to
manipulate, but it is difficult to replicate the nanostructures of natural
bone.

With the growing interest in biomineralization processes, polymer-
induced liquid-precursor pathway (PILP) [60] strategies have received
3

much attention. On the basis of CIMC [61], acidic polymers (i.e., NCP
analogs, also known as isolation analogs, such as polyacrylic acid [PAA]
and polyaspartic acid [PAsP]) are introduced into a supersaturated
mineralization solution to bind and isolate calcium ions, delay crystal
nucleation and growth, form stable and highly hydrated amorphous
precursors, and prevent amorphous calcium phosphate precursors from
aggregating and automatically transforming into apatite before entering
the collagen fiber gap [62,63]. Thus, a continuous apatite band is formed
inside the collagen fiber, and IMC is obtained [55,64–66].

Inspired by the dual function of matrix phosphoproteins in the pro-
cess of biological mineralization [67], some researchers have introduced
polyphosphates—such as polyethylene phosphonic acid, sodium trime-
taphate (STMP), and sodium tripolyphosphate (TPP)—into the mineral-
ization system on the basis of the PILP strategy as another NCP analog
(also known as template analog). This is considered to be the dual bio-
mimetic analog strategy (DBA), whereby polyphosphate is capable of
efficiently binding with collagen fibers via electrostatic interactions,



Fig. 2. Common methods used to prepare MC with different nanostructures and the corresponding transmission electron microscopy (TEM) images. (A) The prep-
aration process of EMC by classical ion-mediated crystallization strategy. (B) The preparation of IMC by procollagen 1 intact N-terminal (PINP) pathway. (C) The
preparation process of hierarchical, intrafibrillarly MC (HIMC) by dual biomimetic analog-based bottom-up strategy.
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inhibit the continuous growth of apatite in the overlapping area, and
form an in-fiber MC with hierarchical apatite structure of natural bone
tissue. Some authors refer to this as HIMC. TEM analysis of HIMC reveals
parallel ribbon-like particles aligned with the long axes of the collagen
fibrils [23,52,68–71]. The regulation of biomimetic mineralization pro-
cesses by NCP analogs is a key step to reproducing the nanostructures of
natural bone. Recent studies have demonstrated that periodic fluid shear
stress (FSS) can replace polyacrylic acid (PAA) and induce
highly-arranged IMC and HIMC in the presence of TPP [72,73]. More-
over, periodic FSS has been shown to improve the hydrophilicity, enzy-
matic stability, and crystal conversion of mineralized collagen [74]. In
addition, other substances such as polyamide dendritics [75,76], sodium
alginate [77], chitosan [21,53], sodium citrate [78], succinic acid [79],
alkaline phosphatase (ALP) [80], and osteopontin (OPN) [81] have also
been found to regulate the process of biomimetic mineralization in vitro.
Moreover, some specially modified mesoporous silica nanoparticles and
hollow mesoporous zirconia nanocapsules can realize the loading and
delivery of ACP [54,82] in the preparation of IMC. In general, the direct
mineral addition method and the CIMC strategy are simple and
time-savings, and are commonly used in bone tissue engineering studies.
Biomineralized hard tissues, such as bones and teeth, possess exceptional
mechanical properties due to their unique architecture and hierarchically
arranged nanostructures [83,84]. MC fabricated by the PILP or DBA
strategies have a similar nanostructure to natural bone tissue and exhibit
better mechanical properties and bioactivity compared to traditional MC.
However, the preparation process is complicated and time-consuming.
4

2.2. Bioactivity of MC with different nanostructures

Variations in preparation methods, material sources, and processing
parameters can lead to changes in the nanostructure of MC [74]. These
changes, in turn, affect the mechanical properties, degradability, and
bone-inducing ability of MC both in vitro and in vivo. Factors such as cell
proliferation, osteogenic differentiation, focal adhesion, macrophage
polarization, host MSC recruitment, new bone generation, and capillary
formation can be impacted. Different types of nanostructures can have
varying effects on these factors, with IMC and HIMC demonstrating
greater similarity to natural bone than other nanostructures (Table 1)
[23,52,85]. The nanostructures and degradation properties are similar
between HIMC and natural bone, and HIMC is capable of regulating stem
cell recruitment and promoting osteogenic differentiation by providing
an optimized microenvironment, which facilitates the growth of new
bone.

HIMC has better biocompatibility and osteogenic activity in vivo and
in vitro than EMC and IMC [90] (Fig. 3). HIMC and IMC have significantly
increased Young's elasticity compared with EMC, which significantly
promotes the adhesion, proliferation, differentiation, and cytoskeletal
arrangement of MG63 cells, MC3T3-E1 osteoblasts, and mesenchymal
stem cells, and promotes the expression of osteogenic-related genes.
Finally, HIMC and IMC can significantly promote new bone formation
and bone defects repair [21,31,86,90,91].

IMC can also promote the expression of the osteoprotegerin (OPG)
gene in HMSCs, inhibit the generation of osteoclasts, and then affect bone



Table 1
Properties of MC with different nanostructures.

Experimental
group

Control
group

Cells or animal model Major findings Reference

HIMC EMC;
collagen

MG 63 HIMC possesses better mechanical and biological properties, specifically cell
proliferation, differentiation, focal adhesion, and cytoskeletal arrangement.

[86]

HIMC Collagen;
EMC

MC3T3-E1 Pure collagen scaffolds had the highest rate of proliferation. [71]

EMC HA hMSCs Promoted cell proliferation and osteogenic differentiation of hMSCs. [40]
IMC Collagen hMSCs Both support proliferation, osteogenic differentiation, and mineralization of hMSCs, with

IMC having a more pronounced positive effect.
[87]

IMC β-TCP,
collagen

Critical-sized rodent mandibular
defect model

Activate more bone-forming cells and stimulates more vascular tissue ingrowth. Induces
ECM secretion and mineralization of rBMSCs.

[24]

IMC EMC THP-1, critical-sized rodent
mandibular defect model

Promotes more new bone formation and had more M2- like macrophages. Highly express
IL-10 and arginase-1.

[88]

HIMC EMC Critical-sized rodent mandibular
defect model, THP-1, hBMSCs

Recruits host MSCs and promotes endogenous bone regeneration by immunomodulation
of macrophage polarization through IL-4.

[31]

IMC EMC, HA Critical-sized bone defect in the rat
femur

Enhances bone regeneration via activation of the Wnt signaling pathway. [33]

EMC Collagen RAW264.7 Downregulates inflammation and innate immunity. Upregulates nucleosome assembly,
megakaryocyte differentiation, and chromatin assembly.

[38]

IMC EMC BMSC Promotes new bone generation and capillary formation. [89]
IMC þ Ti EMC þ Ti， Critical-sized bone defect in the rat

femur
Promotes bone regeneration and osseointegration. [32]

HCM, Hypoxic conditioned medium; EMC, Extra-fibrous mineralized collagen; IMC, Intra-fibrous mineralized collagen; HIMC, Hierarchical, intrafibrillarly mineralized
collagen; hMSC, Human bone marrow mesenchymal stem cells; BMSC, bony marrow mesenchymal stem cells.
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metabolism [37]. Filling MC around titanium implants or in 3D printed
porous titanium alloy scaffolds can promote osseointegration [32,36].
Moreover, the application of IMC leads to better osseointegration
compared with EMC. One study found that IMC significantly promotes
bone regeneration by activating the Wnt signaling pathway (related
factors Wnt5a, β-catenin, and Axin2), and guides the early process of
bone regeneration by promoting the expression of genes related to
inflammation, immune response, bone development, angiogenesis, neu-
rogenesis, and Wnt signaling pathways [33]. Compared with HA, EMC
can promote the proliferation and osteogenic differentiation of hMSCs
through osteoblast differentiation and skeletal system development
pathways, and facilitate the expression of osteogenic-related genes, such
as BMP-2, COL1A1, and CTSK [40].

3. Recombination patterns of MC and active factors

The method of binding of the active factors and MC not only affects
the sustained release effect of active factors, but also affects the biological
activity. In turn, the addition of active factors may also affect the content
and crystal morphology of HA in MC, as well as the nanostructure and
degradation of MC. By reviewing past studies, we divided the binding
modes of active factors and mineralized collagen into four categories:
adsorption onto MC by immersion; binding to MC after surface modifi-
cation; mixing with raw materials of MC; and polymer encapsulate
(Fig. 4).

3.1. Adsorption onto MC by immersion

MC is a loose and porous nanobiomaterial and has a high surface area
favorable for the adsorption of proteins or drug substances. In vivo, MC
has the ability to naturally absorb and enrich BMP-2 and vascular
endothelial growth factor (VEGF) [92,93]. Nano-HA is the main
component of MC and is able to adsorb many proteins and other mole-
cules, such as drugs and ions [94]. Ca2� and PO43� are protein-binding
sites on the surface of CA-P, which provide the main driving force for
protein adsorption [95,96], and interact with –OH, -NH2, and –COOH
groups of growth factors by hydrogen bonds or electrostatic interaction
[97,98]. The adsorption ability of drugs on MC may be related to the
electrostatic energy of HA [99] and its chelation ability with calcium
phosphate [100]. The C-plane surface of HA is negatively charged and
the amino group of vancomycin is positively charged after protonation
5

[101], so it can be adsorbed on HA [102]. Bisphosphonates (BPS) can
specifically bind to HA substrates through stable bidentate structural
connections formed by chelation between phosphonic acid groups and
calcium ions [103,104]. R1 and R2 groups derived from quaternary
carbon branches of BPS can also bind to HA through hydroxyl groups or
hydrogen bonds, further increasing the binding affinity between them
[105,106]. These distinct properties make MC an ideal drug delivery
system for long-term controlled delivery of active factors (AFs) to pro-
mote bone tissue repair [107–110].

Impregnation adsorption is a common strategy for loading growth
factors (such as rhBMP-2, VEGF, antibiotics, etc.) onto MC. Typically, it
involves an initial burst release followed by gradual and sharp cumula-
tive release. The burst release provides sufficient stimulation for cell
proliferation and affects osteogenic differentiation in the early stage
[111,112]. However, it should be noted that the higher initial burst
release has the potential to shorten the release time and reduce the effect
of the drug. This strategy has a simple process andminor effect on protein
activity, which can minimize the complexity of structural design, reduce
the manufacturing and regulatory burden related to development, and
facilitate clinical translation [112].

3.2. Binding to MC after surface modification

Surface modification improves the surface activity of biomaterials
and enables the AF to form a stable binding to biomaterials. Heparan
sulfate proteoglycan is a key component of the bone ECM, and its func-
tional component, glycosaminoglycan heparin, is a linear polysaccharide
that can promote the proliferation and osteogenic differentiation of
mesenchymal stromal cells cultured in vitro [113]. Heparin is capable of
binding specifically to various AFs, including growth factors, cytokines,
chemokines, and additional signaling molecules, and stabilizing them in
materials to regulate their activity [114,115]. Biomaterial surfaces have
been modified with heparin or heparan sulfate-mimetic molecules to
control the release of the heparin-binding growth factor [113,116–120].
In the sustained release process in vitro, heparin-modifiedMC can achieve
a higher sustained and controlled release of AFs compared with
non-heparin-modified MC [102,119]. The rate of AF release can be
regulated by changing the amount of heparin incorporation and the
modification methods [119].

Compared with fresh VEGF, the biological activity of VEGF sustained
release from heparin-free modified MC was decreased, while the



Fig. 3. Comparison of MC with different nanostructures. (A) Nanotopography (a–c) and nanomechanical (d–f) properties of MC with different nanostructures.
Scanning electron microscope (SEM) image of HIMC (a), IMC (b) and EMC (c). Corresponding atomic force microscopy property maps and section analyses of Young's
modulus of parts a–c, respectively. (B) rBMSC morphology (a0-c') after 1 d of culturing on the a) HIMC, b) IMC, and c) EMC. Cell morphology quantified for d0) the
number of branch points and e0) the cell area in each group. f0) Cell viability and g0) quantitative results of ALP. (C) Representative HE staining images of mandibular
defect areas in each group. (C) Micro-CT images of mandibular defect areas in each group. *α < 0.05 versus HIMC; #α < 0.05 versus IMC. Reproduced with permission
[90]. Copyright 2016, John Wiley & Sons.
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biological activity of VEGF sustained release from heparin-modified
materials remained unchanged or was even enhanced [119]. When two
or more bioactive factors of loaded heparin modified MC, the modifica-
tion was generally accompanied by the initial sudden release of bioactive
factors, followed by a slow release [118,121], and the sustained release
process lasted for more than 6 weeks, which was considerably longer
than in hydrogel [118,122]. Single and mixed factors show different
release kinetics curves after loading, perhaps because different factors
compete for free binding sites on the scaffold, and the binding efficiency
of single factors is reduced by the elevated protein content in the mixture
of bioactive factors. Therefore, the binding and release of AFs not only
6

depends on the chemical interaction between them and the scaffold but
also the interaction among the active factors [121].

In summary, functionalization of MC can be achieved through hep-
arin modification and growth factor loading. The specific binding be-
tween heparin and AFs leads to a higher sustained release of the AF,
while maintaining or enhancing its biological activity. Additionally,
PDA's strong adhesion properties can be utilized to load AF onto bio-
materials as an adhesive polymeric bridge. This approach has been used
to create a bio-functionalized composite scaffold for osteonecrosis ther-
apy that promotes osteo-conduction, angiogenesis, and a favorable
metabolic microenvironment [123].



Fig. 4. Loading strategies of active factors on MC. (A) Highly efficient loading of active factor (AF) into MC by immersing in AF solution. (B) Heparin-modified surface
of MC develops an affinity for AF. (C) AF was loaded onto MC scaffolds, and polymer was introduced into the scaffolds by injection or mixing. (D) AF was mixed with
the raw materials of MC to form functionalized mineralized collagen (FMC). FMCS, functionalized MC scaffolds; FMC, functionalized MC; AF, active factors.
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3.3. Polymer encapsulate

Prolonged-term retention and controlled release of AFs in bone de-
fects is a critical prerequisite to ensure the osteogenic activity of bone
repair materials [124]. There is a risk of uncontrolled release of growth
factor (GF) and leakage to other areas of the body after the MC with
adsorbed GF by immersion is implanted in the body [125]. The polymers
have excellent bioactivity and biodegradability, and can be processed
into injectable hydrogels [126,127], microcapsules [128], and micro-
spheres [129–132] with certain mechanical strength. By surrounding the
AF surface with biodegradable materials, we can regulate the release
thereof [48,133], and the sequential release of AFs can be realized.
Different polymers have been shown to have different delivery effects on
AFs. For example, poly (lactide-co-glycolide) (PLGA) can release
rhBMP-2 better than alginate [134], while alginate can realize the
space-time controlled release of VEGF and maintain biological activity
for a long time [135–137]. Furthermore, by incorporating magnesium
particles into PLLA microspheres, the release of BMP-2 can be manipu-
lated, achieving spatiotemporal co-release of magnesium and BMP-2
from the microspheres [132]. Functionalized mineralized collagen
(FMC) can be obtained by injecting active factor (AF)-loaded hydrogel
into MC composite or mixing AF-loaded microspheres with MC raw
material. FMC composites can slowly release signaling factors in a humid
environment in vivo, form a concentration gradient around the implant
material, stimulate the directional migration of hBMSCs to the center of
the scaffold, complete the recruitment of cells, and accelerate the healing
of bone defects by promoting angiogenesis to provide oxygen and
nutrition [127].
7

The sustained release process of AFs generally involves a combined
diffusion/degradation mechanism [110,138]. Diffusion is regulated by
the interaction of the materials with drug molecules, such as hydrophilic
and hydrophobic interactions [139]. The gradual degradation of MC
ensures the continuous and local release of AFs in the scaffold structure
[140]. It should be noted that the invasion of bone related cells caused by
some AFs accelerates the degradation of MC [111]. Alginate and hyal-
uronic acid hydrogels are able to delay the initial burst release of VEGF
and prolong the release, and the introduction of heparin further enhances
the retention of VEGF, with an approximately linear release of VEGF
within 28 days [126]. In addition, both the pH of the microenvironment
and the material concentration could alter the kinetics of AF release by
affecting the interaction between the drug and the material or the solu-
bility of the material [141].
3.4. Mixing with raw materials of MC

Mixing active ingredients (such as growth factors, inorganic metal
ions, and drugs) and raw materials of MC to create functionalized scaf-
folds is another common loading strategy. RhBMP-2 has superior stability
in an acidic environment [142,143], and can bind to HA through
non-covalent bonds [97,99]. During preparation of MC, rhBMP-2 is
added to a COL/HA slurry and the MC scaffold prepared by freeze-drying
supports the controlled release of proteins, which attenuates the burst
release, prolongs the release, and maintains the biological activity [48,
144]. In addition, the polyglutamic acid residue modification of GFs can
provide an accumulated negative charge, which is conducive to elec-
trostatic binding with positively charged HA, and significantly improves
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the binding efficiency of AFs and MC [145,146]. Compared with the
impregnation adsorption strategy, the incorporation of AFs in the MC
preparation process makes the loading amount of drugs more control-
lable and can weaken the initial burst release, but various physical and
chemical factors in the preparation process may affect the activity of the
drugs [147].

HA in natural bone contains many doped cations or anions, which
replace calcium or phosphate in the crystal lattice [148]. Compared with
GFs, inorganic metal elements are inexpensive, relatively stable, and not
easily inactivated. Some inorganic metal elements (such as strontium,
zinc, iron, manganese, magnesium, and silver) are incorporated into MC
materials to imitate the basic components of mammalian bones, which
can improve the osteoinductivity of MC or sustain and anti-infective
capacity [16,149–155]. The incorporation of inorganic metal elements
has a significant effect on the degradation rate of materials, HA content,
and microstructure and crystal morphology, but has an insignificant ef-
fect on the biomimetics mineralization process and the mechanical
properties and pore structure of MC [152,153,155–158].

4. Enhancing osteogenic activity of MC

Osteogenic performance is an effective index to evaluate bone
replacement materials in bone defect repair, reconstruction, and tissue
regeneration. Here, we elaborate upon the aspects of MC loaded with
cells, GFs, drugs, and inorganic metal elements. (Table 2).
4.1. loaded with osteoblast-related cells

As well as the ability to replicate, stem cells have multidirectional
differentiation potential. Compared with stem cells, the proliferation and
differentiation ability of osteoblasts is insufficient. In the process of bone
repair, bone marrow mesenchymal stem cells can migrate to the bone
defect and differentiate into osteoblasts, secreting bone matrix compo-
nents and playing an important role in bone regeneration [161]. Stem
cell-based tissue engineering has great potential to regenerate damaged
tissue. MC has superior biocompatibility and can be used as a cell carrier;
The combination of both work together to significantly promote bone
regeneration in vivo [23]. In a study of skull bone defect repair models in
miniature pigs, compared with the cell-loaded HA scaffold, autologous
periodontal ligament stem cell (PDLSC)-loaded IMC showed better bone
regeneration and the deposition of large amounts of new bone with
nanostructures. Furthermore, nanomechanical properties and blood
vessels similar to natural bone were observed, and the expressions of
Runt-related transcription factor 2 (Runx2) and transcription factor
Table 2
Enhancement of the osteogenic activity of MC.

Classification of
MC

Synthetic
strategy

Active factors Loading
strategy

Cells or anim

HIMC DBA Iron, manganese Mixing Calvarial defe
rats

EMC CIMC GAG, BMP-2 Mixing BMSC, Pariet
rabbits

EMC CIMC GAG Mixing hMSCs

EMC CIMC GAG, zinc Mixing pASCs

MC DMA β-tricalcium
phosphate, BMP-2

Mixing;
immersing

Male beagle d
type alveolar

MC DMA rhBMP-2 Polymer
encapsulate

MC3T3-E1, cr
calvarial defe

HIMC DBA hUCMSC hUCMSC; fem
condyle defec
rabbits

DMA, direct mineral addition method; CIMC, Classical Ion-Mediated Crystallization S
Precursor Pathway; hUCMSC, human umbilical cord mesenchymal stem cell; GAG, G
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Osterix were high [22]. Autologous adipose-derived mesenchymal stem
cell (ADMSCs)-loaded nano-hydroxyapatite-collagen-polylactic acid
(NHAC-PLA) achieved similar fusion effect as autologous iliac bone
transplantation (ACB) in the process of spinal fusion in rabbits [162].
Despite the promising potential of stem cells, there is currently no
consensus on their optimal conditions for use. Therefore, the establish-
ment of uniform standards and requirements for the use of stem cells is
crucial for their development and application.
4.2. Addition of GFs

MC is an effective carrier of various GFs, which release a variety of
signal factors in vivo to attract and stimulate surrounding host tissue cells
and promote the inward growth of osteoblasts and the formation of the
vascular network in the scaffold, ultimately promoting osteogenesis
[108,110,112,144,145,163]. Of the bone GFs discovered, BMP-2 is the
strongest growth factor in promoting bone formation. RhBMP �2 has
been approved by the Food and Drug Administration and applied to
clinical treatment of various orthopedic and stomatological diseases
[164]. However, there is growing evidence suggesting that the excessive
dosage application of rhBMP-2 and the uncontrolled and non-targeted
delivery after implantation lead to a series of complications [164–168].
Some researchers have incorporated rhBMP-2 30 times lower than the
clinical gold standard, INFUSE®, during MC preparation. In trials, this
was not accompanied by an obvious initial burst release in vitro, and only
about 25% rhBMP-2 was released in 21 days, which significantly
improved the degree of skull defect healing without bone abnormalities
or the resorption of the adjacent bones [144]. Low concentrations of
rhBMP-2 have also shown strong osteogenic ability in large animal
models [160] (Fig. 5). MC scaffolds were loaded with PLGA-encapsulated
rhBMP-2 particles, which were shown to continuously release bioactive
rhBMP-2 and exhibit exceptional bone regeneration and healing prop-
erties in vivo [134].

The functionalization effect of single growth factor is lower than that
of combinations of different growth factors [169,170]. Heparin-modified
MC scaffolds were loaded with different doses of BMP-2 and chemokine
stromal cell-derived factor-1α (SDF-1α). In vivo, SDF-1a enhanced the
osteoinductive potential of the low concentrations of BMP-2, producing a
regenerative potential similar to that of high-dose BMP-2, thus avoiding
the adverse effects produced by excessive doses of BMP-2 [118].
BMP-2-derived peptides are peptides that retain BMP sequence inducing
osteoblast differentiation. Various BMP-2-derived peptides have been
designed and show significant osteoinductive ability [112,171]. In vivo,
MC scaffolds loaded with BMP-2 derived peptides can control the
al model Major findings Reference

ct model in Promotes osteogenic differentiation of BMSCs and bone
regeneration loaded with fresh bone marrow cells.

[152]

al defect in Induces healing of cranial defects without addition of
expanded stem cells or exogenous growth factors.

[47]

Activates the Wnt and mechanotransduction pathways and
promotes osteogenesis.

[159]

Promotes successful growth and pro-osteogenic capacity of
pASCs.

[155]

ogs, Saddle-
defects

HAp/TCP/Col with 0.2 mg/ml rhBMP-2 manifested more
and faster new bone formation with better implant
stability.

[160]

itical-sized
cts in rats

Enhanced pro-osteogenic effect in vitro and in vivo. [134]

oral
t models in

Promotes healing speed of bone defects in vivo. [23]

trategy; DBA, Dual Biomimetic Analog Strategy; PILP, Polymer-Induced Liquid-
lycosaminoglycan; pASCs, porcine adipose-derived stem cells.



Fig. 5. (A) (a) Saddle-type bone defect with dental implant insertion. (b) Lateral view following the placement of HAp/TCP/Col composite and cover screw. (B)
Representative 3D CT reconstruction. (C) Merged confocal microscope images of the two fluorochromes. Dotted line: original bone level [160]. Reproduced under the
Creative Commons Attribution 4.0 International License [160]. Copyright 2021, John Wiley & Sons.
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continuous release of BMP-2 derived peptides for 15 weeks, providing
continuous stimulation for bone formation and reconstruction, and
achieving similar osteogenic effects to rhBMP-2 [112].

4.3. Loading of drugs

Bisphosphonates (BPS), as a representative of osteoclast inhibitors,
are commonly used drugs in clinical treatment of osteoporosis and
metabolic bone diseases, and can reduce bone loss caused by unloading
or stress shielding [172] and have been shown to possess strong osteo-
genic induction capability [173,174]. The collagen/hydroxyapatite
(COL/HA) materials, which were loaded with alendronate (ALN), sup-
ported the adhesion and proliferation of MC3T3-E1 [175]. In the ectopic
osteogenesis model, the adsorption of rhBMP-2 and zoledronic acid (ZA)
by MC increased the bone volume by six times compared with rhBMP-2
alone. That is, ZA promoted the bone formation ability of rhBMP-2 [110]
(Fig. 6). Compared with the direct adsorption loading strategy, the PLGA
microspheres coated with ALN are incorporated into the MC during the
preparation and the composite scaffold is soaked in BMP-2 solution to
produce a dual agent delivery system. This offers a method to co-deliver
synthetic and anti-decomposition drugs, realizing the sequential release
of BMP-2 and ALN, and to fully exploit the synergistic effect of BMP-2
and ALN, significantly promoting bone regeneration [48].

Human parathyroid hormone-related peptide (osteostatin) can play a
dual role in the stimulation of bone regeneration, promoting osteogenesis
and suppressing osteoclastogenesis. Some researchers have loaded the
pentaptide of parathyroid hormone (PThrP107-111) onto the COL/HA
scaffold by chemical fixation. The composite scaffold has sustained
peptide release in vitro. Functionalized scaffolds significantly promoted
new bone formation [176]. In addition, collagen/poly (vinyl alcohol)/-
propranolol/hydroxyapatite composite scaffold (CPPH), using a 3D
printing technique in vitro gradual-release propranolol, indicated that the
local adrenergic receptor blockers may promote bone defect repair by
stimulating osteogenesis differentiation, inhibiting osteoclast formation,
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and increasing bone marrow mesenchymal stem cell migration [177].
Additionally, MC composite materials loaded with recombinant osteo-
protegerin (OPG) can significantly reduce the maturation and resorption
activity of primary osteoclasts. In a rabbit calvarial defect model, the
defect area reconstructed with the composite material exhibited higher
mineralization, hardness, and resistance to micro-fracture [178].

4.4. Doped inorganic metallic elements

Strontium has the dual effect of inhibiting bone resorption and pro-
moting bone formation, and its doping in MC is a current research hot-
spot. Strontium promotes osteoblast differentiation by activating Ras/
MAPK and Wnt/β-catenin signaling pathways and transcription factor
Runx2 [179,180]. In addition, it interacts with membrane-bound cal-
cium-sensing receptors [181] and affects osteoclast paracrine signaling
[182]. Adding Sr into the hydroxyapatite (HA) altered its crystal lattice
and resulted in a concentration-dependent inhibition of mineralization.
However, the PILP method for synthesizing intrafibrillar minerals was
not affected by Sr doping [183]. In the process of MC scaffold prepara-
tion, calcium is replaced by strontium to produce strontium-modified
mineralized collagen [153], and composite materials can release stron-
tium ions (Sr2þ), and the concentration of Sr2þ released by 50% and
100% strontium-substituted scaffolds is in a range that is conducive to
the dual effect of strontium on bone metabolism [153].
Strontium-modified MC significantly promotes the proliferation and
osteogenic differentiation of hBMSC. After being soaked in BMP-2 solu-
tion and implanted at the bone defect site, the cross-segmented bone
bridge was achieved within 6 weeks. Strontium facilitated bone regen-
eration in a BMP-2-mediated femoral defect model in mice and improved
the mechanical properties of the bridged defect. With the increase of
strontium concentration, the quality of new bone tissue is significantly
improved, the number of osteoblasts and blood vessels in the tissue
increased, and the number of osteoclasts decreased, playing a dual role in
regulating bone metabolism [154] (Fig. 7).



Fig. 6. (A) Representative images of the fluorescently labeled BP (Alexa Pam 647 – red color) within both scaffold types. (B) Quantification of 14C-ZA elution from
porous collagen and carbonated hydroxyapatite (CHA) scaffolds post-washing. *p < 0.01 in comparison to CHA elution of both 1 μg and 2 μg 14C-ZA. (C) (a, b)
Representative 3D CT reconstruction; (c, d) corresponding transaxial slices (stack of 50 slices) of μCT images of bone nodules resulting from each group. (D)
Representative TRAP-stained histological sections of osteoclasts (stained in red) in trabecular-like structure of ectopic bone formed following 4 weeks of intramuscular
implantation. The arrows indicate the stained osteoclasts. Scale bars ¼ 500 μm [110]. Reproduced under the terms of the Creative Commons Attribution 4.0 In-
ternational License [110]. Copyright 2014, Elsevier. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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Magnesium is one of the major ions in juvenile and nascent bone and
tends to disappear in mature and aging bones [184,185]. The lack of
magnesium ions in bone tissue can affect the morphology, size, and
growth rate of crystals [156]. In the process of bone formation, Mg2þ can
play a role in promoting the osteogenic differentiation of stem cells,
promoting the adhesion and movement of osteoblasts, inhibiting osteo-
clasts, and regulating immunity [186], and indirectly influences bone
mineral metabolism by inducing the production of nitric oxide to pro-
mote angiogenesis [187,188]. Magnesium-doped MC scaffolds simulate
the composition and structure of human osteogenesis to a high degree,
exhibit excellent biocompatibility [189], support the attachment and
proliferation of hMSCs, and facilitate the formation of new bone and
cartilage tissue [190]. In an ectopic bone model, a large amount of
cancellous bone was produced within 2 weeks and gradually maturated,
eventually forming new bone with lacunae and bone cells, showing faster
and more efficient osteoinduction [158].

Various trace elements play a role in the process of bone regeneration
in vivo, andMC dopedwith trace elements can significantly promote bone
repair [191–193]. Zinc is an essential trace element, and a deficiency
thereof affects bone development and is associated with the pathogenesis
of osteoporosis [194,195]. Zn-doped HA/I-col material has a connected
pore structure and continuous zinc ion release, which has excellent
biocompatibility and can promote the osteogenic differentiation of
rBMSCs and the repair of bone defects [191,192]. When adding zinc to
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the mineralized collagen-glycosaminoglycan precursor suspension,
zinc-doped composites promote the growth and osteogenic differentia-
tion of porcine ADscs [155]. Iron (Fe) and manganese (Mn) are essential
trace elements in bone. Mn deficiency can weaken the activity of osteo-
blasts, leading to delayed osteogenic processes, bone deformation,
growth inhibition, and even bone resorption [193]. Iron is a basic
element in practically all organisms, which can promote reactive oxygen
species production, and improve the antibacterial and osteogenic prop-
erties of iron-containing materials [196,197]. HIMC [152] incorporated
with Fe2þ and Mn2þ significantly promote the adhesion, proliferation,
and osteogenic differentiation of osteoblasts. Compared with pure HIMC
scaffolds or commercial MC scaffolds, Fe/Mn composite HIMC scaffolds
loaded with fresh bone marrow cells have better bone regeneration
capability in vivo.
4.5. Additional elements

Fe2þ/Fe3þ can be incorporated into HA to obtain a new super-
paramagnetic phase with biocompatibility and bioabsorbability [3],
namely FeHA nanoparticles. In one study, magnetic nanoparticles
(MNPs) (such as Fe3O4 nanoparticles [198] and FeHA nanoparticles)
were incorporated into MC to obtain an intelligent magnetic scaffold,
which can apply mechanical stimulation to cells by external magnetic
fields, and by adjusting the remote applied magnetic field, the mode and



Fig. 7. (A) Experimental design in vivo. SEM image of a strontium-containing MC type I scaffold (a). The scaffolds were functionalized with and without rhBMP-2 and
implanted into 2 mm bone defects of nude mice (b–d). The defects were stabilized by an external fixator (c). (B) μCT evaluation of the bone volume at the defect site.
(C) The result of three-point binding stiffness. (D) Histological staining of femurs at 6 weeks after surgery. (E) Morphological scoring of the HE stained defect areas
[154]. Reproduced under the Creative Commons Attribution License [154]. Copyright 2020, John Wiley & Sons.
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intensity of mechanical stimulation for cells can be controllable. Studies
have found that, compared with static magnetic fields, mechanical
stimulation with periodic magnetic fields can better promote osteogenic
differentiation of MSCs [3,198]. Furthermore, adding multi-walled car-
bon nanotubes (MWCNT) to MC can greatly enhance scaffold hardness
(up to 10 times), promote bonemarrowMSC proliferation andmigration,
enhance osteogenic differentiation, and significantly facilitate new bone
formation [199]. Radially aligned MC fibers that incorporate nanosilicon
(RA-MC/nSi) further promote the recruitment of host repair cells to the
defect area in the skull, thereby facilitating bone regeneration [200].
11
5. Coordination of multifunctional MC

Bone induction and bone formation in vivo are complex and contin-
uous processes and require the coordination of various sides, particularly
for some complex bone defects. In addition to enhancing osteogenic
function during the bone regeneration process, it is also important to
coordinate with other functions such as angiogenesis, immunomodula-
tion, and anti-infective properties to improve the bone microenviron-
ment, thereby promoting regeneration and accelerating the healing
processes (Table 3).



Table 3
Multifunctional coordination of MC.

Classification of
MC

Synthetic
strategy

Active factors Loading
strategy

Cells or animal models Major findings Reference

HIMC PILP Antimicrobial
peptides

Immersing hMSCs Potent by contact killing of Gram-negative Escherichia coli and
Gram-positive Streptococcus gordonii as well as cytocompatible
to hMSCs.

[201]

EMC CIMC GAG Mixing hMSCs, HUVEC, THP-1 Directly and indirectly influence overall osteogenic potential
and mineral biosynthesis as well as angiogenic potential and
differentiation of monocyte.

[202]

EMC CIMC PL, HCM, ATE Chemical
bonding

hMSCs, HUVEC Chemically attracted hMSCs and promote the prevascular
structures formation.

[121]

EMC CIMC BMP-2, VEGF Immersing mandibular defect model
in the rabbit

Improve angiogenesis and osteogenesis. [108]

EMC CIMC rhBMP-2 Immersing hMSCs, Femoral defect in
the rabbit

Enhanced the osteogenic differentiation capacity of rBMSCs.
Promote bone regeneration.

[111]

MC DMA Zinc Silicate Mixing BMSCs, critical size
rodent calvarial defect
model

Promotes BMSC migration, differentiation, and vessel
formation.

[203]

PL, Platelet-rich plasma lysate; HCM, hypoxia-conditioned medium; ATE, adipose tissue extract; HUVEC, human umbilical vein endothelial cell; VNC, Vancomycin
hydrochloride; GNT, gentamicin sulfate.
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5.1. Synergy of angiogenesis and osteogenesis

VEGF is a specific GF acting on vascular endothelial cells, which can
regulate the migration, proliferation, and capillary formation of endo-
thelial cells [145,204]. It has been found that different patterns of VEGF
release appear to affect angiogenesis in different ways. The continuous
release of a tiny amount of VEGF from heparin-modified MC can affect
the formation of vascular structures, such as stabilizing immature
vascular structures, while the sudden release of VEGF accompanied by
non-heparin-modified MC seems to be more conducive in tubule for-
mation and sprouting [113]. VEGF was encapsulated in alginate micro-
spheres, and then mixed into MC scaffolds, which could promote the
formation of tubules by promoting vascular endothelial cells in vitro, and
significantly promote angiogenesis and bone regeneration in a skull
defect model [135]. In addition, non-sulfurized anionic glycosamino-
glycan hyaluronic acid may act synergistically with VEGF to promote
angiogenesis in vivo [205]. Based on the findings of the present study,
artificial VEGF mimic peptides had the same function of promoting the
angiogenic as VEGF proteins [206].

The concept that enhancing mature vascularized bone regeneration
by coupling osteogenesis and angiogenesis is an essential concept of
biomaterial modification, which can be exerted by the dual delivery of
angiogenic and osteogenic factors [108,207]. MC loaded with low doses
of BMP-2 and VEGF showed superior release kinetics in vitro [163], and
lead to more rapid and effective bone regeneration in vivo; the volume of
new bone increased about 28 times and the area of new bone increased
about seven times compared with MC without growth factors [163]. In
one study, an MC scaffold was used to incorporate CS microspheres
loaded with RhBMP-2. The scaffolds were then immersed in a solution of
VEGF to enable the sequential release of both factors, which facilitated
bone growth. Through the synergistic and additive effects of the growth
factors, VEGF promoted angiogenesis initially, followed by RhBMP-2,
which led to bone formation [208] (Fig. 8).

The hypoxic conditioned medium (HCM) of hBMSC is a mixture of
various signaling factors, has great potential to induce directional cell
migration, and contains elevated concentrations of angiogenic factors,
which can promote the formation of vascular structures [209]. HCM and
alginate composite, as a central repository, integrate into theMC scaffold.
The composite system was obtained after calcium crosslinking, which
can slow the release signal factor and form a concentration gradient
around the scaffolds, stimulating hBMSC directional migration to the
center of the scaffolds, completing the recruitment of cells. Moreover, the
composite system provides oxygen and nutrients for cells and accelerates
the healing of bone defects by promoting angiogenesis [127]. In addition,
heparin-modified MC scaffolds loaded with various concentrated
12
mixtures of growth factors can not only play a role in promoting bone
formation but also promote angiogenesis [121]. Silicate/nano-
hydroxyapatite/collagen (ZS/HA/Col) scaffolds can create a favorable
osteogenic microenvironment and regulate monocytes through the p38
MAPK pathway, promoting migration, differentiation of BMSCs, angio-
genesis, and bone regeneration in vivo [203]. Additionally, some natural
polymers (such as glycosaminoglycan, hyaluronic acid, and heparin)
have excellent biological activity and biodegradability, and show
enhanced osteogenic and angiogenic properties when combined with MC
[47,202,210–213].
5.2. Synergy of immunomodulation and osteogenesis

After biomaterials are implanted in the human body, a series of im-
mune responses develop, which not only determine the fate of the bio-
materials but also has an impact on the results of bone regeneration [88].
Excessive immune responses cause fibrotic encapsulation, tissue
destruction, and even implant-tissue separation, rejection, and other
poor prognoses [214,215]. Macrophages are the dominant cell type
involved in acute and chronic inflammation and the subsequent wound
healing or fibrotic response. Activated macrophages exhibit M1 (proin-
flammation) and M2 (tissue repair) phenotypes. The switch and balance
between M1 and M2 phenotypes are needed by tissue repair, and the
polarized macrophages recruit other immune cells to inflammatory sites
and activate the complement and adaptive immune system by secreting
different cytokines and small molecules [216–218]. The Ding group has
conducted a series of studies on the preparation of bone
immune-regulating tissue engineering scaffolds. The composite scaffold
has strong immune-regulating ability, significant angiogenic capacity,
and strong osteogenic ability. In vivo, it significantly promotes bone
defect repair [219,220]. Biomimetic collagen is an ideal bone repair
material. Its nanostructure regulates the polarization of macrophages
during bone regeneration and affects the outcome of bone regeneration
[88,221] (Fig. 9).

Compared with pure collagen scaffolds, the expression of inflamma-
tory and immune response genes associated with macrophages cultured
on MC were downregulated. The expression of genes associated with cell
proliferation, differentiation, tissue repair, and reconstruction were
increased [38]. Researchers have found that the MC coating on the sur-
face of titanium implants can regulate the phenotype of macrophages by
triggering the integrin-related cascade pathway, thereby promoting
osteogenic differentiation of mesenchymal stem cells [222]. Adrenaline
affects macrophage polarization regulated by MC via the PI3K/Akt
signaling pathway [38]. The surface roughness and the nanostructure of
MC regulates the polarization of macrophages [223]. On the rough



Fig. 8. (A) Simple method to prepare HA/COL composite. (B) Composites are implanted into animals for four weeks after removal and observed. (C) Masson staining
images of each group, four weeks after implantation. NB, deposition of new bone; M, bone-filling material; arrows refer to the new blood vessels. Reproduced with
permission [208]. Copyright 2019, Elsevier.
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surface, macrophages tend to polarize into the inflammatory M1
phenotype and secrete inflammatory factors (tumor necrosis factor-α and
interleukin-6) at high levels. While, on the smoother surface, macro-
phages induce polarization toward the M2 phenotype [223]. IMC and
HIMC promote the polarization of M2 macrophages and increase the
expression of M2-related anti-inflammatory cytokines IL-10 and
arginase-1 at the cell, protein, and gene levels [31,88,221]. However,
EMC mainly stimulates macrophages toward M1 polarization and ex-
presses higher levels of the M1-related genes, including iNOS and IL-6
[31,88,224]. Other research has indicated that HIMC promotes M2
macrophage polarization though regulation of IL-4 expression and
secretion, and the polarized macrophages strongly promote the osteo-
genic differentiation of MSCs and bone regeneration by secreting IL-4,
but do not affect the recruitment process of MSC [31]. In addition, M2
macrophage-related small extracellular vesicles (sEVs) can promote the
osteogenic differentiation of MSCs through the BMP2/Smad5 pathway.
This increases the expression of osteoblast differentiation markers
(BMP2, BGLAP, COL1, and OSX) and mineral deposition, and promotes
endogenous bone regeneration [35].
5.3. Synergy between anti-infective and osteogenic

The treatment of infectious bone defects is an intractable problem to
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be solved in orthopedics. Systemic use of antibiotics is ineffective due to
insufficient blood supply to the site of infection and increasing bacterial
resistance [225]. For this reason, developing new versatile in situ bone
defect repair scaffolds can effectively deal with infectious bone defects.
Antibiotic-loaded MC (such as with antimicrobial peptides and some
Chinese herbs) is a common strategy to achieve antibacterial function
[201,226–228]. Directly mixing antibiotics with collagen or HA is the
simplest method to prepare MC with antibacterial properties, which can
achieve the effective release of active vancomycin [229]. The COL/HA
electrospun fiber membrane is loaded with vancomycin and gentamicin
by soaking or immersion [230], which sustains the release of drugs with
antibacterial activity in high concentrations. The combined application
of the two drugs has a complementary effect, and is more effective than a
single administration of either agent. Furthermore, it is devoid of cellular
toxicity. A gentamicin/HA/collagen bone nanocomposite is an excellent
bioabsorbable anti-infective bone cavity filler without cytotoxicity, and
can be used for the prevention of initial infection [231].

The adsorption, activity, and release of antibiotics on MC are affected
by multiple factors. Magnesium modified mineralized collagen has
excellent osteogenic properties, and antibiotics (such as vancomycin and
gentamicin) loaded intomagnesiummodifiedMC composite materials by
soaking or immersion were developed to improve the osteogenic and
anti-infection properties. The magnesium doping leads to greater drug



Fig. 9. Potential molecular mechanism of how macrophage polarization activated by MC with different nanostructures affects the process of endogenous bone
regeneration.
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retention but does not affect the antibacterial activity of the drugs [227].
The binding mode of vancomycin and COL/HA material does, however,
influence the drug's activity. Compared with directly incorporating
vancomycin into the COL/HA electrospun liquid, vancomycin loaded
COL/HA after electrospinning shows stronger antibacterial activity
[147]. However, HA modification in MC does not negatively affect the
sustained release of vancomycin [229] or initial release thereof [147,
230]. In addition, various antibiotics have different adsorption capacities
upon MC. The superior adsorption capacity of antibiotics onto MC results
in more effective activity compared to antibiotics with lower adsorb-
ability, leading to improved therapeutic outcomes in murine models of
acute osteomyelitis [107] (Fig. 10).
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Silver ions exhibit excellent antibacterial properties by destroying
bacterial cell membranes and binding microbial DNA and sulfhydryl
groups of metabolic enzymes, thereby directly incorporating silver ions
into various natural and synthetic polymers to optimize the antibacterial
effect of materials [232–234]. In one study, silver nanoparticles were
prepared by the interaction between tannic acid and silver nitrate, and
then incorporated into a collagen matrix [235]. The composite was then
immersed in simulated body fluid. Lastly, a composite MC loaded with
silver nanoparticles was obtained though collagen self-assembly and
mineralization. The composite exhibited good mechanical performance
and antibacterial activities, and showed perfect biocompatibility to
MG-63 cells and red blood cells [235]. In another study, silver-doped
Fig. 10. (A) The amount of adsorbed antibiotic (mg)
per 1 g of HAp/Col. N/A, not available. (B) Repre-
sentative photographs of culture dishes. The trans-
lucent circles are inhibitory zones. *Effective
inhibitory zone. (C) 3D CT reconstruction of bone
holes at 4 weeks after implantation. (D) Hematoxylin
and eosin staining images of the implant site at
different times after implantation (scale bar: 1000 μm)
[107]. Reproduced with permission [107]. Copyright
2019, the Authors. Published by Wiley Periodicals.



Fig. 11. (A) Schematic illustration of the MC coating on titanium with the aid of metal-organic framework nanocrystals to control the release of naringin, which could
enhance osseointegration and simultaneously inhibit microbial cell growth. (B) Morphological observation of MSCs on various substrates. Filopodia are indicated by
white arrows [226]. Reproduced under the terms of the Creative Commons Attribution License [226]. Copyright 2017, American Chemical Society.
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hydroxyapatite (AgHAp) was prepared by the co-precipitation method
and then added to a collagen gel. Silver-doped MC was obtained after
freeze-drying. This composite also has strong antibacterial properties,
and the inhibition zone increased sharply with the increase in the silver
concentration [236]. In addition, graphene oxide (GO) [237], antimi-
crobial peptide GL13K [201], and naringin [226] were introduced into
mineralized collagen materials to obtain modified MC composites, which
have excellent biocompatibility, enhanced osteogenic properties, and
anti-infection effects (Fig. 11).

6. Discussion

MC has attracted considerable attention because of the similarity to
the chemical composition and/or nanostructure of natural bone tissue,
and has been evaluated as a relatively common scaffold material in bone
tissue engineering. There are currently many commercially available MC
products that have been approved by regulatory agencies for clinical use
and have demonstrated superior biological properties in bone defect
repairs and regeneration. However, for complex bone defects, MC ex-
hibits insufficient osteoinduction and poor antibacterial properties. As is
well known, due to the loose and porous structure, large surface area, and
inclusion of nano-HA, MC is suitable as an effective carrier for cells,
various AFs, and drugs. Moreover, calcium ions in MC can be doped and
replaced by various inorganic metallic ions, and impart enhanced
osteogenesis, angiogenesis, immunomodulatory, and anti-infection
properties to MC. The method to load AFs on MC is important and can
be categorized into four categories, including the adsorption onto MC by
immersing, binding to MC after surface modification, mixing with raw
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materials of MC, and polymer encapsulate. Therefore, the efficient and
orderly release of single or multiple AFs can be achieved by using
different loading methods or the combination of different loading
methods, to realize the multi-functionalization of MC. In the process,
attention should be paid to the influence of physical and chemical con-
ditions on the biological activity of AFs and the influence of AFs on the
degradation performance of MC, crystal morphology, nanostructures,
and content of HA. When loading multiple AFs, the interaction between
different factors should be noted, and this may affect the release curve
and bioactivity. In the process of in situ bone tissue regeneration, func-
tionalized MC not only acts as a support material, but also as a drug
delivery system to continuously deliver AFs locally, to exert an anti-
infection, immunomodulatory, angiogenesis, and osteogenesis function,
and finally facilitate bone regeneration and repair various complex bone
defects.

In recent years, despite the impressive progress in the study of func-
tionalized MC materials, numerous problems remain to be solved. IMC
and HIMC have excellent mechanical and biological properties compared
to conventional MC. However, the biomimetic preparation process in
vitro is complex, time-consuming, involves numerous variables, and a
unified preparation strategy has not yet been formed, which is not
favorable for the industrial production and uniform results between
different studies. In addition, present research is at the stage of preparing
MC with a level-2 hierarchical structure in the multilevel layered struc-
ture of bone tissue. Achieving biomimicry at higher levels of the layered
structure of bone tissue becomes a formidable challenge. Strengthening
the knowledge of the biomineralization process in vivo, and a precise
understanding of the nature and function of collagen type I and numerous
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non-collagenous proteins, as well as continuously striving to improve
biomimetic preparation strategies in vitro, will contribute to the suc-
cessful fabrication of MC with the more intricate hierarchical structure of
natural bone. MC with different nanostructures have different biological
properties, and the precise mechanisms of pro-osteogenic effects involve
a multitude of aspects, such as osteogenesis, angiogenesis, and
osteoimmunomodulation. Future research should focus on two important
areas. First, the development of more advanced biomimetic MC prepa-
ration methods. Second, the direction of future research should focus on
encapsulating and precisely controlling the release of AFs using a com-
bination of multiple AFs and loading strategies that can function
collaboratively. Ultimately, the preparation of a functional MC composite
system that can effectively repair bone defects of varying degrees would
be a crucial consideration for future studies. We believe that by further
investigating mineralization mechanisms in vivo, improving the prepa-
ration strategies for biomimetic MC in vitro, and introducing advanced
drug sustained release systems, which are constantly optimized with the
release of AFs, the development of a functional MC to meet the diverse
needs of patients and address clinical requirements is well within reach.
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